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Abstract—Directed grey-box fuzzing is difficult to rigorously
evaluate for several reasons. First, directed grey-box fuzzers are
more prone to overfitting than undirected grey-box fuzzers as
they are designed to explore specific paths in the program under
test. Furthermore, existing benchmarks are mainly designed for
evaluating undirected fuzzers. Hence, they do not provide any
information about bug locations, and the difficulty of triggering
bugs can substantially vary across different benchmarks. In
this paper, we argue that one can address these challenges
by automatically generating benchmarks with a bug synthesis
technique. Notably, Fuzzle, a state-of-the-art bug synthesis tool,
enables generation of arbitrarily many benchmarks, thereby
preventing the overfitting problem. It is also well suited for
evaluating directed grey-box fuzzers as it provides the exact
location of the target bug in the generated benchmark with
a guarantee that the bug is lurking deep in the program.
With Fuzzle, we systematically evaluate existing state-of-the-
art directed fuzzers and study their strengths and weaknesses,
which would be otherwise difficult to obtain with traditional
benchmarks. To our knowledge, this is the first attempt to adopt
a bug synthesis technique for evaluating directed fuzzers.

I. INTRODUCTION

Directed Grey-box Fuzzing (DGF) is gaining popularity in
recent years due to its effectiveness in revealing bugs for
targeted testing scenarios, such as crash reproduction and patch
testing [3], [5], [11], [22], [33], [40]. At a high level, DGF
gives higher priority to seeds that are likely to reach a target
location in the program, such as a crash site or a patched
location, in order to drive the fuzzer towards the target.

Despite its popularity, there has been little research on
evaluating DGF solutions, which is a non-trivial task for
several reasons.

First, DGF can easily overfit to the benchmarks used for
evaluation because it is designed to explore specific paths
in the program under test. Unlike undirected fuzzing, whose
goal is in achieving the maximum code coverage, DGF has
a specific target, making it trivial to derive heuristics that are
specifically tailored to the target. That is, it is easy to come
up with a DGF solution that performs well on a given set of
benchmarks, but fails to generalize to others.

Second, existing benchmarks for evaluating fuzzers do
not provide specific target locations to reach as they are
designed for evaluating undirected fuzzers. For example, in
order to evaluate a DGF tool on GNU Binutils or Google’s
FuzzBench [26], one needs to manually identify target bug

locations or patched code locations from every program in the
suite, which is a tedious and error-prone task.

Finally, existing benchmarks do not necessarily contain deep
bugs that can only be reached by penetrating multiple layers
of the program. For example, CVE-2016-9827 [29] used by
recent directed fuzzers in their evaluation [17], [20] is a
shallow bug that can be easily reached by traversing only
three functions from the main function. In our preliminary
study, we found that even the vanilla AFL can find the
bug within a few minutes without any directed guidance.
Therefore, simply using previously known bugs for evaluating
DGF is not sufficient to test the effectiveness of DGF.

In this paper, we propose to use synthetic benchmarks to
address the aforementioned challenges. While there has been
significant research effort in synthesizing buggy programs for
evaluating undirected fuzzers [10], [23], [31], [38], there has
been no prior work for evaluating directed grey-box fuzzers.
Thus, we hypothesize that current bug synthesis techniques
can be used for evaluating DGF, and those evaluation results
with synthetic benchmarks can provide useful insights for
improving DGF, which would be otherwise difficult to obtain
with traditional benchmarks.

To test our hypothesis, we use Fuzzle [23], one of the most
recent bug synthesis tools, to generate synthetic benchmarks,
and evaluate several state-of-the-art DGF tools on them. Fuzzle
is suitable for our purpose for the following reasons. First,
Fuzzle, by its design, is able to generate a large number of
synthetic benchmarks that are independent to each other. This
allows us to evaluate DGF tools on a new set of benchmarks
whenever it is needed. Second, Fuzzle provides an exact
location of the target bug in the generated benchmark with
a guarantee that the bug can be triggered by a user input.
Third, Fuzzle generates programs whose function call graph
resembles a 2D maze, allowing us to visualize the current
progress of the fuzzer in a more intuitive manner. With this,
we can easily understand the behavior of fuzzers.

Additionally, the highly customizable nature of Fuzzle al-
lows us to evaluate DGF tools in various settings. For example,
one can vary the size of the benchmark program or the path
constraints to reach the target bug to test the scalability of
DGF tools. Nevertheless, we further modify Fuzzle to conduct
more controlled experiments, e.g., creating benchmarks with
a varying number of bugs per program.



Algorithm 1: Grey-box Fuzzing
Input : Program P , Initial Seed Corpus S
Output: Augmented Seed Corpus S

1 while ¬TimeOut() do
2 ∀s ∈ S: AssignEnergy(s)// based on coverage
3 s← SelectSeed(S);
4 s′ ← Mutate (s);
5 r ← P (s′);
6 if r increases coverage then
7 S ← S ∪ {s′};

8 return S;

With the modified Fuzzle we synthesize 12 new buggy
programs that have various different program structures, sizes,
and difficulties. We then systematically design a series of
experiments with these benchmark programs to evaluate state-
of-the-art directed grey-box fuzzers, including AFLGo [3],
Beacon [17], and DAFL [20], and share several insights we
have gained from the experiments.

