
AsFuzzer: Differential Testing of Assemblers
with Error-Driven Grammar Inference

Hyungseok Kim
The Affiliated Institute of

ETRI
Daejeon, South Korea

hskim@nsr.re.kr

Soomin Kim
KAIST

Daejeon, South Korea
soomink@kaist.ac.kr

Jungwoo Lee
KAIST

Daejeon, South Korea
jwlee2217@kaist.ac.kr

Sang Kil Cha
KAIST

Daejeon, South Korea
sangkilc@kaist.ac.kr

Abstract

Assembler is a critical component of the compiler toolchain, which
has been less tested than the other components. Unfortunately,
current grammar-based fuzzing techniques suffer from several chal-
lenges when testing assemblers. First, each different assembler
accepts different grammar rules and syntaxes, and there are no
existing assembly grammar specifications. Second, not every as-
sembler is open-source, which makes it difficult to extract grammar
rules from the source code. While existing black-box grammar in-
ference approaches are applicable to such closed-source assemblers,
they suffer from the scalability issue, which renders them impracti-
cal for testing assemblers. To address these challenges, we propose
a novel way to test assemblers by automatically inferring their
grammar rules with only a few queries to the target assemblers by
leveraging their error messages. The key insight is that assembly
error messages often deliver useful information to infer the under-
lying grammar rules. We have implemented our technique in a tool
named AsFuzzer, and evaluated it on 4 real-world assemblers in-
cluding Clang-integrated assembler (Clang), GNU assembler (GAS),
Intel’s assembler (ICC), and Microsoft macro assembler (MASM).
With AsFuzzer, we have successfully found 497 buggy instruction
opcodes for six popular architectures, and reported them to the
developers.

CCS Concepts

• Software and its engineering→ Software testing and debug-

ging.

Keywords

assembler testing, grammar inference, compiler testing

ACM Reference Format:

Hyungseok Kim, Soomin Kim, Jungwoo Lee, and Sang Kil Cha. 2024. As-
Fuzzer: Differential Testing of Assemblers with Error-Driven Grammar In-
ference. In Proceedings of the 33rd ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA ’24), September 16–20, 2024, Vienna, Aus-
tria. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3650212.
3680345

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ISSTA ’24, September 16–20, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3680345

1 Introduction

Compilers are crucial tools for building software because every
binary running on a computer should have been processed by it
at some point. Therefore, compiler correctness is a fundamental
concern for software engineering. Assembler, a critical component
of the compiler toolchain, is not an exception. If an assembler is
buggy, the resulting program may not work as expected.

There have been extensive efforts to test the correctness of com-
pilers [12], but most existing approaches target the whole compiler
toolchain, which includes an assembler, by generating test cases in
a higher-level language, such as C [59] and CIL [17]. Such a holistic
approach is insufficient to achieve high code coverage as only a
number of assembly instruction mnemonics known by the code
generator can be tested. Furthermore, an assembler component
may not be tested at all if the compiler does not produce interme-
diary assembly code during the machine code emission process.
For example, LLVM writes object files without an assembler unless
inline assembly is used [35]. Thus, it is imperative to individually
test an assembler with a variety of assembly instructions in order
to discover potential bugs in it.

Grammar-based fuzzing [14, 19, 23, 39, 40, 44] is a promising
approach to testing assemblers, but there are several remaining
challenges. First, each assembler implementation accepts different
assembly grammar rules and syntaxes even for the same CPU ar-
chitecture. For example, Intel AT&T syntax from GNU assembler
has different operand ordering than the Intel ISA manual. Second,
not every assembler is open-sourced, making it difficult to obtain
the grammar of assembly instructions from the source code. For
example, Microsoft macro assembler is the major assembler for
Windows, but its source code is not publicly available.

One potential solution to these challenges is to infer the grammar
of assembly instructions in a black-box manner, and then use the
inferred grammar to generate assembly instructions. There are
indeed several recent black-box approaches [7, 33] that only require
a set of examples and an oracle to infer context-free grammars. The
oracle returns either “yes” or “no” depending on whether a given
string is valid under the target grammar or not. Therefore, one may
regard our target assembler as an oracle and provide it with several
assembly instructions as examples to infer the grammar rules of a
closed-source assembler implementation.

Unfortunately, however, these black-box approaches suffer from
a scalability issue. Their time complexity is known to be 𝑂 (𝑛4),
where 𝑛 is the total length of the input files [7] even with various
heuristics. In our study, we observe that the existing approaches
do not scale well for complex assembly languages such as x86-64,
which has more than 1,000 opcodes and various addressing modes.

https://orcid.org/0009-0008-2158-9367
https://orcid.org/0000-0003-3129-3857
https://orcid.org/0009-0006-2631-2741
https://orcid.org/0000-0002-6012-7228
https://doi.org/10.1145/3650212.3680345
https://doi.org/10.1145/3650212.3680345
https://doi.org/10.1145/3650212.3680345


ISSTA ’24, September 16–20, 2024, Vienna, Austria Hyungseok Kim, Soomin Kim, Jungwoo Lee, and Sang Kil Cha

