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ABSTRACT
Black-box mutational fuzzing is a simple yet effective tech-
nique to find bugs in software. Given a set of program-seed
pairs, we ask how to schedule the fuzzings of these pairs in
order to maximize the number of unique bugs found at any
point in time. We develop an analytic framework using a
mathematical model of black-box mutational fuzzing and
use it to evaluate 26 existing and new randomized online
scheduling algorithms. Our experiments show that one of
our new scheduling algorithms outperforms the multi-armed
bandit algorithm in the current version of the CERT Basic
Fuzzing Framework (BFF) by finding 1.5× more unique bugs
in the same amount of time.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing Tools

General Terms
Security

Keywords
Software Security; Fuzz Configuration Scheduling

1 Introduction
A General (or professor) walks into a cramped cubicle, telling
the lone security analyst (or graduate student) that she has
one week to find a zero-day exploit against a certain popular
OS distribution, all the while making it sound as if this task
is as easy as catching the next bus. Although our analyst
has access to several program analysis tools for finding bugs
[8, 10, 11, 21] and generating exploits [4, 9], she still faces a
harsh reality: the target OS distribution contains thousands
of programs, each with potentially tens or even hundreds
of yet undiscovered bugs. What tools should she use for
this mission? Which programs should she analyze, and in
what order? How much time should she dedicate to a given
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program? Above all, how can she maximize her likelihood of
success within the given time budget?

In this paper, we focus on the setting where our analyst
has chosen to find bugs via black-box mutational fuzzing. At
a high level, this technique takes as input a program p and a
seed s that is usually assumed to be a well-formed input for p.
Then, a program known as a black-box mutational fuzzer is
used to fuzz the program p with the seed s, i.e., execute p on
a potentially malformed input x obtained by randomly mu-
tating s in a precise manner to be described in §2. Through
repeated fuzzings, we may discover a number of inputs that
crash p. These crashing inputs are then passed to down-
stream analyses to triage each crash into a corresponding
bug, test each newly-discovered bug for exploitability, and
generate exploits when possible.

Intuitively, our analyst may try to improve her chances
by finding the greatest number of unique bugs among the
programs to be analyzed within the given time budget. To
model this, let us introduce the notion of a fuzz campaign.
We assume our analyst has already obtained a list of program-
seed pairs (pi, si) to be fuzzed through prior manual and/or
automatic analysis. A fuzz campaign takes this list as input
and reports each new (previously unseen) bug when it is
discovered. As a simplification, we also assume that the
fuzz campaign is orchestrated in epochs. At the beginning of
each epoch we select one program-seed pair based only on
information obtained during the campaign, and we fuzz that
pair for the entire epoch. This latter assumption has two
subtle but important implications. First, though it does not
limit us to fuzzing with only one computer, it does require
that every computer in the campaign fuzz the same program-
seed pair during an epoch. Second, while our definition of
a fuzz configuration in §2 is more general than a program-
seed pair, we also explain our decision to equate these two
concepts in our present work. As such, what we need to
select for each epoch is really a fuzz configuration, which
gives rise to our naming of the Fuzz Configuration Scheduling
(FCS) problem.

To find the greatest number of unique bugs given the above
problem setting, our analyst must allocate her time wisely.
Since initially she has no information on which configuration
will yield more new bugs, she should explore the configu-
rations and reduce her risk by fuzzing each configuration
for an adequate amount of time. As she starts to identify
some configurations that she believes may yield more new
bugs in the future, she should also exploit this information
by increasing the time allocated to fuzz these configurations.
Of course, any increase in exploitation reduces exploration,



which may cause our analyst to under-explore and miss con-
figurations that are capable of yielding more new bugs. This
is the classic “exploration vs. exploitation” trade-off, which
signifies that we are dealing with a Multi-Armed Bandit
(MAB) problem [5].

Unfortunately, merely recognizing the MAB nature of our
problem is not sufficient to give us an easy solution. As we
explain in §3, even though there are many existing MAB
algorithms and some even come with excellent theoretical
guarantees, we are not aware of any MAB algorithm that
is designed to cater to the specifics of finding unique bugs
using black-box mutational fuzzing. For example, suppose
we have just found a crash by fuzzing a program-seed pair
and the crash gets triaged to a new bug. Should an MAB
algorithm consider this as a high reward, thus steering itself
to fuzz this pair more frequently in the future? Exactly what
does this information tell us about the probability of finding
another new bug from this pair in future fuzzes? What if the
bug was instead a duplicate, i.e., one that has already been
discovered in a previous fuzz run? Does that mean we should
assign a zero reward since this bug does not contribute to
the number of unique bugs found?

As a first step to answer these questions and design more
suitable MAB algorithms for our problem, we discover that
the memoryless property of black-box mutational fuzzing
allows us to formally model the repeated fuzzings of a con-
figuration as a bug arrival process. Our insight is that this
process is a weighted variant of the Coupon Collector’s Prob-
lem (CCP) where each coupon type has its own fixed but
initially unknown arrival probability. We explain in §4.1 how
to view each fuzz run as the arrival of a coupon and each
unique bug as a coupon type. Using this analogy, it is easy
to understand the need to use the weighted variant of the
CCP (WCCP) and the challenge in estimating the arrival
probabilities.

The WCCP connection has proven to be more powerful
than simply affording us clean and formal notation—not only
does it explain why our problem is impossible to optimize in
its most general setting due to the No Free Lunch Theorem,
but it also pinpoints how we can circumvent this impossibility
result if we are willing to make certain assumptions about
the arrival probabilities in the WCCP (§4.2). Of course, we
also understand that our analyst may not be comfortable
in making any such assumptions. This is why we have
also investigated how she can use the statistical concept of
confidence intervals to estimate an upperbound on the sum
of the arrival probabilities of the unique bugs that remain
to be discovered in a fuzz configuration. We argue in §4.3
why this upperbound offers a pragmatic way to cope with
the above impossibility result.

Having developed these analytical tools, we explore the
design space of online algorithms for our problem in §4.4.
We investigate two epoch types, five belief functions that es-
timate future bug arrival using past observations, two MAB
algorithms that use such belief functions and three that do
not. By combining these dimensions, we obtain 26 online
algorithms for our problem. While some of these algorithms
have appeared in prior work, the majority of them are new.
In addition, we also present offline algorithms for our prob-
lem in §4.5. In the case where the sets of unique bugs from
each configuration are disjoint, we obtain an efficient algo-
rithm that computes the offline optimal, i.e., the maximum
number of unique bugs that can be found by any algorithm

in any given time budget. In the other case where these
sets may overlap, we also propose an efficient heuristic that
lowerbounds the offline optimal.

To evaluate our online algorithms, we built FuzzSim, a
novel replay-based fuzz simulation system that we present in
§5. FuzzSim is capable of simulating any online algorithm
using pre-recorded fuzzing data. We used it to implement
numerous algorithms, including the 26 presented in this
paper. We also collected two extensive sets of fuzzing data
based on the most recent stable release of the Debian Linux
distribution up to the time of our data collection. To this
end, we first assembled 100 program-seed pairs comprising
FFMpeg with 100 different seeds and another 100 pairs
comprising 100 different Linux file conversion utilities, each
with an input seed that has been manually verified to be valid.
Then, we fuzzed each of these 200 program-seed pairs for
10 days, which amounts to 48, 000 CPU hours of fuzzing in
total. The performance of our online algorithms on these two
datasets is presented in §6. In addition, we are also releasing
FuzzSim as well as our datasets in support of open science.
Besides replicating our experiments, this will also enable
fellow researchers to evaluate other algorithms. For details,
please visit http://security.ece.cmu.edu/fuzzsim/.