Some of the key findings from our experiments are as
follows. First, we find that synthetic benchmarks are indeed
useful for evaluating DGF, and they can provide a clearer
understanding than traditional benchmarks regarding the lim-
itation of a given DGF tool. Second, we note that synthetic
benchmarks enable us to identify the exact bottleneck of a
DGF tool in an intuitive way. In particular, the visualization
feature of Fuzzle allows us to identify the exact path conditions
that prevent the fuzzer from reaching the target bug. Finally,
we find that recent directed fuzzers are less affected by the size
of the benchmark program than undirected fuzzers, which is
indeed a desirable property for DGF.

In summary, our contributions are as follows:

1) We propose to use synthetic benchmarks for evaluating
directed grey-box fuzzers, and show that it is a promising
approach to address the challenges in evaluating DGF.

2) We modify Fuzzle, an existing bug synthesis tool, to
generate benchmark programs for evaluating DGF.

3) We design a series of experiments with the synthesized
benchmark to evaluate state-of-the-art directed grey-box
fuzzers, and find novel insights that would have been
difficult to obtain with traditional benchmarks.

II. BACKGROUND

This section provides background information on directed
grey-box fuzzing as well as bug synthesis techniques that are
relevant to our work.

A. Directed Grey-box Fuzzing in a Nutshell

Grey-box fuzzing is an iterative process of generating and
evaluating test cases while evolving the quality of the test cases
over time based on a fitness criterion [25]. The most common
criterion used in grey-box fuzzing is code coverage as shown
in Algorithm 1. Typically, the initial seed corpus S is given
by the user, and the corpus grows as the fuzzer generates new
test cases that achieve more code coverage. The probability of

selecting a seed s from the corpus (by SelectSeed()) is
proportional to the energy assigned to s by the fitness criterion.

Directed Grey-box Fuzzing (DGF) is a variant of grey-
box fuzzing that aims to find a test case reaching a specific
target location in the program under test. Most existing DGF
techniques modify AssignEnergy() to assign more energy
to test cases that are likely to reach the target location. For ex-
ample, AFLGo [3] computes the average distance between the
currently executed nodes and the target node in the Control-
Flow Graph (CFG) to obtain the fitness score of a test case.
The follow-up studies, such as Beacon [17], WindRanger [11],
and DAFL [20], share a similar design philosophy. They em-
ploy various different fitness functions to give more effective
guidance to grey-box fuzzing. To distinguish DGF from other
grey-box fuzzing techniques, we call the latter as undirected
grey-box fuzzing (or undirected fuzzing) throughout this paper.

B. Bug Synthesis and Fuzzle

Overfitting has been a long-standing problem in various
fields of computer science [12], and fuzzing is no exception.
In the context of fuzzing, overfitting refers to the phenomenon
that a fuzzer performs well on a specific set of benchmarks
but poorly on other benchmarks. For example, most fuzzing
papers today evaluate their techniques on a set of well-known
benchmarks, such as Fuzzer-Test-Suite [18] and GNU Binutils,
but it is unclear whether the techniques can generalize to other
benchmarks.

Bug synthesis is a recently emerging technique that can be
used to address the overfitting problem in fuzzing by automati-
cally generating benchmarks on demand. The idea is to always
use newly generated benchmarks for evaluating a fuzzer so
that the fuzzer cannot overfit to a specific one. LAVA [10]
is one of the first bug synthesis tools, which injects bugs
into an existing program to generate new benchmarks. The
follow-up works, such as Apocalypse [31], FixReverter [38],
and EvilCoder [30], follow the same idea of injecting arbitrary
bugs into existing programs.

While injection-based bug synthesis is a promising ap-
proach, it suffers from several limitations. First, it is chal-
lenging to know whether the injected bugs are reproducible.
Second, it is difficult to know whether the original program is
free of bugs. Hence, there could be existing bugs in the original
program, which can lead to false alarms in the evaluation of
a fuzzer. Third, it is unclear whether the injected bugs will
affect the behavior of the original program in such a way that
unintended bugs are introduced.

To address the limitations of injection-based bug synthesis,
Fuzzle [23] proposes a way to synthesize a whole program
from scratch. The core idea is to cast the bug synthesis problem
as a maze generation problem, where finding a path from the
entry to the exit in the maze is transformed into finding a
path to the bug in the program. More specifically, every cell
in the maze corresponds to a function in the program, and
every pathway between two cells corresponds to a guarded
function call. Those guards are constructed by collecting
path constraints from real-world programs using symbolic



execution [32]. In this paper we leverage path constraints
collected from real-world CVEs as in [23].

The key advantage of Fuzzle is that a synthesized program
is guaranteed to have reproducible bug(s). Furthermore, the
location of the injected bug is explicit as it is represented as
a function in the maze, and we can see the current progress
of the fuzzer by visualizing the maze. Such characteristics of
Fuzzle make it a promising tool for evaluating directed grey-
box fuzzers.

III. EXPERIMENT DESIGN

This section describes our experimental design. We first
present how we modify Fuzzle and configure it to generate
synthetic benchmarks for evaluating directed grey-box fuzzers.
We then describe the research questions we aim to answer with
our experiments.