Therefore, we present a novel approach to efficiently infer the
grammar of assembly instructions that a given assembler accepts.
The key insight of our approach is that error messages generated by
an assembler often provide useful information about the grammar of
the underlying assembly language that the assembler accepts. Thus,
we can gradually narrow down the search space of the grammar
rules by leveraging the error messages. As an example, consider
an add instruction in x86-64 assembly, which should always be
followed by two operands. When we try to assemble an add instruc-
tion with four operands, e.g., “add 1, 1, 1, 1”, GNU Assembler
(GAS) will produce an error message saying that the number of
operands is incorrect. When we modify the instruction to have
three operands, e.g., “add 1, 1, 1”, we observe the same error,
but if we make it to have two operands, e.g., “add 1, 1”, GAS
emits a different error message saying that the types of operands
are incorrect. With these observations, we can infer that the add
instruction does not accept four/three operands, but two, thereby
reducing the search space of the grammar rules. This simple idea
enables us to infer the grammar rules of an instruction within a
constant number of assembler queries.

With the inferred assembler-specific grammar, we can then per-
form grammar-aware differential testing on the target assemblers.
Suppose we have obtained grammars for two different assemblers
targeting x86-64. We first select a random opcode in x86-64 and
check what kind of syntaxes each assembler accepts for the opcode.
For a syntax that is accepted by the two assemblers, we randomly
generate assembly instructions following the syntax, assemble them
with each assembler, and compare the outputs to detect potential
bugs as in traditional differential testing [31, 46, 48, 51]. For a syntax
that is accepted by only one of the assemblers, we cannot simply use
the differential testing approach because the other assembler will
reject assembly instructions following the syntax. Furthermore, we
cannot simply deem one of the assemblers to be buggy because it is
possible that the other assembler may not simply support the par-
ticular syntax. Thus, we devise a way to detect assembler-specific
bugs by leveraging a disassembler as a reference implementation.
In particular, we assemble the generated assembly instructions with
the target assembler and disassemble the generated machine code
with the reference disassembler. We then compare the disassem-
bled instructions with the original assembly instructions to detect
potential bugs in the target assembler.

We implemented our idea in a tool named AsFuzzer and evalu-
ated it with four mainstream assemblers: Clang-integrated assem-
bler (Clang), GNU assembler (GAS), Microsoft macro assembler
(MASM), and Intel’s assembler (ICC). The results are promising. We
found a total of 497 previously unknown bugs, identified by unique
instruction opcodes, from the four assemblers (142, 61, 210, and 84
bugs from Clang, GAS, ICC, and MASM, respectively) and reported
them to the developers. Our contributions are as follows.

(1) We propose a novel approach to efficiently infer the grammar
of assembly instructions that a given assembler accepts by
leveraging error messages generated by the assembler.

(2) We propose a novel differential testing approach to detect
potential bugs of an assembler by leveraging the inferred
grammar and a disassembler as a reference implementation.

Table 1: Comparison of recent testing tools that generate

assembly code.

T
a
r
g
e
t

T
o
o
l

Y
e
a
r

T
e
s
t
C
a
s
e

L
a
n
g
u
a
g
e

T
o
o
l
-
S
p
e
c
i
fi
c

G
r
a
m
m
a
r

x
8
6

x
8
6
-
6
4

A
R
M

A
A
r
c
h
6
4

M
I
P
S

R
I
S
C
V
6
4

Compiler
DeepFuzz [42] 2019 C ✗ - - - - - -
YARPGen [43] 2020 C/C++ ✗ - - - - - -
CompDiff [41] 2023 C/C++ ✗ - - - - - -

CPU DifuzzRTL [23] 2021 Assembly ✗ ✗ ✗ ✗ ✗ ✗ ✓
TheHuzz [29] 2022 Assembly ✗ ✗ ✗ ✗ ✗ ✗ ✓

Assembler AsFuzzer (ours) - Assembly ✓ ✓ ✓ ✓ ✓ ✓ ✓

(3) We implemented our approach in a tool named AsFuzzer
and evaluated it with four real-world assemblers including
closed-source ones.

(4) We publicize our tool to facilitate future research on assem-
bler testing: https://github.com/SoftSec-KAIST/AsFuzzer.

2 Background and Motivation

This section discusses relevant research on generating assembly
code as a test case, and motivates our approach by presenting an
example bug found by AsFuzzer.

2.1 Generating Assembly Code

Compiler testing has been an active research area for decades [11–
13, 37, 38, 41–43, 49, 52, 55, 56, 59, 60]. Despite burgeoning research
in this area, most existing approaches overlook the assembler com-
ponent of compilers. While it is possible to generate valid assembly
code by compiling random C programs, e.g., with programs gener-
ated by Csmith [59], we cannot achieve high code coverage with a
limited set of assembly instructions known by the compiler.

There are several recent attempts in synthesizing assembly in-
structions to test RISCV64 processor implementations [23, 29], al-
though their testing targets are neither compilers nor assemblers.
They use a manually written set of grammar rules to generate valid
assembly instructions. However, their focus is on making generally
valid assembly instructions, and do not consider the syntaxes of
assembly instructions specific to each assembler.