2 Problem Setting and Notation
Let us start by setting out the definitions and assump-
tions needed to mathematically model black-box mutational
fuzzing. Our model is motivated by and consistent with real-
world fuzzers such as zzuf [16]. We then present our problem
statement and discuss several algorithmic considerations. For
the rest of this paper, the terms “fuzzer” and “fuzzing” refer
to the black-box mutational variant unless otherwise stated.

2.1 Black-box Mutational Fuzzing
Black-box mutational fuzzing is a dynamic bug-finding tech-
nique. It endeavors to find bugs in a given program p by
running it on a sequence of inputs generated by randomly
mutating a given seed input s. The program that generates
these inputs and executes p on them is known as a black-box
mutational fuzzer. In principle, there is no restriction on s
other than it being a string with a finite length; however, in
practice, s is often chosen to be a well-formed input for p
in the interest of finding bugs in p more effectively. With
each execution, p either crashes or properly terminates. Mul-
tiple crashes, however, may be due to the same underlying
bug. Thus there needs to be a bug-triage process to map
each crash into its corresponding bug. Understanding the
effects of these multiplicities is key to analyzing black-box
mutational fuzzing.

To formally define black-box mutational fuzzing, we need a
notion of “random mutations” for bit strings. In what follows,
let |s| denote the bit-length of s.

Definition 2.1. A random mutation of a bit b is the
exclusive-or1of the bit b and a uniformly-chosen bit. With
respect to a given mutation ratio r ∈ [0, 1], a random mu-
tation of a string s is generated by first selecting d = r · |s|
different bit-positions uniformly at random among the

(|s|
d

)
possible combinations and then randomly mutating those d
bits in s.

1Mutations in the form of unconditionally setting or unsetting
the bit are possible, but they are both harder to analyze
mathematically and less frequently used in practice. To
justify the latter, we note that zzuf defaults to exclusive-or.
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Definition 2.2. A black-box mutational fuzzer is a ran-
domized algorithm that takes as input a fuzz configuration,
which comprises (i) a program p, (ii) a seed input s, and (iii)
a mutation ratio r ∈ [0, 1]. In a fuzz run, the fuzzer generates
an input x by randomly mutating s with the mutation ratio
r and then runs p on x. The outcome of this fuzz run is a
crash or a proper termination of p.

At this point, it is convenient to set up one additional
notation to complement Definition 2.1. Let Hd(s) denote
the set of all strings obtained by randomly-mutating s with
the mutation ratio r = d/|s|. This notation highlights the
equivalence between the set of all obtainable inputs and the
set of all |s|-bit strings within a Hamming distance of d
from s. In this notation, the input string x in Definition 2.1
is simply a string chosen uniformly at random from Hd(s).
As we explain below, in this paper we use a globally-fixed
mutation ratio and therefore d is fixed once s is given. This
is why we simply write H(s) instead of Hd(s).

We now state and justify several assumptions of our math-
ematical model, all of which are satisfied by typical fuzzers
in practice.

Assumption 1. Each seed input has finite length.

This assumption is always satisfied when fuzzing file inputs.
In practice, some fuzzers can also perform stream fuzzing,
which randomly mutates each bit in an input stream with a
user-configurable probability. Notice that while the expected
number of randomly-mutated bits is fixed, the actual number
is not. We do not model stream fuzzing.

Assumption 2. An execution of the program exhibits ex-
actly one of the following two possible outcomes—it either
crashes or properly terminates.

In essence, this assumption means we focus exclusively on
finding bugs that lead to crashes. Finding logical bugs that
do not lead to crashes would typically require a correctness
specification of the program under test. At present, such spec-
ifications are rare in practice and therefore this assumption
does not impose a severe restriction.

Assumption 3. The outcome of an execution of the pro-
gram depends solely on the input x generated by the fuzzer.

This assumption ensures we are not finding bugs caused
by input channels not under the fuzzer’s control. Since
the generated input alone determines whether the program
crashes or terminates properly, all bugs found during fuzzing
are deterministically reproducible. In practice, inputs that
do not cause a crash in downstream analyses are discarded.

Mutation Ratio. We include the mutation ratio as a third
parameter in our definition of fuzz configurations given in
Definition 2.2. Our choice reflects the importance of this
parameter in practice since different seeds may need to be
fuzzed at different mutation ratios to be effective in find-
ing bugs. However, in order to evaluate a large number of
scheduling algorithms, our work is based on a replay simula-
tion as detailed in §5. Gathering the ground-truth fuzzing
data for such simulations is resource-intensive, prohibitively
so if we examine multiple mutation ratios. As such, our
current project globally fixes the mutation ratio at 0.0004,
the default value used in zzuf. Accordingly, we suppress the
third parameter of a fuzz configuration in this paper, effec-
tively equating program-seed pairs with fuzz configurations.
For further discussion related to the mutation ratio, see §6.6.

2.2 Problem Statement
Given a list of K fuzz configurations {(p1, s1), · · · , (pK , sK)}
and a time budget T , the Fuzz Configuration Scheduling
problem seeks to maximize the number of unique bugs dis-
covered in a fuzz campaign that runs for a duration of length
T . A fuzz campaign is divided into epochs, starting with
epoch 1. We consider two epoch types: fixed-run and fixed-
time. In a fixed-run campaign, each epoch corresponds to
a constant number of fuzz runs; since the time required for
individual fuzz runs may vary, fixed-run epochs may take
variable amounts of time. On the other hand, in a fixed-time
campaign, each epoch corresponds to a constant amount of
time. Thus, the number of fuzz runs completed may vary
across fixed-time epochs.

An online algorithm A for the Fuzz Configuration Schedul-
ing problem operates before each epoch starts. When the
campaign starts, A receives the number K. Suppose the
campaign has completed ` epochs so far. Before epoch (`+1)
begins, A should select a number i ∈ [1,K] based on the
information it has received from the campaign. Then the
entire epoch (` + 1) is devoted to fuzzing (pi, si ). When
the epoch ends, A receives a sequence of IDs representing
the outcomes of the fuzz runs completed during the epoch.
If an outcome is a crash, then the returned ID is the bug
ID computed by the bug triage process, which we assume
is non-zero. Otherwise, the outcome is a proper termina-
tion, and the returned ID is 0. Also, any ID that has never
been encountered by the campaign prior to epoch (` + 1)
is marked as new. Notice that a new ID can signify either
the first proper termination in the campaign or a new bug
discovered during epoch (`+ 1). Besides the list of IDs, A
also receives statistical information about the epoch. In a
fixed-run campaign, it receives the time spent in the epoch;
in a fixed-time campaign, it receives the number of fuzz runs
that ended inside the epoch.

Algorithmic Considerations. We now turn to a few techni-
cal issues that we withheld from the above problem statement.
First, we allow A to be either deterministic or randomized.
This admits the use of various existing MAB algorithms,
many of which are indeed randomized.