A. Extending Fuzzle

While Fuzzle provides a convenient way to generate syn-
thetic benchmarks, the current implementation of Fuzzle does
not allow us to control the number of bugs in the generated
program, which are crucial factors in evaluating directed grey-
box fuzzers as we will discuss in §III-B. To enable such
additional configurability, we made several modifications on
Fuzzle, which comprises of 144 lines of Python code.

Specifically, we have modified Fuzzle to insert variable
number of buggy functions, func_bug which calls the
abort system call, in addition to the default func_bug
that is placed at the exit of the maze. Note that we cannot
randomly place the buggy functions in the program because
doing so can cause the program to terminate unexpectedly
and block off one or more areas in the program for further
exploration. This may even cause other bugs in the program
to be unreachable which becomes problematic when evaluating
fuzzers. Randomly placing the buggy functions can also lead
to other problems, such as having some bugs be much easier to
find than others and having all bugs in close proximity to each
other, which can impede the thorough evaluation of directed
fuzzing with multiple targets.

To avoid the aforementioned problems, we set the following
rules when selecting the candidate positions for additional
buggy functions. First, we place the additional func_bug
only at one of the dead-ends of the maze. This ensures that
the newly added buggy function does not cut off any path
in the generated maze. From the available dead-ends in the
maze, we then select only those that are of the same distance
from the entrance as the original default func_bug. In other
words, we only use dead-ends that are solution-length away
from the entrance of the maze, where a solution length is the
length of the path from the entry of the maze to the exit of
the maze. By doing so, we generate multiple bugs of similar
difficulties. Lastly, from the dead-ends that satisfy the above
criteria, we select the farthest one from the initial func_bug.
We additionally check that all bugs in the program are at least
maze’s width away from each other to reduce the impact of
directing the fuzzer towards one bug on finding the other bugs.

Note that we measure the distance between two dead-ends
by measuring the length of the path between them. For our
evaluation of multi-target directed fuzzing, we generated two
programs that contain three bugs each, including the default
bug at the exit of the maze.

B. Research Questions

We aim to answer a series of research questions with our
experiments. We start by asking whether synthetic benchmarks
are suitable for evaluating directed grey-box fuzzers.

RQ1. Does evaluating DGF on synthetic benchmarks demon-
strate their capability in directing fuzzers? (§IV-B)

To quantitatively measure the effectiveness of synthetic bench-
marks on DGF, we run both directed and undirected fuzzers
on the synthetic benchmark we generated and compare their
performance. This will additionally help us understand the
effectiveness of existing DGF techniques.

RQ2. How do the synthetic programs compare to the real-
world programs in evaluating DGF? (§IV-C)

The follow-up question to RQ1 is whether synthetic bench-
marks are comparable to organic benchmarks consisting of
real-world programs in terms of evaluating directed fuzzers.
While existing work on directed fuzzing has only used organic
benchmarks to evaluate their techniques, they often measure
the performance improvement that their techniques bring over
the undirected baseline fuzzer. Therefore, we compare the
relative performance improvement of using DGF techniques
on both synthetic and organic benchmarks to understand the
value of using synthetic benchmarks.

RQ3. How does the size of benchmark programs affect the
effectiveness of directed fuzzers? (§IV-D)

As DGF guides the fuzzing process towards exploring a
specific target location, we conjecture that the size of the
program should have little to no impact on the performance
of directed fuzzers. More specifically, we hypothesize that the
impact of the program size on the performance of directed
fuzzers is less than that on the performance of traditional
undirected fuzzers, whose goal is to achieve maximum code
coverage. We answer this research question by synthesizing
four differently sized programs with Fuzzle, and by comparing
the performance of directed fuzzers on these four programs.
Note that merely selecting four random real-world programs of
different sizes is not sufficient to answer this research question
because it is extremely difficult to make those programs to
have consistent behaviors and similar difficulties in terms of
finding bugs.

RQ4. How do the path conditions towards the target location
affect the effectiveness of directed fuzzers? (§IV-E)

A natural question that follows from RQ3 is whether the
difficulty of the path conditions towards the target location
has any impact on the performance of DGF. In contrast to the
impact of the program size, the path conditions to satisfy to



reach the target location could have significant impact on the
performance of grey-box fuzzers. Although DGF techniques
drive the fuzzer towards the target location, they do not
provide any assistance in generating inputs that satisfy difficult
constraints. Based on this, we hypothesize that varying the
path constraints along the path to the target location will have
similar impact on both the directed and undirected fuzzers.
To answer this research question, we use seven different
programs synthesized with Fuzzle, each with different path
constraints towards the target bug. Six of them leverage the
path constraints from previous CVEs, and the remaining one
employs simple one-byte range checks. We make sure to keep
all other parameters of Fuzzle same across all programs, which
allows us to study the sole impact of path constraints on the
performance of directed fuzzers.

RQ5. What is the impact of having multiple target locations
on the effectiveness of directed fuzzers? (§IV-F)

As some directed fuzzers, including AFLGo and Hawkeye [6],
support targeting multiple locations in the program, we want
to study the effectiveness of directed fuzzers when provided
with more than one target location. Specifically, we check
whether running directed fuzzers with multiple targets is more
effective than running multiple instances of directed fuzzers,
each with a single target. To answer this research question,
we generate programs with three bugs using extended Fuzzle
(as described in §III-A) while keeping their depths the same.
This ensures that all three bugs are equally difficult to reach,
which is infeasible to achieve with real-world benchmarks.