Table 1 summarizes the relevant tools appeared in top-tier venues
in the past five years (2018–2023). The first column indicates the
testing target of each tool. The second and third columns present
the names of the tools and their publication years, respectively. The
fourth column shows in which language their test cases are written,
and the fifth column describes whether they use an assembler-
specific grammar to generate test cases. The rest of the columns
show which CPU architecture each tool can handle. From the table,
we can clearly see that our tool is the first in targeting assemblers.
Moreover, our approach is scalable in that it can handle a wide
range of CPU architectures, which is made possible by our novel
approach to automatically inferring assembly grammars.

https://github.com/SoftSec-KAIST/AsFuzzer


AsFuzzer: Differential Testing of Assemblers with Error-Driven Grammar Inference ISSTA ’24, September 16–20, 2024, Vienna, Austria

1 vcvtusi2ss XMM0, XMM0, RAX, 0xc3

(a) An assembly instruction generated by AsFuzzer.

1 62 f1 fe 08 7b c0 vcvtusi2ss XMM0,XMM0,RAX
2 c3 ret

(b) Machine instructions obtained by compiling the assembly

code in (a) with GAS.

Figure 1: Example bug in GAS found by AsFuzzer.

2.2 Motivating Example

We now present an example to motivate our approach. Figure 1
shows a previously unknown bug found by AsFuzzer in GNU as-
sembler (GAS). By feeding in the assembly instruction shown in
Figure 1a as input to GAS, it produces two instructions shown in
Figure 1b: vcvtusi2ss followed by ret. Note that the instruction
vcvtusi2ss in our example unusually has four operands, while the
Intel manual [24] states that it should have only three operands.
That is, GAS has a bug where it accepts this wrong assembly in-
struction and produces two machine instructions as a result.

The compiler testing tools shown in the top three rows of Ta-
ble 1 as well as traditional ones like Csmith [59] are not effective in
finding this bug because it is extremely unlikely to generate such
a wrong assembly instruction by compiling a regular C program.
Moreover, it is extremely unlikely for a compiler to emit such an eso-
teric opcode (regardless of the number of operands) unless the given
C program uses an intrinsic function, e.g., _mm_cvt_roundu32_ss
in ICC, that directly maps to the vcvtusi2ss instruction.

The CPU fuzzing tools shown in the fourth and fifth rows of
Table 1 will also not be effective in finding this bug even if they can
generate x86-64 assembly instructions as they only consider gen-
erating valid instructions that follow the general x86-64 grammar.
Unless the grammar includes the buggy syntax, they will never be
able to generate such a wrong assembly instruction. Furthermore,
since they are dependent on manually written grammar rules, it is
difficult to apply them to different assemblers that accept different
assembly syntaxes or target different CPU architectures.

On the other hand, AsFuzzer can effectively find this bug by
inferring the GAS-specific syntaxes of assembly instructions. In
particular, AsFuzzer will identify that GAS accepts two forms
of vcvtusi2ss: one with three operands and another with four
operands. It will then realize that the latter form is never accepted
by other assemblers. Thus, it will generate a random assembly
instruction 𝑖 with four operands following the inferred syntax,
and assemble it with GAS. GAS will then produce the two machine
instructions as shown in Figure 1b. Next,AsFuzzerwill disassemble
the two instructions and notice that the disassembled instructions
are different from 𝑖 , and hence, it will report this instance as a bug.

3 AsFuzzer Design

We now describe the design of AsFuzzer. We first give a brief
overview of AsFuzzer, and then describe the two main modules of
AsFuzzer: Inferrer and Fuzzer.

AsFuzzer

Inferrer

(Assembler1, Grammar1)
(Assembler2, Grammar2)

· · ·
(Assembler𝑛, Grammar𝑛)

Fuzzer

Assembler1
Assembler2
· · ·

Assembler𝑛

q

Opcodes ¿

𝑎𝑟𝑐ℎ >

𝑁 Ô

𝑇 Â

Figure 2: AsFuzzer architecture.

3.1 Overview

AsFuzzer consists of two main modules: Inferrer and Fuzzer as
depicted in Figure 2. At a high level, AsFuzzer takes in five argu-
ments as input: (1) a CPU architecture 𝑎𝑟𝑐ℎ, (2) a list of assemblers
supporting the CPU architecture, (3) a list of available opcodes for
the architecture, (4) the number of fuzz iterations per opcode 𝑁 ,
and (5) the timeout of a fuzzing campaign𝑇 . AsFuzzer then returns
a set of bugs found from the assemblers as output.

Inferrer: Arch × Assembler [] × Opcode [] → (Assembler
× Grammar) []
Inferrer takes in as input (1) a CPU architecture 𝑎𝑟𝑐ℎ, (2) a
list of assemblers that support 𝑎𝑟𝑐ℎ, and (3) a list of available
opcodes for 𝑎𝑟𝑐ℎ. One can easily obtain the list of available op-
codes for 𝑎𝑟𝑐ℎ from the architecture reference manual [6, 24],
or from the source code of the existing assemblers. Inferrer
iterates every given opcode for each assembler, infers operand
formats for every opcode (denoted as Grammar), and makes
a pair of each assembler and its inferred grammar. Finally, it
returns a list of such pairs for all assemblers. We further detail
the algorithm of Inferrer in §3.2.