Second, notice that A receives only the number of configu-
rations K but not the actual configurations. This formulation
is to prevent A from analyzing the content of any pi’s or si’s.
Similarly, we prevent A from analyzing bugs by sending it
only the bug IDs but not any concrete representation.

Third, A also does not receive the time budget T . This
forces A to make its decisions without knowing how much
time is left. Therefore, A has to attempt to discover new bugs
as early as possible. While this rules out any algorithm that
adjusts its degree of exploration based on the time left, we
argue that this not a severe restriction from the perspective
of algorithm design. For example, one of the algorithms we
use is the EXP3.S.1 algorithm [2]. It copes with the unknown
time horizon by partitioning time into exponentially longer
periods and picking new parameters at the beginning of each
period, which has a known length.

Fourth, our analysis assumes that the K fuzz configura-
tions are chosen such that they yield disjoint sets of bugs.
This assumption is needed so that we can consider the bug
arrival process of fuzzing each configuration independently.
While this assumption may be valid when every configuration
involves a different program, as in one of our two datasets,



satisfying it when one program can appear in multiple config-
urations is non-trivial. In practice, it is achieved by selecting
seeds that exercise different code regions. For example, in
our other data set, we use seeds of various file formats to
fuzz the different file parsers in a media player.

Finally, at present we do not account for the time spent
in bug triage, though this process requires considerable time.
In practice, triaging a crash takes approximately the same
amount of time as the fuzz run that initially found the crash.
Therefore, bug triage can potentially account for over half of
the time spent in an epoch if crashes are extremely frequent.
We plan to incorporate this consideration into our project at
a future time.

3 Multi-Armed Bandits
As explained in §1, the Fuzz Configuration Scheduling prob-
lem is an instance of the classic Multi-Armed Bandit (MAB)
problem. This has already been observed by previous re-
searchers. For example, the CERT Basic Fuzzing Framework
(BFF) [14], which supports fuzzing a single program with
a collection of seeds and a set of mutation ratios, uses an
MAB algorithm to select among the seed-ratio pairs during
a fuzz campaign. However, we must stress that recognizing
the MAB nature of our problem is merely a first step. In
particular, we should not expect an MAB algorithm with
provably “good” performance, such as one from the UCB [3]
or the EXP3 [2] families, to yield good results in our problem
setting. There are at least two reasons for this.

First, although many of these algorithms are proven to
have optimal regret in various forms, the most common
form of regret does not actually give good guarantees in our
problem setting. In particular, this form of regret measures
the difference between the expected reward of an algorithm
and the reward obtained by consistently fuzzing the single
best configuration that yields the greatest number of unique
bugs. However, we are interested in evaluating performance
relative to the total number of unique bugs from all K
configurations, which may be much greater than the number
from one fixed configuration. Thus, the low-regret guarantee
of many MAB algorithms is in fact measuring against a
target that is likely to be much lower than what we desire.
In other words, given our problem setting, these algorithms
are not guaranteed to be competitive at all!

Second, while there exist algorithms with provably low
regret in a form suited to our problem setting, the actual re-
gret bounds of these algorithms often do not give meaningful
values in practice. For example, one of the MAB algorithms
we use is the EXP3.S.1 algorithm [2], proven to have an

expected worst-case regret of S+2e√
2−1

√
2K` ln(K`), where S is

a certain hardness measure of the problem instance as de-
fined in [2, §8] and ` is the number of epochs in our problem
setting. Even assuming the easiest case where S equals to 1
and picking K to be a modest value of 10, the value of this
bound when ` = 4 is already slightly above 266. However,
as we see in §6, the number of bugs we found in our two
datasets are 200 and 223 respectively. What this means is
that this regret bound is very likely to dwarf the number of
bugs that can be found in real-world software after a very
small number of epochs. In other words, even though we have
the right kind of guarantee from EXP3.S.1, the guarantee
quickly becomes meaningless in practical terms.

Having said the above, we remark that this simply means
such optimal regret guarantees may not be useful in ensuring

good results. As we will see in §6, EXP3.S.1 can still obtain
reasonably good results in the right setting.

4 Algorithms for the FCS Problem
Our goal in this section is to investigate how to design online
algorithms for the Fuzz Configuration Scheduling problem.
We largely focus on developing the design space (§4.4), mak-
ing heavy use of the mathematical foundation we lay out
in §4.1 and §4.3. Additionally, we present two impossibility
results in §4.2, one of which requires a precise condition
that greatly informs our algorithm design effort. We also
present two offline algorithms for our problem. While such
algorithms may not be applicable in practice, a unique aspect
of our project allows us to use them as benchmarks which
we measure our online algorithms against. We explain this
along with the offline algorithms in §4.5.

4.1 Fuzzing as a Weighted CCP
Let us start by mathematically modeling the process of
repeatedly fuzzing a configuration. As we explained in §2,
the output of this process is a stream of crashes intermixed
with proper terminations, which is then transformed into
a stream of IDs by a bug triage process. Since we want to
maximize the number of unique bugs found, we are naturally
interested in when a new bug arrives in this process. This
insight quickly leads us to the Coupon Collector’s Problem
(CCP), a classical arrival process in probability theory.

The CCP concerns a consumer who obtains one coupon
with each purchase of a box of breakfast cereal. Suppose
there are M different coupon types in circulation. One basic
question about the CCP is: what is the expected number of
purchases required before the consumer amasses k (≤ M)
unique coupons? In its most elementary formulation, each
coupon is chosen uniformly at random among the M coupon
types. In this setting, many questions related to the CCP—
including the one above—are relatively easy to answer.

Viewing Fuzzing as WCCP with Unknown Weights. Un-
fortunately, our problem setting actually demands a weighted
variant of the CCP which we dub the WCCP. Intuitively, this
is because the probabilities of the different outcomes from
a fuzz run are not necessarily (and unlikely to be) uniform.
This observation has also been made by Arcuri et al. [1].

Let (M − 1) be the actual number of unique bugs discov-
erable by fuzzing a certain configuration. Then including
proper termination of a fuzz run as an outcome gives us
exactly M distinct outcome types. We thus relate the pro-
cess of repeatedly fuzzing a configuration to the WCCP by
viewing fuzz run outcomes as coupons and their associated
IDs as coupon types.

However, unlike usual formulations of the WCCP where the
distribution of outcomes across type is given, in our problem
setting this distribution is unknown a priori. In particular,
there is no way to know the true value ofM for a configuration
without exhaustively fuzzing all possible mutations. As such,
we utilize statistical estimations of these distributions rather
than the ground-truth in our algorithm design. An important
question to consider is whether accurate estimations are
feasible.

We now explain why we prefer the sets of bugs from differ-
ent configurations used in a campaign to be disjoint. Observe
that our model of a campaign is a combination of multiple
independent WCCP processes. If a bug that is new to one
process has already been discovered in another, then this



bug cannot contribute to the total number of unique bugs.
This means that overlap in the sets of bugs diminishes the
fidelity of our model, so that any algorithm relying on its
predictions may suffer in performance.

WCCP Notation. Before we go on, let us set up some ad-
ditional notation related to the WCCP. In an effort to avoid
excessive indices, our notation implicitly assumes a fixed
configuration (pi, si) that is made apparent by context. For
example, M , the number of possible outcomes when fuzzing a
given configuration as defined above, follows this convention.