RQ6. Can the visualization feature of Fuzzle help in under-
standing the bottleneck of directed fuzzers? (§IV-G)

One of the useful features of Fuzzle is that it provides coverage
visualization of the fuzzing results. Lee et al. [23] have
demonstrated the usefulness of visualized coverage in terms of
showing the progress of different fuzzers as well as the fuzzing
progress over time. In this paper, we want to study whether
the visualization feature of Fuzzle can also be useful in
understanding the performance bottleneck of directed fuzzers,
which can potentially provide new insights into improving the
performance of DGF techniques.

IV. EVALUATION AND LESSONS LEARNED

In this section, we aim to answer the research questions
presented in III-B and share several insights we have gained
from the experiments.

A. Experimental Setup

1) Fuzzers: For our experiment, we selected a total of
five fuzzers including both traditional coverage-guided (undi-
rected) grey-box fuzzers and directed grey-box fuzzers. Specif-
ically, we included AFL [37] (v2.57b) and AFL++ [13]
(v4.07c) as they are the most widely used fuzzers in research
and industry. As for the directed fuzzers, we used three state-
of-the-art tools: AFLGo [3] (ac9246a), Beacon [17] (v1.0.0),

TABLE I: Numbers of benchmark programs generated with
Fuzzle for each different configuration. We generated a total
of 12 benchmark programs with Fuzzle.

Single Bug Three Bugs

Constraints 10x10 20x20 30x30 40x40 20x20 30x30

CVE-2016-4487 1
CVE-2016-4489 1
CVE-2016-4491 1
CVE-2016-4492 1
CVE-2016-4493 1
CVE-2016-6131 1
Range checks 1 1 1 1 1 1

and DAFL [20] (a6fcc56). Note we use the most up-to-date
versions of the tools at the time of writing.

For a fair comparison, we ran all the fuzzers by instrument-
ing the source code of our benchmark programs as all the
directed fuzzers we used require the source code to operate.
We also used the same initial seed corpus with a single empty
seed for all fuzzing campaigns.

2) Fuzzer Configuration: We fine-tuned the configuration
of each fuzzer for fair comparison. In particular, we turned off
the deterministic mode of AFL and AFLGo (with -d) because
all the other fuzzers explicitly turn it off in their default
configuration. For AFLGo, we set the time-to-exploitation to
18 hours in accordance with the authors’ recommendation of
3/4 of the total run time. For both AFL++ and Beacon, we
used the default configuration provided by the authors. For
DAFL, we set -max_pre_iter to 100 (instead of 10) in
order to successfully perform the preprocessing step on our
benchmark programs.

3) Benchmark: We used the modified version of Fuzzle
(as described in §III-A) to construct our benchmark with a
variety of configurations described in Table I. Specifically, we
have generated 12 benchmark programs with seven different
constraints, 4 different program sizes (10x10, 20x20, 30x30,
and 40x40), and two different numbers of synthetic bugs (one
bug or three bugs per program). We used a smaller maze
size of 20x20 as the default size instead of 30x30 from the
original paper of Fuzzle to enable better comparison between
the fuzzers as AFLGo and AFL struggled to find any bugs in
most of the programs of size 30x30; Lee et al. [23] made the
same observation in their paper. We used the default options
for the rest of the parameters. Note that we used the same
CVEs from the original paper of Fuzzle [23]. As Fuzzle
generates programs with a precise ground truth in terms of
the number and the location of bugs, we give the buggy line
in the source code as the target for all the directed fuzzers.

4) Environments: We ran all the experiments on a server
equipped with 88 Intel Xeon E5-2699 v4 CPU cores with 2.20
GHz and 128 GB of memory. Each fuzzing campaign was run
in an isolated Docker container assigned with one CPU core
and 8GB of memory. Every experiment was run for 24 hours
and was repeated ten times.



TABLE II: The average Time-To-Exposure (TTE) in hours and
the number of successful attempts out of ten repeated runs, for
each fuzzer.
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AFL++ 10 10 0 10 10 2
AFLGo 10 10 0 10 10 2
Beacon 10 10 0 10 10 2
DAFL 10 10 0 10 10 7

B. RQ1: Usefulness of Synthetic Benchmarks in Evaluating
Directed Fuzzers

How effective are synthetic benchmarks in evaluating di-
rected fuzzers? To answer this question, we ran the three state-
of-the-art directed fuzzers described in §IV-A1 along with two
popular undirected fuzzers on the Fuzzle-generated programs.
Table II summarizes the fuzzing results over six different
benchmark programs with different path constraints obtained
from six previous CVEs. The Time-To-Exposure (TTE) row
represents the time taken to find the bug in each program.
Each number is the arithmetic mean of 10 repeated runs. The
lower part of the table shows the numbers of successful runs,
where a fuzzer was able to hit the bug within a 24-hour fuzzing
campaign. For example, every fuzzer was able to find the bug
from CVE-2016-4489 in all 10 runs although the time taken
to find the bug varied from minutes to hours.

Base on the results, we see that the directed fuzzers are
indeed better at reaching the target locations when compared
to the undirected fuzzers, and that there exist significant
differences in performance even between the directed fuzzers.
We highlight two interesting observations we made from the
results as follows.