Fuzzer: (Assembler × Grammar) [] × Opcode [] × Iter ×
Timeout → Bug []
Fuzzer takes in as input (1) a list of (assembler, grammar)
pairs obtained from the inferrer module, (2) a list of available
opcodes, (3) the number of iterations 𝑁 to fuzz per opcode,
and (4) the timeout 𝑇 . It then iteratively performs differential
testing to find bugs in the given assemblers. First, it selects
an opcode at random. It then randomly selects an assembler
𝐴 that can consume the selected opcode, and picks a random
operand format that 𝐴 can accept for the opcode. Next, it
generates a random instruction 𝑖 for each of the selected rules,
and assembles it using the selected assembler 𝐴 to produce a
binary𝑏𝐴 . It then checks for all the other assemblers if the same
operand format exists for the opcode. For an assembler 𝐵 that
has the same format, we assemble 𝑖 with 𝐵 to obtain a binary
𝑏𝐵 , and compare𝑏𝐵 with𝑏𝐴 to see if there is any difference. For
an assembler𝐶 that does not have the same format, we cannot
assemble 𝑖 as 𝐶 will reject it. Instead, we disassemble 𝑏𝐴 with
a reference disassembler, e.g., GNU objdump, to obtain 𝑖′, and
compare 𝑖 with 𝑖′ to see if there is any difference. We repeat the
whole process until the timeout 𝑇 is reached while producing
𝑁 random instructions per each iteration. We further detail
the algorithm of Fuzzer in §3.3.



ISSTA ’24, September 16–20, 2024, Vienna, Austria Hyungseok Kim, Soomin Kim, Jungwoo Lee, and Sang Kil Cha

Algorithm 1: Inferrer.
1 function Inferrer (𝑎𝑟𝑐ℎ, 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑟𝑠 , 𝑜𝑝𝑐𝑜𝑑𝑒𝑠)
2 𝑝𝑎𝑖𝑟𝑠 ← [·] // empty list

3 𝑓𝑚𝑡𝑠 ← get_all_possible_operand_formats(𝑎𝑟𝑐ℎ)

4 for 𝑎𝑠𝑚 ∈ 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑟𝑠 do

5 𝑔𝑟𝑎𝑚𝑚𝑎𝑟 ← {·} // empty dictionary

6 for 𝑜𝑝 ∈ 𝑜𝑝𝑐𝑜𝑑𝑒𝑠 do
7 𝑔𝑟𝑎𝑚𝑚𝑎𝑟 [𝑜𝑝 ] ← ∅
8 𝑐𝑛𝑡 ← num_operands(𝑎𝑟𝑐ℎ, 𝑎𝑠𝑚, 𝑜𝑝) // §3.2.1
9 for 𝑐 ∈ 𝑐𝑛𝑡 do
10 𝑓 ← infer(𝑎𝑟𝑐ℎ, 𝑎𝑠𝑚, 𝑜𝑝 , 𝑓𝑚𝑡𝑠 , 𝑐) // §3.2.2
11 𝑓 ′ ← filter(𝑎𝑠𝑚, 𝑓 ) // §3.2.3
12 𝑔𝑟𝑎𝑚𝑚𝑎𝑟 [𝑜𝑝 ] ← 𝑔𝑟𝑎𝑚𝑚𝑎𝑟 [𝑜𝑝 ] ∪ 𝑓 ′

// append to the list

13 𝑝𝑎𝑖𝑟𝑠 ← 𝑝𝑎𝑖𝑟𝑠 + (𝑎𝑠𝑚,𝑔𝑟𝑎𝑚𝑚𝑎𝑟 )
14 return 𝑝𝑎𝑖𝑟𝑠

3.2 InferrerModule

Algorithm 1 shows the pseudocode of Inferrer. In Line 2, we first
initialize a list that will contain pairs of an assembler and its inferred
grammar. In Line 3, we obtain all possible operand formats for the
given architecture 𝑎𝑟𝑐ℎ. An operand format is a nonterminal sym-
bol in the grammar that represents a possible operand syntax for an
opcode. AsFuzzer has a predefined set of operand formats for each
architecture, and get_all_possible_operand_formats(𝑎𝑟𝑐ℎ) re-
turns such a set for 𝑎𝑟𝑐ℎ as listed in Table 2.

The algorithm then iterates every given assembler to infer avail-
able operand formats for every opcode. In Line 5, we prepare an
empty dictionary 𝑔𝑟𝑎𝑚𝑚𝑎𝑟 , which maps an opcode to a set of avail-
able operand formats for the opcode. In Line 7, we initialize the set
of available operand formats for the opcode to be empty. In Line 8,
we infer the number of operands that the opcode can take using our
error-driven approach described in §3.2.1. At a high level, we lever-
age the fact that assemblers emit a specific type of error message
when the number of operands is incorrect in order to efficiently
infer available operand counts for an opcode.

Once we obtain the number of operands, we then derive valid
operand formats for every operand count in Line 10. Note that there
can be multiple valid operand formats for a given operand count.
For example, when the number of operands is two, the opcode may
accept two distinct operand formats: “reg64, reg64” and “reg64,
imm”, where “reg64” and “imm” mean a 64-bit register and an
immediate, respectively. To derive all possible operand formats for
a given operand count, we again leverage assembler error messages
to infer valid operand formats as we further describe in §3.2.2.