(i) Consider the fixed sequence σ of outcomes we obtain
in the course of fuzzing (pi, si) during a campaign. We label
an outcome as type k if it belongs to the kth distinct type of
outcome in σ. Let Pk denote the probability of encountering
a type-k outcome in σ, i.e.,

Pk =
|{x ∈ H(si) : x triggers an outcome of type k}|

|H(si)|
. (1)

(ii) Although both the number and frequency of outcome
types obtainable by fuzzing (pi, si ) are unknown a priori,
during a campaign we do have empirical observations for
these quantities up to any point in σ. Let M̂(`) be the number
of distinct outcomes observed from epoch 1 through epoch
`. Let nk(`) be the number of inputs triggering outcomes
of type k observed throughout these ` epochs. Notice that
over the course of a campaign, the sequence σ is segmented
into subsequences, each of which corresponds to an epoch
in which (pi, si ) is chosen. Thus, the values of M̂(·) and
nk(·) will not change if (pi, si) is not chosen for the current
epoch. With this notation, we can also express the empirical
probability of detecting a type-k outcome following epoch `
as

P̂k(`) =
nk(`)∑M̂(`)

k′=1 nk′(`)
.

4.2 Impossibility Results
No Free Lunch. The absence of any assumption on the dis-
tribution of outcome types in the WCCP quickly leads us to
our first impossibility result. In particular, no algorithm can
consistently outperform other algorithms for the FCS prob-
lem. This follows from a well-known impossibility result in
optimization theory, namely the “No Free Lunch” theorem by
Wolpert and Macready [22]. Quoting Wolpert and Macready,
their theorem implies that “any two optimization algorithms
are equivalent when their performance is averaged across all
possible problems.” In our problem setting, maximizing the
number of bugs found in epoch (`+ 1) amounts to, for each
configuration, estimating its PM̂(`)+1 in equation (1) using
only past observations from that configuration. Intuitively,
by averaging across all possible outcome type distributions,
any estimation will be incorrect sufficiently often and thus
lead to suboptimal behavior that cancels any advantage of
one algorithm over another.

While we may consider this result to be easy to obtain
once we have properly set up our problem using §2 and §4.1,
we consider it to be an important intellectual contribution for
the pragmatic practitioners who remain confident that they
can design algorithms that outperform others. In particular,
the statement of the No Free Lunch theorem itself reveals
precisely how we can circumvent its conclusion—our estima-
tion procedure must assume the outcome type distributions

have particular characteristics. Our motto is thus “there is
no free lunch—please bring your own prior!”

Tight K-Competitiveness. Our second impossibility result
shows that there are problem instances in which the time
spent by any deterministic online algorithm to find a given
number of unique bugs in a fixed-time campaign is at least
K times larger than the time spent by an optimal offline
algorithm. Using the terminology of competitive analysis,
this shows that the competitive ratio of any deterministic
online algorithm for this problem is at least K.

To show this, we fix a deterministic algorithm A and
construct a contrived problem instance in which there is only
one bug among all the configurations in a campaign. Since A
is deterministic, there exists a unique pair (p∗i , s

∗
i ) that gets

chosen last. In other words, the other (K − 1) pairs have all
been fuzzed for at least one epoch when (p∗i , s

∗
i ) is fuzzed for

the first time. If the lone bug is only triggered by fuzzing
(p∗i , s

∗
i ), then A will have to fuzz for at least K epochs to

find it.
For an optimal offline algorithm, handling this contrived

scenario is trivial. Since it is offline, it has full knowledge
of the outcome distributions, enabling it to hone in on the
special pair (p∗i , s

∗
i ) and find the bug in the first epoch. This

establishes that K is a lowerbound for the competitive ratio
of any deterministic algorithm.

Finally, we observe that Round-Robin is a deterministic
online algorithm that achieves the competitive ratio K in
every problem instance. It follows immediately that K is
tight.

4.3 Upperbounding the Probability of Seeing
a New Outcome During Fuzzing

Having seen such strong impossibility results, let us consider
what a pragmatist might do before bringing in any prior on
the outcome type distribution. In other words, if we do not
want to make any assumptions on this distribution, is there
a justifiable approach to designing online algorithms for the
FCS problem?

We argue that the answer is yes. Consider two program-
seed pairs (p1, s1) and (p2, s2) for which we have upperbounds
on the probability of finding a new outcome if we fuzz them
once more. Assume that the upperbound for (p1, s1) is the
higher of the two.

We stress that what we know are merely upperbounds—it
is still possible that the true probability of yielding a new
outcome from fuzzing (p1, s1) is lower than that of (p2, s2).
Nonetheless, with no information beyond the ordering of
these upperbounds, fuzzing (p1, s1 ) first is arguably the
more prudent choice. This is because to do otherwise would
indicate a belief that the actual probability of finding a new
outcome by fuzzing (p1, s1) in the next fuzz run is lower than
the upperbound for (p2, s2).

Accepting this argument, how might we obtain such upper-
bounds? We introduce the Rule of Three for this purpose.

Rule of Three. Consider an experiment of independent
Bernoulli trials with identical success and failure probabilities
p and q = (1− p). Suppose we have carried out N ≥ 1 trials
so far and every trial has been a success. What can we say
about q other than the fact that it must be (i) at least 0
to be a valid probability and (ii) strictly less than 1 since
p is evidently positive? In particular, can we place a lower
upperbound on q?



Unfortunately, the answer is a resounding no: even with q
arbitrarily close to 1, we still have (pN > 0). This means our
observation really could have happened even if it is extremely
unlikely.

Fortunately, if we are willing to rule out the possibility of
encountering extremely unlikely events, then we may com-
pute a lower upperbound for q by means of a confidence
interval. For example, a 95% confidence interval on q out-
puts an interval that includes the true value of q of the
underlying experiment with 95% certainty. In other words,
if the outputted interval does not contain the true value of
q for the experiment, then the observed event must have a
likelihood of at most 5%.

For the above situation, there is particularly neat technique
to compute a 95% confidence interval on q. Known as the
“Rule of Three”, this method simply outputs 0 and 3/N for the
lowerbound and upperbound, respectively. The lowerbound
is trivial, and the upperbound has been shown to be a good
approximation for N > 30. See [15] for more information
on this technique, including the relationship between 95%
confidence and the constant 3.

How We Use Rule of Three. In order to apply the Rule
of Three, we must adapt our fuzzing experiments with any
M > 1 possible outcome types to fit the mold of Bernoulli
trials.

We make use of a small trick. Suppose we have just finished
epoch ` and consider a particular configuration (pi, si). Using

our notation, we have observed M̂(`) different outcomes so

far and for 1 ≤ k ≤ M̂(`), we have observed nk(`) counts of

outcome of type k. Let N(`) =
∑M̂(`)

k=1 nk(`) denote the total
number of fuzz runs for this pair through epoch `. The trick
is to define a “success” to be finding an outcome of type 1
through type M̂(`). Then, in hindsight, it is the case that
our experiment has only yielded success so far.

With this observation, we may now apply the Rule of Three
to conclude that [0, 3/N(`)] is a 95% confidence interval on
the “failure” probability—the probability that fuzzing this
configuration will result in an outcome type that we have
not seen before, i.e., a new outcome. Then, as desired, we
have an easy-to-compute upperbound on the probability of
finding a new outcome for each configuration.