1) Impact of DGF techniques: The impact of DGF tech-
niques is indeed higher than it of various optimizations
adopted by AFL++ over the original AFL, such as sophis-
ticated seed selection and mutation strategies [13]. This is
clear because all the four fuzzers (AFL++, AFLGo, Beacon,
and DAFL) are implemented on top of AFL. The average
performance gains of AFL++, AFLGo, Beacon, and DAFL
over AFL were 2.29×, 1.21×, 2.34×, and 3.56×, respectively.
It is worth noting that the performance gain of AFLGo is
much lower than that of the other two directed fuzzers. We
believe this is due to the limitation of the seed distance metric
used in AFLGo, as discussed in [17] and [20], which does
not take into account the semantic relevance of the seed to the
target location(s) in the program. The performance gains of

TABLE III: Comparing the performance gain reported in [20]
and the results in Table II. Note that AFL is the baseline fuzzer.

Fuzzer
Bug
Type Source #Progs. Fuzz.

Hours
Gain

over AFL

AFLGo Organic Table 2 of [20] 25 24 ×0.51
Synthetic Table II 4 24 ×1.21

Beacon Organic Table 2 of [20] 17 24 ×0.45
Synthetic Table II 4 24 ×2.34

DAFL Organic Table 2 of [20] 27 24 ×2.03
Synthetic Table II 4 24 ×3.56

the more recent directed fuzzers, Beacon and DAFL, confirm
that the directedness of the state-of-the-art directed fuzzers
are indeed effective in terms of guiding the fuzzer towards the
target location. Since the optimization techniques employed
by AFL++ are orthogonal to the DGF techniques, we believe
that combining the best of both worlds would further improve
the state of the art in DGF.

Lesson 1. Synthetic benchmarks can clearly demonstrate
the impact of DGF techniques over other general-purpose
fuzzing techniques adopted by undirected fuzzers.

2) Comparing different directed fuzzers: The three directed
fuzzers we used (AFLGo, Beacon, and DAFL) showed signif-
icant differences in their performance in reaching the target
location, even though they all operate by giving direction to
AFL. For example, Beacon and DAFL found most of the bugs
within the first hour of fuzzing, whereas it took 2.72 hours on
average for AFLGo. On average, Beacon and DAFL find bugs
2.00 times and 2.96 times faster than AFLGo, respectively.
Therefore, the synthetic benchmarks generated by Fuzzle can
be used to effectively evaluate and compare different directed
fuzzers.

Lesson 2. Synthetic benchmarks can provide clear dis-
tinction between different directed fuzzers, which is
useful in comparing their performances.

C. RQ2: Comparing Results on Synthetic Programs and Real-
World Programs

To further understand the impact of synthetic benchmarks
in evaluating DGF, we now compare the performance gains
of DGF techniques on the synthetic benchmarks to those
on the organic (i.e., real-world) benchmarks. Specifically, we
compare the speed-ups observed in Table II to those reported
in the recent study using organic benchmarks [20]. When
calculating the speed-ups, we only included the benchmarks
where both fuzzers found the bug in more than half of the
experiment runs, following the approach used in [20]. We
summarize the results in Table III. Note that this comparison
is not meant to be a fair comparison as the experiments were
conducted in different environments and with different setups.
Rather, we aim to highlight the significance of using synthetic
benchmarks in evaluating DGF techniques.



TABLE IV: Fuzzing results on Fuzzle-generated programs
with varying sizes. The average time taken to find the bug
(TTE) and the number of runs that found the bug within the
24 hours of fuzzing are reported for each fuzzer.

Measure Fuzzer 10x10 20x20 30x30 40x40

TTE (h)

AFL 0.04 0.69 1.06 4.68
AFL++ 0.04 0.24 0.61 3.00
AFLGo 0.03 0.64 2.07 4.66
Beacon 0.02 0.21 0.24 1.82
DAFL 0.05 0.18 0.31 0.97

# of hits
over 10 runs

AFL 10 10 10 9
AFL++ 10 10 10 10
AFLGo 10 10 10 10
Beacon 10 10 10 10
DAFL 10 10 10 10

Table III shows that the performance gain of the all three
directed fuzzers in comparison to their baseline fuzzer (AFL)
is higher when evaluated on the synthetic benchmarks than on
the organic benchmarks. This means that the impact of DGF
is more obvious with synthetic benchmarks than with organic
benchmarks. Thus, the programs synthesized using Fuzzle are
more suitable for evaluating the extent of directedness than
the curated benchmarks commonly used in evaluating the
undirected grey-box fuzzers.

Lesson 3. Synthetic benchmarks can give more clear
picture of the performance gain of DGF techniques than
the organic benchmarks.

D. RQ3: Impact of Program Size

Recall from §III-B, we hypothesized that the size of a
program should not affect much the performance of directed
fuzzers as the difficulty of reaching a specific target location
should be independent of the size of the program, but rather
dependent on the solution length, i.e., the distance between the
entry point and the target location. To test this hypothesis, we
used Fuzzle to generate programs with varying sizes (mazes of
sizes 10x10, 20x20, 30x30,and 40x40) and ran both directed
and undirected fuzzers on them. Note that for the rest of the
evaluation, we used the equally-divided range checks for all
branch conditions when generating the benchmarks, as it is
the default configuration for Fuzzle. The results of running
the fuzzers on the four generated programs are summarized
in Table IV. The reported numbers for TTE are the arithmetic
mean of 10 runs.