Finally, in Line 11, we filter out the inferred operand formats that
are specific to the given assembler. For example, some assemblers
may accept a pseudo instruction that is not officially supported by
the architecture. Thus, we identify and exclude such cases from
𝑔𝑟𝑎𝑚𝑚𝑎𝑟 to reduce false positives in our analysis. We further detail
this technique in §3.2.3. The final output of Inferrer is a list of
pairs of an assembler and its inferred grammar.

3.2.1 Error-Driven Operand Count Inference. We automatically in-
fer the number of operands that an opcode can take using assem-
bler error messages. The key insight is that assemblers often emit
a specific type of error message when the number of operands
is incorrect. For example, when we provide an add instruction of
x86-64 with a wrong number of operands to GNU assembler, it
emits the following error message: “Error: number of operands
mismatch for `add’”. We find that all the assemblers we tested
except Clang emit a unique error message when the number of
operands is invalid for an opcode. We name this type of error as
operand count error.

By observing operand count errors, we can efficiently infer the
number of operands that an opcode can take. Assuming that the
maximum number of operands that the architecture supports is
𝑛, we simply generate 𝑛 + 1 instructions with varying numbers
of operands from 0 (no operand) to 𝑛 where each operand is a
randomly chosen register in the architecture 𝑎𝑟𝑐ℎ. For example,
we create five dummy instructions for the add opcode of x86-64:
“add”, “add RAX”, “add RAX, RAX”, “add RAX, RAX, RAX”, “add
RAX, RAX, RAX, RAX”. We then check if the assembler emits an
operand count error for each of the instructions. For those that do
not emit an operand count error (while another type of error may
still be emitted), we can infer that the opcode can take the number
of operands that the instruction has. When our target assembler
does not have a unique error message for an operand count error,
as is the case for some assemblers like Clang, we simply return all
possible counts from 0 to 𝑛, i.e., {0, 1, 2, 3, 4} in our example. Such
an over-approximation will not affect the precision of our analysis,
although it will increase the inference time, because our format
inference mechanism will filter out invalid operand formats in the
next step anyway.

3.2.2 Error-Driven Operand Format Inference. After obtaining pos-
sible operand counts for an opcode, we then infer valid operand
formats for each count. For an add instruction on x86-64, for in-
stance, we will get the possible operand count of two, which means
that add instructions will always follow the instruction format: add
<op1>, <op2>. Thus, the goal of this step is to infer valid operand
syntaxes for each operand placeholder, i.e., <op1> and <op2>.

The simplest way to infer the possible operand formats is to
try all possible combinations of operand values, i.e., all possible
registers, immediate values, memory forms, and so on, for each
operand placeholder and see if the assembler accepts it. However,
there are too many such combinations to consider in practice.

To reduce the search space, we leverage the fact that assembler
error messages are always similar when similar types of operands
are used. Consider two invalid add instructions: “add 1, RAX”,
and “add 2, RBX”. Both instructions are invalid because the first
operand cannot be an immediate, and GNU assembler will emit
the same error message for both instructions. Therefore, we do not
need to try both 1 and 2 for the first operand, and similarly no need
to try both RAX and RBX for the second operand, as they are under
the same operand category.

To this end, we define a set of operand types for each architecture
to group similar operand values together. We then try only a single
instance for each operand type during the inference process. For
Intel x86-64, for example, we have 37 predefined operand types



AsFuzzer: Differential Testing of Assemblers with Error-Driven Grammar Inference ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 2: Predefined operand types for x86-64. A total of 37

operand types are defined in AsFuzzer.

Type Examples

reg512 ZMM0, ...
reg256 YMM0, ...
reg128 XMM0, ...
reg80 ST0, ...
regmmx MM0, ...
reg64 RAX, ...
reg32 EAX, ...
reg16 AX, ...
reg8 AL, ...
imm 1, 2, ...

Type Examples

mem_base [RAX], ...
mem_base_disp [RAX+1], ...
mem_disp [1], [2], ...
mem_base_zword ZMMWORD PTR [RAX], ...
mem_base_disp_zword ZMMWORD PTR [RAX+1], ...
mem_disp_zword ZMMWORD PTR [1], ...
mem_base_yword YMMWORD PTR [RAX], ...
mem_base_disp_yword YMMWORD PTR [RAX+1], ...
mem_disp_yword YMMWORD PTR [1], ...
(18 more memory operands) ...

as shown in Table 2. To infer valid operand formats for the add
instruction, we consider all combination of operand types for each
operand placeholder: “reg512, reg512”, “reg512, reg256”, “reg512,
reg128”, and so on. For each combination, we select one operand
instance for each operand type to make a concrete instruction and
to check its validity. This means we need to make 1, 369 (= 37× 37)
add instructions to figure out the valid operand formats. Creating a
file for each instruction is inefficient as we would have to invoke an
assembler for each instruction. Instead, we create a single assembly
file that contains all the instructions as we can easily identify which
instruction in the file caused an error message by looking at the
line number of the error message.

One exception is MASM, which does not emit per-line error
messages when there are more than 100 errors in a single assembly
file. This means we can put at most 100 instructions in a single
assembly file for MASM. Therefore, we need to create at least 14
(≈ 1, 369/100) assembly files to handle the add instruction of x86-64
MASM. As a result, MASM incurs significantly more overhead than
other assemblers in the inference step as we will discuss in §4.2.