We introduce one more piece of notation before proceeding:
define the Remaining Probability Mass (RPM) of (pi, si) at
the end of epoch `, denoted RPM(`), to be the probability
of finding a new outcome if we fuzz (pi, si) once more. Note
that the pair in RPM(`) is implicit, and that this value
is upperbounded by 3/N(`) if we accept a 95% confidence
interval.

4.4 Design Space
In this section, we explore the design space that a pragma-
tist may attempt when designing online algorithms for the
Fuzz Configuration Scheduling problem. A depiction of the
design space, along with our experimental results, is given in
Table 2 in §6. Our focus here is to explain our motivation for
choosing the three dimensions we explore and the particular
choices we include in each dimension. By combining these
dimensions, we obtain 26 online algorithms for our prob-
lem. We implemented these algorithms inside a simulator,
FuzzSim, the detail of which is presented in §5.

Epoch Type. We consider two possible definitions of an
epoch in a fuzz campaign. The first is the more traditional

choice and is used in the current version of CERT BFF
v2.6 [14]; the second is our proposal.

Fixed-Run. Each epoch executes a constant number of
fuzz runs. In FuzzSim, a fixed-run epoch consists of 200
runs. Note that any differential in fuzzing speed across
configurations translates into variation in the time spent in
fixed-run epochs.

Fixed-Time. Each epoch is allocated a fixed amount of
time. In FuzzSim, a fixed-time epoch lasts for 10 seconds.
Our motivation to investigate this epoch type is to see how
heavily epoch time variation affects the results obtained by
systems with fixed-run epochs.

Belief Metrics. Two of the MAB algorithms we present
below make use of a belief metric that is associated with each
configuration and is updated after each epoch. Intuitively,
the metrics are designed such that fuzzing a configuration
with a higher metric should yield more bugs in expectation.
The first two beliefs below use the concept of RPM to achieve
this without invoking any prior; the remaining three embrace
a “bug prior”. For now, suppose epoch ` has just finished
and we are in the process of updating the belief for the
configuration (pi, si).

RPM. We use the upperbound in the 95% confidence interval
given by the Rule of Three to approximate RPM(`). The
belief is simply 3/N(`).

Expected Waiting Time Until Next New Outcome
(EWT). Since RPM does not take into account of the speed
of each fuzz run, we also investigate a speed-normalized
variant of RPM. Let Time(`) be the cumulative time spent
fuzzing this configuration from epoch 1 to epoch `. Let

avgTime(`) be the average time of a fuzz run, i.e., Time(`)
N(`)

.

Let W be a random variable denoting the waiting time until
the next new outcome. Recall that RPM(`) is the probability
of finding a new outcome in the next fuzz run and assume it
is independent of avgTime(`). To compute E[W ], observe
that either we find a new outcome in the next fuzz run, or
we do not and we have to wait again. Therefore,

E[W ] = RPM(`)× avgTime(`)

+ (1− RPM(`))× (avgTime(`) + E[W ]).

(Notice that RPM does not change even in the second case;
what changes is our upperbound on RPM.) Solving for E[W ]

yields avgTime(`)
RPM(`)

, and we substitute in the upperbound of

the 95% confidence interval for RPM(`) to obtain E[W ] ≥
avgTime(`)
3/N(`)

= Time(`)
3

. Since a larger waiting time is less desir-

able, the belief used is its reciprocal, 3/Time(`).

Rich Gets Richer (RGR). This metric is grounded in
what we call the “bug prior”, which captures our empirical
observation that code tends to be either robust or bug-ridden.
Programs written by programmers of different skill levels
or past testing of a program might explain this real-world
phenomenon. Accordingly, demonstrated bugginess of a
program serves as a strong indicator that more bugs will be
found in that program and thus the belief is M̂(`).

Density. This is a runs-normalized variant of RGR and is
also the belief used in CERT BFF v2.6 [14]. The belief func-

tion is M̂(`)/N(`). Observe that this is the belief function

of RPM scaled by M̂(`)/3. In other words, Density can be
seen as RPM adapted with the bug prior.



Rate. This is a time-normalized variant of RGR. The belief
function is M̂(`)/Time(`). Similar to Density, Rate can be
seen as EWT adapted with the bug prior.

Bandit Algorithms. Since the FCS problem is an instance
of an MAB problem, naturally we explore a number of MAB
algorithms.
Round-Robin. This simply loops through the configura-
tions in a fixed order, dedicating one epoch to each configura-
tion. Note that Round-Robin is a non-adaptive, deterministic
algorithm.
Uniform-Random. This algorithm selects uniformly at
random from the set of configurations for each epoch. Like
Round-Robin, this algorithm is non-adaptive; however, it is
randomized.
Weighted-Random. Configurations are selected at random
in this algorithm, with the probability associated with each
configuration is linked to the belief metric in use. The
weight of a well-performing configuration is adjusted upward
via the belief metric, thereby increasingly the likelihood of
selecting that configuration in future epochs. This mechanism
functions in reverse for configurations yielding few or no bugs.
ε-Greedy. The ε-Greedy algorithm takes an intuitive ap-
proach to the exploration vs. exploitation trade-off inherent
to MAB problems. With probability ε, the algorithm selects
a configuration uniformly at random for exploration.With
probability (1− ε), it chooses the configuration with the high-
est current belief, allowing it to exploit its current knowledge
for gains. The constant ε serves as a parameter balancing
the two competing goals, with higher ε values corresponding
to a greater emphasis on exploration.
EXP3.S.1. This is an advanced MAB algorithm by Auer
et al. [2] for the non-stochastic MAB problem. We picked this
algorithm for three reasons. First, it is from the venerable
EXP3 family, and so likely to be picked up by practitioners.
Second, this is one of the EXP3 algorithms that is not pa-
rameterized by any constants and thus no parameter tuning
is needed. Third, this algorithm is designed to have an op-
timal worst-case regret, which is a form of regret that suits
our problem setting. Note that at its core EXP3.S.1 is a
weighted-random algorithm. However, since we do not have
a belief metric that corresponds to the one used in EXP3.S.1,
we did not put it inside the Weighted-Random group.

4.5 Offline Algorithms
Early on in our research design, we recognized the importance
of evaluating a large number of algorithms. Out of budgetary
constraints, we have taken a simulation approach so that
we can replay the events from previous fuzzings to try out
new algorithms. Since we have recorded all the events that
may happen during any fuzz campaign of the same input
configurations, we can even attempt to compute what an
optimal offline algorithm would do and compare the results of
our algorithms against it. In the case when the configurations
do not yield duplicated bugs, such as in our Inter-Program
dataset (§6), we devise a pseudo-polynomial time algorithm
that computes the offline optimal. In the other case where
duplicated bugs are possible, we propose a heuristic to post-
process the solution from the above algorithm to obtain a
lowerbound on the offline optimal.

No Duplicates. Assuming that the sets of unique bugs
from different configurations are disjoint, our algorithm is
a small variation on the dynamic programming solution to
the Bounded Knapsack problem. Let K be the number of
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Figure 1: FuzzSim architecture.

configurations and B be the total number of unique bugs
from all K configurations. Let t(i, b) be the minimum amount
of time it takes for configuration i to produce b unique bugs.
Note that t(i, b) is assumed to be ∞ when configuration i
never produces b unique bugs in our dataset. We claim that
t(i, b) can be pre-computed for all i ∈ [1,K] and b ∈ [0, B],
where each entry takes amortized O(1) time given how events
are recorded in our system.