From the table, we see that the increase in the program size
has a much greater impact on the performance of undirected
fuzzers than directed fuzzers. For example, AFL and AFL++
took 109× and 83× longer, respectively, to find the bug in the
program of the largest size (40x40) than in the program of the
smallest size (10x10), whereas Beacon and DAFL took 76×
and 21× times longer, respectively.

One notable exception is AFLGo, which took 173× longer
to find the bug in the program of the largest size than in the
program of the smallest size. AFLGo showed comparable or

worse performance than that of AFL, which is the baseline
undirected fuzzer, for the programs of the larger sizes (i.e.,
30x30 and 40x40). This result indeed aligns with the results
presented by the authors of Fuzzle in their evaluation of
AFL and AFLGo on their benchmark [23]. Based on these
results, we conjecture that the seed distance metric employed
in AFLGo becomes less effective for guiding the fuzzer to-
wards the target location in larger programs. Indeed, a similar
observation has been made by the authors of DAFL [20] as
well. Thus, we conclude that the size of a program does not
affect much the performance of directed fuzzers as long as they
can effectively direct the fuzzer towards the target location as
in the case of recent directed fuzzers (Beacon and DAFL) we
tested.

Lesson 4. Program size has greater impact on the perfor-
mance of undirected fuzzers than recent directed fuzzers.

E. RQ4. Impact of Path Constraints

Recall from §III-B we hypothesized that varying path con-
straints should affect the performance of both directed and
undirected fuzzers alike. As we have already ran the fuzzers on
seven programs generated with different path constraints—six
programs based on previous CVEs (§IV-C), and one program
with one-byte range checks (§IV-D)—we can compare the
results shown in Table II and Table IV to answer this research
question. Note that the seven programs differ only in their path
constraints along the buggy path as they were generated using
the same maze.

By comparing the fuzzing results summarized in Table II
and in the 20x20 column of Table IV, it is apparent that
the complexity of path constraints in the program affect the
performance of both directed and undirected fuzzers to a
similar degree. First, all fuzzers, including the directed fuzzers,
spent the least time to find the bugs in the programs with
range checks. This is because the mutation-based fuzzers can
easily generate inputs that satisfy simple range checks. On
the other hand, many fuzzers did not perform well on the
programs generated with more complex constraints from the
CVEs (Table II). Particularly, all fuzzers failed to find the
CVE-2016-4491 due to a large number of equality checks in
the path towards the target bug. Indeed, the program generated
using path constraints from CVE-2016-4491 had a total of
26 branches with one or more equality checks compared to
the average of 7 branches for the rest of the programs in
Table II. Thus, we see that the DGF techniques for guiding the
fuzzer towards the target location do not help much the fuzzers
in passing difficult path constraints. One notable exception
is CVE-2016-6131, where DAFL showed significantly better
performance compared to the others. We will discuss this case
further in §IV-G.

Lesson 5. Path constraints of the program have compa-
rable impact on the performance of both directed and
undirected fuzzers.



TABLE V: Fuzzing results of AFLGo on programs with three
bugs. AFLGo-all denote AFLGo that targets all three bugs, and
AFLGo-B1, AFLGo-B2, AFLGo-B3 denote AFLGo that only
targets one of the bugs, Bug 1, Bug 2, and Bug 3, respectively.
The average time taken to find the bug (TTE) and the number
of runs that found the bug within the 24 hours of fuzzing are
reported for each fuzzer.

M
ea

su
re 20x20 30x30

Fuzzer Bug 1 Bug 2 Bug 3 Bug 1 Bug 2 Bug 3

T
T

E
(h

) AFLGo-all 0.79 0.51 0.71 2.23 3.51 3.00
AFLGo-B1 0.64 0.37 0.55 2.81 4.73 3.51
AFLGo-B2 0.52 0.36 0.53 1.24 1.42 1.58
AFLGo-B3 0.45 0.35 0.43 1.32 2.70 1.38

#
of

hi
ts

ov
er

10
ru

ns AFLGo-all 10 10 10 10 10 10
AFLGo-B1 10 10 10 10 9 10
AFLGo-B2 10 10 10 10 10 10
AFLGo-B3 10 10 10 10 10 10

F. RQ5. Impact of Multiple Targets

We now evaluate the effectiveness of targeting multiple
locations in DGF with two synthesized programs of sizes
20x20 and 30x30, each with three bugs. Note that we used
the modified Fuzzle to synthesize bugs of the same difficulty,
that is, the bugs with the same solution length in the maze (see
§III-A). Note that we only tested AFLGo because Beacon and
DAFL do not support fuzzing with multiple targets.

For each program, we ran AFLGo in four different con-
figurations, each with a different set of target locations.
Specifically, we had one configuration, denoted by AFLGo-
all, where all three bugs in the programs were provided as the
target locations. The remaining three configurations, AFLGo-
B1, AFLGo-B2, and AFLGo-B3, were given one of the three
bugs as the target location. We performed 10 repeats for all
four configurations. The results are summarized in Table V.