3.2.3 Pseudo Instruction Filtering. Our error-driven approach pro-
duces a large number of valid instruction syntaxes for each individ-
ual assembler. However, some of them are too specific to the given
assembler, and thus should not be generally considered as a valid
syntax. In particular, we found that assemblers may accept pseudo
instructions that are often used to ease the development of assembly
programs. However, pseudo instructions are not guaranteed to be
supported by all assemblers, and hence can produce potential false
positives in our analysis. For example, “abs” on MIPS is a pseudo
instruction that is assembled into three regular instructions with
GAS, but other assemblers do not support it.

To filter out such pseudo instructions, we leverage the fact that
pseudo instructions are always translated into a sequence of real
instructions (with distinct opcodes) by the assembler. Therefore,
we can identify pseudo instructions by disassembling the binary
produced by the assembler and checking if the disassembled in-
struction opcodes are different from the original opcode. In our
current implementation, we use GNU objdump as our reference
disassembler. Such a simple process filters out 6.44% of the inferred
operand formats for all the architectures we tested: x86, x86-64,
ARM, AArch64, MIPS, and RISCV64. We note that this filtering
process can overly reduce the number of valid operand formats
because our disassembler can be buggy. However, this will only

Algorithm 2: Fuzzer.
// 𝑝𝑎𝑖𝑟𝑠: a list of (assembler, grammar)

1 function Fuzzer (𝑝𝑎𝑖𝑟𝑠 , 𝑜𝑝𝑐𝑜𝑑𝑒𝑠 , 𝑁 ,𝑇)
2 𝑏𝑢𝑔𝑠 ← ∅
3 𝑑𝑖𝑠𝑎𝑠𝑚 ← GNU objdump // our reference disassembler

4 while ¬is_timeout(𝑇) do
5 𝑜𝑝 ← pick_random_opcode(𝑜𝑝𝑐𝑜𝑑𝑒𝑠)

6 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑟1, 𝑔1 ← pick_random_pair(𝑜𝑝 , 𝑝𝑎𝑖𝑟𝑠)
// remove the pair from the list

7 𝑝𝑎𝑖𝑟𝑠′ ← 𝑝𝑎𝑖𝑟𝑠 − (𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑟1, 𝑔1 )
8 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑟2, 𝑔2 ← pick_random_pair(𝑜𝑝 , 𝑝𝑎𝑖𝑟𝑠′)
9 𝑖𝑛𝑠𝑡𝑟𝑠1 ← [·] // empty list

10 𝑖𝑛𝑠𝑡𝑟𝑠2 ← [·] // empty list

11 for 𝑖 ← 1 to 𝑁 do

12 𝑓𝑚𝑡 ← pick_random_format(𝑔1 [𝑜𝑝 ])
13 𝑖𝑛𝑠 ← gen_assembly_instruction(𝑜𝑝 , 𝑓𝑚𝑡)

14 if 𝑓𝑚𝑡 ∈ 𝑔2 [𝑜𝑝 ] then 𝑖𝑛𝑠𝑡𝑟𝑠1 ← 𝑖𝑛𝑠𝑡𝑟𝑠1 + 𝑖𝑛𝑠
15 else 𝑖𝑛𝑠𝑡𝑟𝑠2 ← 𝑖𝑛𝑠𝑡𝑟𝑠2 + 𝑖𝑛𝑠
16 𝑏1 ← diff_two_asms(𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑟1, 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑟2, 𝑑𝑖𝑠𝑎𝑠𝑚,

𝑖𝑛𝑠𝑡𝑟𝑠1) // §3.3.1
17 𝑏2 ← diff_asm_disasm(𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑟1, 𝑑𝑖𝑠𝑎𝑠𝑚, 𝑖𝑛𝑠𝑡𝑟𝑠2)

// §3.3.2
18 𝑏𝑢𝑔𝑠 ← 𝑏𝑢𝑔𝑠 ∪ 𝑏1 ∪ 𝑏2
19 return 𝑏𝑢𝑔𝑠

reduce the number of bugs that we can find, and will not affect the
precision of our analysis.

3.3 FuzzerModule

Recall from §3.1, Fuzzer performs differential testing in two distinct
ways depending on the availability of the common operand format
between two target assemblers. Algorithm 2 shows the overall
workflow of Fuzzer. In Line 2, we start by initializing 𝑏𝑢𝑔𝑠 , which
will contain all the bugs found during the fuzzing campaign. In
Line 3, we initialize our reference disassembler to be GNU objdump.
The fuzzing loop then iterates until the timeout 𝑇 is reached.

In Line 5, we first pick an opcode from the given list of opcodes
(𝑜𝑝𝑐𝑜𝑑𝑒𝑠) at random. In Line 6–8, we then randomly pick two differ-
ent assemblers (𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑟1 and 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑟2), which can consume
the opcode, along with their grammars (𝑔1 and 𝑔2). In Line 9–10,
we initialize two empty lists of assembly instructions (𝑖𝑛𝑠𝑡𝑟𝑠1 and
𝑖𝑛𝑠𝑡𝑟𝑠2). Next, we fill in the lists by iterating the for-loop for𝑁 times.
In Line 12, we randomly pick an operand format that 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑟1
can accept. In Line 13, we generate a random assembly instruction
𝑖𝑛𝑠 that has the opcode 𝑜𝑝 and conforms to the selected operand
format 𝑓𝑚𝑡 . In Line 14, we check if 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑟2 also accepts the
same operand format 𝑓𝑚𝑡 for the opcode 𝑜𝑝 . If so, we accumulate
the instruction 𝑖𝑛𝑠 to the list 𝑖𝑛𝑠𝑡𝑟𝑠1. If otherwise, we accumulate
𝑖𝑛𝑠 to the list 𝑖𝑛𝑠𝑡𝑟𝑠2.