Let m(i, b) be the minimum amount of time it takes for
configurations 1 through i to produce b unique bugs. We want
to compute m(K, b) for b ∈ [0, B]. By definition, m(1, b) =
t(1, b) for b ∈ [0, B]. For i > 1, observe that m(i, b) =
minc∈[0,B]{t(i, c) +m(i− 1, b− c)}. This models partitioning
the b unique bugs into c unique bugs from configuration i
and (b− c) unique bugs from configurations 1 through (i−1).
Computing each m(i, b) entry takes O(B) time. Since there
are O(K ×B) entries, the total running time is O(K ×B2).

Discounting Duplicates. The above algorithm is incorrect
when the sets of unique bugs from different configurations
are not disjoint. This is because the recurrence formula of
m(i, b) assumes that the c unique bugs from configuration i
are different from the (b− c) unique bugs from configurations
1 through (i − 1). In this case, we propose a heuristic to
compute a lowerbound on the offline optimal.

After obtaining the m(i, b) table from the above, we post-
process bug counts by the following discount heuristic. First,
we compute the maximum number of bugs that can be found
at each time by the above algorithm by examining the K-th
row of the table. Then, by scanning forward from time 0,
whenever the bug count goes up by one due to a duplicated
bug (which must have been found using another configura-
tion), we discount the increment. Since the optimal offline
algorithm can also pick up exactly the same bugs in the same
order as the dynamic programming algorithm, our heuristic
is a valid lowerbound on the maximum number of bugs that
an optimal offline algorithm would find.

5 Design & Implementation
This section presents FuzzSim, our replay-based fuzz simu-
lation system built for this project. We describe the three
steps in FuzzSim and explain the benefit of its design, which
is then followed by its implementation detail. Of special note
is that we are releasing our source code and our datasets in
support of open science at the URL found in §5.2.

5.1 Overview
FuzzSim is a simulation system for black-box mutational
fuzzing that is designed to run different configuration schedul-
ing algorithms using logs from previous fuzzings. Figure 1
summarizes the design of FuzzSim, which employs a three-
step approach: (1) fuzzing, (2) triage, and (3) simulation.



Fuzzing. The first step is fuzzing and collecting run logs
from a fuzzer. FuzzSim takes in a list of program-seed
pairs (pi, si) and a time budget T . It runs a fuzzer on each
configuration for the full length of the time budget T and
writes to the log each time a crash occurs. Log entries are
recorded as 5-tuples of the form (pi, si, time stamp, #runs,
mutation identifier).

In our implementation, we fuzz with zzuf, one of the most
popular open-source fuzzers. zzuf generates a random input
from a seed file as described in §2.1. The randomization in
zzuf can be reproduced given the mutation identifier, thus
enabling us to reproduce a crashing input from its seed file
and the log entry associated with the crash. For example, an
output tuple of (FFMpeg, a.avi, 100, 42, 1234) specifies that
the program FFMpeg crashed at the 100-th second with an
input file obtained from “a.avi” according to the mutation
identifier 1234. Interested readers may refer to zzuf [16] for
details on mutation identifiers and the actual implementation.

The deterministic nature of zzuf allows FuzzSim to triage
bugs after completing all fuzz runs first. In other words,
FuzzSim does not compute bug identifiers during fuzzing
and instead re-derives them using the log. This does not
affect any of our algorithms since none of them relies on the
actual IDs. In our experiments, we have turned off address
space layout randomization (ASLR) in both the fuzzing and
the triage steps in order to reproduce the same crashes.

Triage. The second step of FuzzSim maps crashing inputs
found during fuzzings into bugs. At a high level, the triage
phase takes in the list of 5-tuples (pi, si, time-stamp, #runs,
mutation identifier) logged during the fuzzing step and out-
puts a new list of 5-tuples of the form (pi, si, time-stamp,
#runs, bug identifier). More specifically, FuzzSim replays
each recorded crash under a debugger to collect stack traces.
If FuzzSim does not detect a crash during a particular replay,
then we classify that test case to be a non-deterministic bug
and discard it.

We then use the collected stack traces to produce bug
identifiers, essentially hashes of the stack traces. In particular,
we use the fuzzy stack hash algorithm [19], which identifies
bugs by hashing the normalized line numbers from a stack
trace. With this algorithm, the number of stack frames to
hash has a significant influence on the accuracy of bug triage.
For example, taking the full stack trace often leads to mis-
classifying a single bug into multiple bugs, whereas taking
only the top frame can easily lead to two different bugs being
mis-classified as one. To match the state of the art, FuzzSim
uses the top 3 frames as suggested in [19]. We stress that even
though inaccurate bug triage may still occur with this choice
of parameter, perfecting bug triage techniques is beyond the
scope of this paper.

Simulation. The last step simulates a fuzz campaign on
the collected ground-truth data from the previous steps us-
ing a user-specified scheduling algorithm. More formally,
the simulation step takes in a scheduling algorithm and a
list of 5-tuples of the form (pi, si, timestamp, #runs, bug
identifier) and outputs a list of 2-tuples (timestamp, #bugs)
that represent the accumulated time before the correspond-
ing number of unique bugs are observed under the given
scheduling algorithm.

Since FuzzSim can simulate any scheduling algorithm in
an offline fashion using the pre-recorded ground-truth data,
it enables us to efficiently compare numerous scheduling

algorithms without actually running a large number of fuzz
campaigns. During replay, FuzzSim outputs a timestamp
whenever it finds a new bug. Therefore, we can easily plot
and compare different scheduling algorithms by comparing
the number of bugs produced under the same time budget.

We summarize FuzzSim’s three-step algorithm below.

Fuzzing: ({(pi, si)}, T )
→ {pi, si, timestamp, #runs, mutation id}

Triage: {(pi, si, timestamp, #runs, mutation id)}
→ {(pi, si, timestamp, #runs, bug id)}

Simulation: {(pi, si, timestamp, #runs, bug id)}
→ {(timestamp, #bugs)}

Algorithm 1: FuzzSim algorithms.

5.2 Implementation & Open Science
We have implemented our data collection and bug triage mod-
ules in approximately 1,000 lines of OCaml. This includes the
capability to run and collect crash logs from Amazon EC2.
We used zzuf version 0.13. Our scheduling engine is also
implemented in OCaml and spans about 1,600 lines. This
covers the 26 online and the 2 offline algorithms presented
in this paper.

We invite our fellow researchers to become involved in
this line of research. In support of open science, we release
both our datasets and the source code of our simulator at
http://security.ece.cmu.edu/fuzzsim/.

6 Evaluation
To evaluate the performance of the 26 algorithms presented
in §4, we focus on the following questions:

1. Which scheduling algorithm works best for our datasets?
2. Why does one algorithm outperform the others?
3. Which of the two epoch types—fixed-run or fixed-time—

works better, and why?

6.1 Experimental Setup
Our experiments were performed on Amazon EC2 instances
that have been configured with a single Intel 2GHz Xeon
CPU core and 4GB RAM each. We used the most recent
Debian Linux distribution at the time of our experiment
(April 2013) and downloaded all programs from the then-
latest Debian Squeeze repository. Specifically, the version of
FFMpeg we used is SVN-r0.5.10-4:0.5.10-1, which is based
on a June 2012 FFMpeg release with Debian-specific patches.