From the results in Table V, we see that the effect of directed
fuzzing of AFLGo diminishes when it is instructed to target
multiple locations. Overall, AFLGo-all took longer to find
each of the three bugs when compared to running AFLGo
with only the respective bug as the target. For example, in the
program generated using the maze of size 20x20, AFLGo-all
took 0.79 hour, 0.51 hour, and 0.71 hour to find the Bug 1,
Bug 2, and Bug 3, respectively, whereas AFLGo-B1, AFLGo-
B2, and AFLGo-B3 each took 0.64 hour, 0.36 hour, and 0.43
hour to find the same bugs, respectively. Similarly, AFLGo-
all took longer to find the two of the three bugs (Bug 2
and Bug 3) in the program of size 30x30 when compared to
the configurations with only a single target, AFLGo-B2 and
AFLGo-B3.

Moreover, AFLGo-all does not provide any advantage in
reaching all targets. For example, AFLGo-all would need
at least 0.79 hour to find all three bugs in the program of
size 20x20, whereas AFLGo-B1, AFLGo-B2, and AFLGo-B3
would require 0.64 hour, 0.53 hour, and 0.45 hour, respectively.
All these results are intuitively explained as AFLGo assumes

(a) AFLGo (b) Beacon (c) DAFL

Fig. 1: Visualized coverage achievements by AFLGo, Bea-
con, and DAFL on the program generated using CVE-2016-
6131 [28]. Only DAFL reaches the exit of the maze, the target
(i.e., bug) location for directed fuzzers.

1 void func_250(char *input, int idx){
2 if((uint8_t) 83 == input[idx]){
3 func_251(input, idx + 1);
4 }
5 }
6

7 void func_251(char *input, int idx){
8 if((uint8_t) 84 == input[idx]){
9 func_271(input, idx + 1);

10 } else {
11 func_250(input, idx + 1);
12 }
13 }

Fig. 2: Simplified code snippet from the program synthesized
using CVE-2016-6131 [28].

that the target locations are relevant to each other, whereas
in our experiments, the target locations are irrelevant and far
apart from each other (as discussed in §III-A).

Lesson 6. Multi-target directed fuzzing is less effective
with multiple targets that are far apart from each other.

G. RQ6. Usefulness of Coverage Visualization

How does the coverage visualization of Fuzzle help un-
derstand the bottleneck of directed fuzzers? To answer this
question, we visualized the code coverage achieved by fuzzers
on the program with constraints from CVE-2016-6131 [28],
which is the program that most fuzzers struggled to find the
bug in (Table II). Figure 1 shows the visual aids produced
by Fuzzle, where the branch conditions from CVEs are high-
lighted in orange. From Figure 1a and Figure 1b, we can see
that the corresponding run of AFLGo and Beacon stopped its
progress at the second last and the last branch that use the
constraints from the CVE-2016-6131, respectively. In fact, we
saw that in most cases, the fuzzers were stuck on either of
these last two branches. Specifically, out of 37 total runs that
did not find the bug, 24 runs (7 runs of AFL and Beacon, 4
runs of AFL++ and AFLGo, and 2 run of DAFL) failed to
pass the second last branch condition and another 13 runs (3
runs of AFL, 4 runs of AFLGo and AFL++, and 1 run of
Beacon and DAFL) failed to pass the last branch condition.

Based on the information gathered from the coverage
visualization, we identified the two problematic functions,



func_250 and func_251, and manually analyzed the
source code. Figure 2 is a simplified code snippet of the
two functions. By inspecting the code, we can easily see
why the fuzzers struggled to pass the last two branches: both
branch had equality checks and there was a loop between
the two functions containing these branches. In other words,
the fuzzers had to generate an input that passes two equality
checks on two consecutive input bytes to progress farther in
the program. This explains why DAFL significantly outper-
formed the rest of the fuzzers, including Beacon, in terms of
finding bug. As Beacon cannot correctly handle the complex
loop structures [20], it does not prune the backward edge
from func_251 to func_250. DAFL, on the other hand,
uses Def-Use-Graph to prioritize seeds that are semantically
relevant to reaching target locations, to successfully find the
bug in seven of the ten runs. This example clearly shows that
the visualization feature of Fuzzle can help locate and analyze
the bottlenecks of fuzzing.

Lesson 7. Coverage visualization of Fuzzle is useful in
identifying bottlenecks in directed fuzzing.

V. DISCUSSION AND FUTURE WORK

In this section, we first address the threats to validity of this
study and describe several measures we have taken to mitigate
them. We then discuss the implication of using synthetic
benchmarks for evaluating directed fuzzers.

A. Threats to Validity

There are several threats to validity of this study: (1) the
selection bias for the evaluation targets, (2) the sample sizes,
and (3) the representativeness of samples. To mitigate the
threats, we have taken several measures when designing our
experiments. First, we chose to evaluate multiple directed
fuzzers that all employ different techniques for directing the
exploration of fuzzers in addition to two widely used general-
purpose undirected fuzzers. Additionally, when running the
fuzzers, we used their default configurations that are rec-
ommended by the authors. To guarantee a sufficient sample
size for evaluating directed fuzzers, we created a benchmark
comprising 12 programs using Fuzzle. This was achieved by
varying the values of different parameters, which additionally
ensured a diverse set of benchmark programs. Also, when
evaluating the impact of one property, such as program size
and the number of bugs, we made sure that the rest of the
parameter values are kept constant.