After generating𝑁 instructions, we first perform differential test-
ing between 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑟1 and 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑟2 in Line 16 by putting all the
instructions in 𝑖𝑛𝑠𝑡𝑟𝑠1 into a single file, and comparing the binaries
produced by assembling the file with 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑟1 and 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑟2.
In theory, any difference between the two binaries should result



ISSTA ’24, September 16–20, 2024, Vienna, Austria Hyungseok Kim, Soomin Kim, Jungwoo Lee, and Sang Kil Cha

in a bug, but there can be false positives in practice. Hence, we
devise an effective technique to reduce false positives as we further
describe in §3.3.1.

Next, in Line 17, we solely test 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑟1 by checking the con-
sistency between the input and the output of it, because 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑟2
does not accept any of the instructions in 𝑖𝑛𝑠𝑡𝑟𝑠2. In particular,
we first assemble all the instructions in 𝑖𝑛𝑠𝑡𝑟𝑠2 with 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑟1 to
produce a binary. We then disassemble the binary with our our
reference disassembler (i.e., GNU objdump), and compare the disas-
sembled instructions with 𝑖𝑛𝑠𝑡𝑟𝑠2 to see if there is any difference.
We further detail this process in §3.3.2.

3.3.1 Differential Testing between Two Assemblers. When two as-
semblers share the same operand format for an opcode, we can
directly run them with the same input instruction and compare
their output binaries to detect any difference. However, we found
that an instruction can be encoded in multiple ways, resulting in
different binaries depending on the assembler implementation. For
example, an add instruction of x86-64 can be encoded in several
ways depending on the size of the immediate: both 48050100000016
and 4883c00116 are valid encodings of the instruction “add rax,
1”. Such differences in the encoding can result in false positives.

To handle this issue, we first disassemble the output binaries of
the two assemblers with a reference disassembler (GNU objdump),
and compare the disassembled instructions. This way, we can elim-
inate false positives caused by the difference in the encoding of
the same instruction. Of course, our reference disassembler may
produce a wrong disassembly or fail to disassemble the binary, in
which case we may observe false negatives. One potential way to
reduce false negatives is to use multiple reference disassemblers,
but in our evaluation, GNU objdump was sufficient to detect many
practical bugs in real-world assemblers. Hence, we leave it as future
work to further improve the precision of our analysis.

3.3.2 Consistency Checking between Input and Output of an Assem-
bler. When two assemblers do not share the same operand format
for an opcode, we cannot perform differential testing between them.
One may say that two assemblers having different operand formats
for the same opcode is already a bug, but it is possible that one
assembler simply does not support the syntax yet, i.e., an unimple-
mented feature, or the other assembler supports a special syntax
that is not officially defined in the architecture reference manual.

To reduce false positives in such cases while still being able
to detect potential bugs, we check the consistency between the
input and the output of the selected assembler. In particular, we
first assemble instructions 𝑖𝑛𝑠𝑡𝑟𝑠2 (i.e., input) with the selected
assembler 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑟1, and disassemble the binary produced by
the assembler (i.e., output) with a reference disassembler (GNU
objdump). We then compare the disassembled instructions with the
original instructions to see if there is any difference. With this idea,
we can detect inconsistency bugs similar to the one in Figure 1.

3.4 Implementation

We implemented AsFuzzer with 3.1K SLoC of Python. To obtain
the list of opcodes for each architecture, we manually inspected
the source code of GNU Binutils and extracted the lists from it.
We also manually defined the set of operand formats (Line 3 of

Algorithm 1) for each architecture by carefully examining the archi-
tecture reference manuals. For x86, x86-64, ARM, AArch64, MIPS,
and RISCV64 architectures, we used 37, 37, 9, 10, 6, and 6 distinct
operand formats, respectively. We use GNU objdump v2.41 as our
reference disassembler.

4 Evaluation

In this section, we evaluate AsFuzzer to answer the following
research questions.
RQ1. How does Inferrer compare to SOTA black-box grammar

inference and automata learning approaches? (§4.2)
RQ2. How does our test case generation method compare to alter-

native approaches? (§4.3)
RQ3. How effective is AsFuzzer in finding bugs in mainstream

assemblers? (§4.4)
RQ4. How do the assembler bugs we found look like? (§4.5)

4.1 Experimental Setup

4.1.1 Our Benchmark. Our benchmark includes four popular as-
semblers: two public assemblers and two proprietary assemblers.
For public assemblers, we selected Clang-integrated assembler
v16.0.0 (Clang) and GNU assembler v2.41 (GAS), which are the
default assemblers of Clang and GCC, respectively. In our exper-
iments, we used them to assemble assembly programs for x86,
x86-64, ARMv7, AArch64, MIPS, and RISCV64. We also chose two
proprietary assemblers: Intel’s assembler v2021.8.0 (ICC) and Mi-
crosoft macro assembler v14.37.32824.0 (MASM). We use those two
assemblers to assemble assembly programs for x86 and x86-64.