6.2 Fuzzing Data Collection
Our evaluation makes use of two datasets: (1) FFMpeg
with 100 different input seeds, and (2) 100 different Linux
applications, each with a corresponding input seed. We
refer to these as the “intra-program” and the “inter-program”
datasets respectively.

For the intra-program dataset, we downloaded 10, 000
video/image sample files from the MPlayer website at http:

//samples.mplayerhq.hu/. From these samples, we selected
100 files uniformly at random and took them as our input

Dataset #runs #crashes #bugs
Intra-program 636,998,978 906,577 200
Inter-program 4,868,416,447 415,699 223

Table 1: Statistics from fuzzing the two datasets.

http://security.ece.cmu.edu/fuzzsim/
http://samples.mplayerhq.hu/
http://samples.mplayerhq.hu/
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Figure 2: Distribution of the number of bugs per configura-
tion in each dataset.

0

25

50

75

0 10 20 30 40

#bugs

c
o
u
n
t

Figure 3: Distribution of bug overlaps across multiple seeds
for the intra-program dataset.

seeds. The collected seeds include various audio and video
formats such as ASF, QuickTime, MPEG, FLAC, etc. We
then used zzuf to fuzz FFMpeg with each seed for 10 days.

For the inter-program dataset, we downloaded 100 differ-
ent file conversion utilities in Debian. To select these 100
programs, we first enumerated all file conversion packages
tagged as “use::converting” in the Debian package tags in-
terface (debtags). From this list of packages, we manually
identified 100 applications that take a file name as a com-
mand line argument. Then we manually constructed a valid
seed for each program and the actual command line to run it
with the seed. After choosing these 100 program-seed pairs,
we fuzzed each for 10 days as well. In total, we have spent
48,000 CPU hours fuzzing these 200 configurations.

To perform bug triage, we identified and re-ran every
crashing input from the log under a debugger to obtain stack
traces for hashing. After triaging with the fuzzy stack hash
algorithm described in §5.1, we found 200 bugs from the
intra-program dataset and 223 bugs from the inter-program
dataset. Table 1 summarizes the data collected from our
experiments. The average fuzzing throughput was 8 runs
per second for the intra-program dataset and 63 runs per
second for the inter-program dataset. This difference is due
to the higher complexity of FFMpeg when compared to the
programs in the inter-program dataset.

6.3 Data Analysis
What does the collected fuzzing data look like? We studied
our data from fuzzing and triage to answer two questions: (1)
How many bugs does a configuration trigger? (2) How many
bugs are triggered by multiple seeds in the intra-program
dataset?

We first analyzed the distribution of the number of bugs
in the two datasets. On average, the intra- and the inter-
program datasets yielded 8.2 and 2.4 bugs per configuration
respectively. Figure 2 shows two histograms, each depict-
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(b) Inter-program.

Figure 4: The average number of bugs over 100 runs for
each scheduling algorithm with error bars showing a 99%
confidence interval. “ft” represents fixed-time epoch; “fr”
represents fixed-run epoch; “e” represents ε-Greedy; “w” rep-
resents Weighted-Random.

ing the number of occurrences of bug counts. There is a
marked difference in the distributions from the two datasets:
64% of configurations in the inter-program dataset produce
no bugs, whereas the corresponding number in the intra-
program dataset is 15%. We study the bias of the bug count
distribution in §6.4.

Second, we measured how many bugs are shared across
seeds in the intra-program dataset. As an extreme case, we
found a bug that was triggered by 46 seeds. The average
number of seeds leading to a given bug is 4. Out of the 200
bugs, 97 were discovered from multiple seeds. Figure 3
illustrates the distribution of bug overlaps. Our results
suggest that there is a small overlap in the code exercised
by different seed files even though they have been chosen
to be of different types. Although this shows that our bug
disjointness assumption in the WCCP model does not always
hold in practice, the low average number of seeds leading to
a given bug in our dataset means that the performance of
our algorithms should not have been severely affected.

6.4 Simulation
We now compare the 26 scheduling algorithms based on the
10-day fuzzing logs collected for the intra- and inter-program
datasets. To compare the performance of scheduling algo-
rithms, we use the total number of unique bugs reported
by the bug triage process. Recall from §4.4 that these al-
gorithms vary across three dimensions: (1) epoch types, (2)
belief metrics, and (3) MAB algorithms. For each valid com-
bination (see Table 2), we ran our simulator 100 times and
averaged the results to study the effect of randomness on
each scheduling algorithm. In our experiments, we allocated
10 seconds to each epoch for fixed-time campaigns and 200
runs for fixed-run campaigns. For the ε-Greedy algorithm,
we chose ε to be 0.1.

Table 2 summarizes our results. Each entry in the table
represents the average number of bugs found by 100 sim-



Dataset Epoch MAB algorithm
#bugs found for each belief

RPM EWT Density Rate RGR

Intra-Program

Fixed-Run

ε-Greedy 72 77 87 88 32
Weighted-Random 72 84 84 93 85
Uniform-Random 72
EXP3.S.1 58
Round-Robin 74

Fixed-Time

ε-Greedy 51 94 51 109 58
Weighted-Random 67 94 58 100 108
Uniform-Random 94
EXP3.S.1 95
Round-Robin 94

Inter-Program

Fixed-Run

ε-Greedy 90 119 89 89 41
Weighted-Random 90 131 92 135 94
Uniform-Random 89
EXP3.S.1 72
Round-Robin 90

Fixed-Time

ε-Greedy 126 158 111 164 117
Weighted-Random 152 157 100 167 165
Uniform-Random 158
EXP3.S.1 161
Round-Robin 158

Table 2: Comparison between scheduling algorithms.

ulations of a 10-day campaign. We present ε-Greedy and
Weighted-Random at the top of each epoch-type row group,
each showing five entries that correspond to the belief metric
used. For the other three MAB algorithms, we only show a
single entry in the center because these algorithms do not
use our belief metrics. Figure 4 describes the variability of
our data using error bars showing a 99% confidence inter-
val. Notice that 94% of our scheduling algorithms have a
confidence interval that is less than 2 (bugs). RGR gives the
most volatile algorithms. This is not surprising because RGR
tends to under-explore by focusing too much on bug-yielding
configurations that it encounters early on in a campaign. In
the remainder of this section, we highlight several important
aspects of our results.

Fixed-time algorithms prevail over fixed-run algorithms.
In the majority of Table 2, except for RPM and Density
in the intra-program dataset, fixed-time algorithms always
produced more bugs than their fixed-run counterparts. In-
tuitively, different inputs to a program may take different
amounts of time to execute, leading to different fuzzing
throughputs. A fixed-time algorithm can exploit this fact
and pick configurations that give higher throughputs, ul-
timately testing a larger fraction of the input space and
potentially finding more bugs. To investigate the above ex-
ceptions, we have also performed further analysis on the
intra-program dataset. We found that the performance of
the fixed-time variants of RPM and Density greatly improves
in longer simulations. In particular, all fixed-time algorithms
outperform their fixed-run counterparts after day 11.

Along the same line, we observe that fixed-time algorithms
yield 1.6× more bugs on average when compared to their
fixed-run counterparts in the inter-program dataset. In con-
trast, the improvement is only 1.1× in the intra-program
dataset. As we have explained above, fixed-time algorithms
tend to perform more fuzz runs and potentially finding more
bugs by taking advantage of faster configurations. Thus, if
the runtime distribution of fuzz runs is more biased, as in the

case of the inter-program dataset, then fixed-time algorithms
tend to gain over their fixed-run counterparts.