B. Implication of Using Synthetic Benchmarks

While Fuzzle [23] perfectly suits our purpose of evaluating
directed grey-box fuzzers, the synthesized bugs from Fuzzle
are not necessarily identical to real-world organic bugs. Thus,
we do not claim that synthetic bugs can completely replace
real-world bugs in terms of evaluating directed fuzzers. How-
ever, we have empirically showed that synthetic bugs can be
a useful complement to real-world bugs, and they can even
help identify the current limitations of DGF techniques as well

as the future research directions. Furthermore, synthesizing
realistic bugs is an ongoing research problem, and we believe
that further progress in this direction will help improve the
state of the art of DGF.

VI. RELATED WORK

A. Directed Grey-box Fuzzing

Fuzzing is a de facto standard for testing software sys-
tems [25]. It has been used by major software companies such
as Google [1], [2] and Microsoft [27] to find thousands of
real-world vulnerabilities. Almost every layer of the software
stack has been a target for fuzzing, including the operating
systems [9], [34], [35], compilers [7], [24], [36], and web
browsers [14], [15], [39].

Directed grey-box fuzzing is a variant of fuzzing that has
been gaining momentum in recent years due to its power in
generating test cases reaching specific target locations in the
program under test. AFLGo [3] is the first directed grey-box
fuzzer that introduces the notion of seed distance, which is an
average distance from executed nodes in the CFG to the target
node(s). Hawkeye [6] improves the seed distance mechanism
of AFLGo by considering the frequency of call edges in the
call graph. WindRanger [11] shows that not every basic block
in the CFG is equally important, and proposes a way to select
a subset of the basic blocks, known as deviation basic blocks,
to compute the seed distance.

There are several recent approaches that tackle other as-
pects in DGF. Beacon [17] employs a weakest precondition
analysis to prune off infeasible paths in the program under
test. FuzzGuard [40] leverages deep learning to predict the
probability of a test case reaching the target location. MC2 [33]
presents a novel oracle, named noisy counting oracle, which
can approximate the likelihood of an input reaching the target
location. To construct such an oracle, it uses Monte Carlo
sampling with concentration bounds to estimate the upper-
bound probability. DAFL [20] analyzes the data dependency of
the target location to selectively add instrumentation routines
only to the relevant parts of the program under test.

B. Bug Synthesis

Most existing fuzzing benchmarks are manually constructed
by collecting real-world buggy programs [16], [18]. But those
benchmarks lack the ground truth of the bugs: the locations
of the bugs and triggering inputs of the bugs are not known,
or, at least, difficult to collect them at scale [4].

Bug synthesis is a technique that addresses such problems
by automatically generating buggy programs with known bugs.
LAVA [10] is the first bug synthesis tool that generates
buggy programs by injecting bugs into random locations of a
program, where every injected bug is guarded by a magic value
check. However, fuzzers can easily overfit to the benchmarks
generated by LAVA by learning the patterns of the magic
value checks or by penetrating the equality constraints [8],
[21]. EvilCoder [30] injects bugs into a program by removing
security checks or input sanitization routines. Apocalypse [31]
focuses on injecting deep bugs that are difficult for fuzzers to



find. Specifically, it modifies a program in such a way that the
injected bug is only triggered when a state machine, named er-
ror transition system, reaches a specific state. Bug-Injector [19]
leverages bug templates representing previously known bugs to
insert bugs into a host program. FixReverter [38] searches for
known bugfix patterns and modifies the matched code snippets
to introduce bugs in order to ensure the generation of realistic
bugs.

All these approaches share a common theme: they insert
bugs into an existing program to produce benchmarks. How-
ever, program modification may introduce unintended bugs,
and existing programs can always contain previously unknown
bugs. Therefore, it is extremely difficult to obtain a ground
truth of the synthesized benchmarks.

Fuzzle [23] is the first attempt in addressing this problem by
generating a whole benchmark from scratch. As it constructs
a program by creating a maze of functions, it guarantees that
the generated program has a bug at a known location.

The closest work to ours is Bundt et al. [4], whose goal
is to evaluate the effectiveness of synthetic bugs in evaluating
undirected fuzzers. To our knowledge, Fuzzle as well as all
the other existing bug synthesis tools have only been used
to evaluate undirected fuzzers. This paper is the first attempt
to leverage a bug synthesis technique for evaluating directed
grey-box fuzzers.

VII. CONCLUSION

In this paper, we conducted a series of experiments with
synthetic programs generated by Fuzzle to systematically
understand the effectiveness of DGF. As a result, we gathered
several useful insights that would have been difficult to obtain
with traditional benchmarks. First, we found that synthetic
benchmarks give us a clear understanding of the limitations
of existing DGF techniques. For example, we found that DGF
tools struggle to reach target bugs guarded with complex
path conditions. Second, we found that synthetic benchmarks
enable us to identify the exact bottleneck of a fuzzer. Finally,
we found that DGF is less affected by the size of the
benchmark program than undirected fuzzing, which is indeed
a desirable property for DGF. We trust that our findings will
enable researchers to develop more effective DGF techniques
in the future.
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