Time-normalization outperforms runs-normalization. In
our results, EWT always outperforms RPM and Rate always
outperforms Density. We believe that this is because EWT
and Density do not spend more time on slower programs
and slower programs are not necessarily buggier. The latter
hypothesis seems highly plausible to us; if true, it would
imply that time-normalized belief metrics are more desirable
than runs-normalized metrics.

Fixed-time Rate works best. In both datasets, the best-
performing algorithms use fixed-time epochs and Rate as
belief (entries shown in boldface in Table 2). Since Rate
can be seen as a time-normalized variant of RGR, this gives
further evidence of the superiority of time normalization. In
addition, it also supports the plausibility of the bug prior.

6.5 Speed of Bug Finding
Besides the number of bugs found at the end of a fuzz
campaign, the speed at which bugs are discovered is also
an important metric for evaluating scheduling algorithms.
We address two questions in this section. First, is there
a scheduling algorithm that prevails throughout an entire
fuzz campaign? Second, how effective are the algorithms
with respect to our offline algorithm in §4.5? To answer
the questions, we first show the speed of each algorithm in
Figure 5 and Figure 6 by computing the number of bugs
found over time. For brevity and readability, we picked for
each belief metric the algorithm that produced the greatest
average number of unique bugs at the end of the 10-day
simulations.

Speed. We observe that Rate and RGR are in the lead for
the majority of the time during our 10-day simulations. In
other words, not only do they find more unique bugs at
the end of the simulations, but they also outperform other
algorithms at almost any given time. This lends further
credibility to the bug prior.
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Figure 5: Bug finding speed of different belief-based algo-
rithms for the intra-program dataset.

Effectiveness. We also compare the effectiveness of each
algorithm by observing how it compares against our offline
algorithm. We have implemented the offline algorithm dis-
cussed in §4.5 including the post-processing step that dis-
counts duplicated bugs and computed the solution for each
dataset. The numbers of bugs found by the offline algorithm
for the intra- and the inter-program datasets are 132 and
217 respectively. (Notice that due to bug overlaps and the
discount heuristic, these are lowerbounds on the offline opti-
mal.) As a comparison, Rate found 83% and 77% of bugs in
the intra- and inter-program datasets, respectively. Based
on these numbers, we conclude that Rate-based algorithms
are effective.

6.6 Comparison with CERT BFF

At present, the CERT Basic Fuzzing Framework (BFF) [14] is
the closest system that makes use of scheduling algorithms for
fuzz campaigns. In this section, we evaluate the effectiveness
of BFF’s scheduling algorithm using our simulator.

Based on our study of the source code of BFF v2.6 (the
latest version as of this writing), it uses a fixed-run weighted-
random algorithm with Density (#bugs

#runs
) as its belief metric.

However, a key feature of BFF prevented us from completely
implementing its algorithm in our simulation framework. In
particular, while BFF focuses on fuzzing a single program,
it considers not only a collection of seeds but also a set of
predetermined mutation ratios. In other words, instead of
choosing program-seed pairs as in our experiments, BFF
chooses seed-ratio pairs with respect to a single program.
Since our simulator does not take mutation ratio into ac-
count, it can only emulate BFF’s algorithm in configuration
selection using a fixed mutation ratio. We note that adding
the capability to vary the mutation ratio is prohibitively
expensive for us: FuzzSim is an offline simulator, and there-
fore we need to collect ground-truth data for all possible
configurations. Adding a new dimension into our current
system would directly multiply our data collection cost.

Going back to our evaluation, let us focus on the Weighted-
Random rows in Table 2. Density with fixed-run epochs
(BFF) yields 84 and 92 bugs in the two datasets. The cor-
responding numbers for Rate with fixed-time epochs (our
recommendation) are 100 and 167, with respective improve-
ments of 1.19× and 1.82× (average 1.5×). Based on these
numbers, we believe future versions of BFF may benefit from
switching over to Rate with fixed-time epochs.
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Figure 6: Bug finding speed of different belief-based algo-
rithms for the inter-program dataset.

7 Related Work
Since its introduction in 1990 by Miller et al. [18], fuzzing
in its various forms has become the most widely-deployed
technique for finding bugs. There has been extensive work to
improve upon their ground-breaking work. A major thrust
of this research concerns the generation of test inputs for
the target program and the two main paradigms in use are
mutational and generational fuzzing [17].

More recently, sophisticated techniques for dynamic test
generation have been applied in fuzzing [8, 11]. White-box
fuzzing [7] is grounded in the idea of “data-driven improve-
ment,” which uses feedback from previous fuzz runs to “focus
limited resources on further research and improve future
runs.” The feedback data used in determining inputs is ob-
tained via symbolic execution and constraint solving; other
work in feedback-driven input generation relies on taint anal-
ysis and control flow graphs [13, 20]. Our works bears some
similarity to feedback-driven or evolutionary fuzzing in that
we also use data from previous fuzz runs to improve fuzzing
effectiveness. However, the black-box nature of our approach
implies that feedback is limited to observing crashes. Like-
wise, our focus on mutating inputs means that we do not
construct brand new inputs and instead rely on selecting
among existing configurations. Thus, our work can be cast
as dynamic scheduling of fuzz configurations.

Despite its prominence, we know of no previous work that
has systematically investigated the effectiveness of different
scheduling algorithms in fuzzing. Our approach focuses on
allocating resources for black-box mutational fuzzing in order
to maximize the number of unique bugs found in any period
of time. The closest related work is the CERT Basic Fuzzing
Framework (BFF) [14], which considers parameter selection
for zzuf. Like BFF, we borrow techniques from Multi-Armed
Bandits (MAB) algorithms. However, unlike BFF, which
considers repeated fuzz runs as independent Bernoulli trials,
we model this process as a Weighted Coupon Collector’s
Problem (WCCP) with unknown weights to capture the
decrease in the probability of finding a new bug over the
course a fuzz campaign.

In constructing our model, we draw heavily on research in
software reliability as well as random testing. The key insight
of viewing random testing as coupon collecting was recently
made in [1]. A key difference between our work and [1] is
that their focus is on the formalization of random testing,
whereas our goal is to maximize the number of bugs found
in a fuzz campaign. Software reliability refers to the prob-
ability of failure-free operation for a specified time period



and execution environment [6]. As a measure of software
quality, software reliability is used within the software engi-
neering community to “plan and control resources during the
development process” [12], which is similar to the motivation
behind our work.

8 Conclusion and Future Work
In this paper we studied how to find the greatest number of
unique bugs in a fuzz campaign. We modeled black-box muta-
tional fuzzing as a WCCP process with unknown weights and
used the condition in the No Free Lunch theorem to guide us
in designing better online algorithms for our problem. In our
evaluation of the 26 algorithms presented in this paper, we
found that the fixed-time weighted-random algorithm with
the Rate belief metric shows an average of 1.5× improvement
over its fixed-run Density-based counterpart, which is cur-
rently used by the CERT Basic Fuzzing Framework (BFF).
Since our current project does not investigate the effect of
varying the mutation ratio, a natural follow-up work would
be to investigate how to add this capability to our system in
an affordable manner.
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