4.1.2 Comparison Target.

Grammar Inference Tool. To compare the effectiveness of our
grammar inference algorithm, we selected Arvada [33], which is a
SOTA black-box grammar inference tool, as our comparison target.
Additionally, we selected two active automata learning algorithms,
namely L∗ [4] and TTT [25] to infer assembly grammars. Our
comparison focused on evaluating the inference time and accuracy
of the inferred grammars.

Assembler Testing Tool. We were not able to find any existing
assembler testing tools for comparison. Instead, we selected three
tools from compiler testing, CPU fuzzing, and grammar-based
fuzzing approaches as our comparison targets. Specifically, we
chose Csmith [59], which is a standard C compiler testing tool that
generates random C programs. With Csmith, we generated random
C source files first, and then compiled themwith the --save-temps
option to produce assembly files from C.Wemanually truncated the
last assembly file to get exactly 1M assembly instructions. We also
chose DifuzzRTL [23], which is a SOTA CPU fuzzing tool that can
generate random RISCV assembly programs. Finally, we included
Grammarinator [18], which can generate test cases by leveraging
existing assembly grammars defined in ANTLR v4 [36]. We found
two existing assembly grammars written in ANTLR for x86 [1] and
RISCV [2], so we used them to run Grammarinator. Note that an
end-to-end comparison is not feasible with these tools because their
goals and usages are different from AsFuzzer. Therefore, we only
compared the effectiveness of input generation of each tool in §4.3.



AsFuzzer: Differential Testing of Assemblers with Error-Driven Grammar Inference ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 3: Time taken (in seconds) to infer assembly grammars.

x86 x86-64 ARMv7 AArch64 MIPS RISCV64

A
s
s
e
m
b
l
e
r

A
sF
uz

ze
r

A
rv
ad
a

L∗ TT
T

A
sF
uz

ze
r

A
rv
ad
a

L∗ TT
T

A
sF
uz

ze
r

A
rv
ad
a

L∗ TT
T

A
sF
uz

ze
r

A
rv
ad
a

L∗ TT
T

A
sF
uz

ze
r

A
rv
ad
a

L∗ TT
T

A
sF
uz

ze
r

A
rv
ad
a

L∗ TT
T

Clang 3,749 T.O. T.O. 23,040 5,416 T.O. T.O. 52,200 314 1,286 1,758 1,441 190 7,574 2,209 1,506 66 3,125 880 673 43 4,084 1,037 587
GAS 903 T.O. 11,220 3,319 798 T.O. 12,360 4,380 25 1,126 376 300 74 5,472 493 356 11 1,875 213 170 15 3,092 208 169
ICC 1,476 T.O. T.O. 27,420 700 T.O. T.O. 22,440 - - - - - - - - - - - - - - - -
MASM 10,709 T.O. T.O. 66,840 13,621 T.O. T.O. 69,060 - - - - - - - - - - - - - - - -

T.O. means timeout.
The numbers in bold represent the best result per row.

Table 4: Rate between the number of valid instructions and the total number of instructions generated by each tool.

x86 x86-64 ARMv7 AArch64 MIPS RISCV64

A
s
s
e
m
b
l
e
r

A
sF
uz

ze
r

A
rv
ad
a

L∗ TT
T

A
sF
uz

ze
r

A
rv
ad
a

L∗ TT
T

A
sF
uz

ze
r

A
rv
ad
a

L∗ TT
T

A
sF
uz

ze
r

A
rv
ad
a

L∗ TT
T

A
sF
uz

ze
r

A
rv
ad
a

L∗ TT
T

A
sF
uz

ze
r

A
rv
ad
a

L∗ TT
T

Clang 100% T.O. T.O. 100% 100% T.O. T.O. 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
GAS 100% T.O. 100% 100% 100% T.O. 100% 100% 100% 85.8% 100% 100% 100% 91.3% 100% 100% 100% 80.0% 100% 100% 100% 90.6% 100% 100%
ICC 100% T.O. T.O. 100% 100% T.O. T.O. 100% - - - - - - - - - - - - - - - -
MASM 100% T.O. T.O. 100% 100% T.O. T.O. 100% - - - - - - - - - - - - - - - -

4.1.3 Our Environment. We ran our experiments on a desktop ma-
chine with 16 Intel i9-11900 cores and 128GB of RAM. We allocated
a single CPU core for each running instance. We used Ubuntu 20.04
containers on Docker 24.0.7 to run all our experiments. To run
MASM, which can only run on Windows, we used Wine v3.0.

4.2 Effectiveness of Inferrer

How effective is Inferrer in inferring the grammar rules of an as-
sembler? To answer the question, we chose one black-box grammar
inference tool, Arvada, and two active automata learning algo-
rithms, L∗ [4] and TTT [25], as our comparison targets.

Since Arvada requires a set of examples to operate, we first gen-
erated a set of random assembly instructions. Specifically, we used
AsFuzzer to enumerate example assembly instructions, and then
randomly selected one instruction per each opcode. That is, if an
ISA has 𝑁 distinct opcodes, we give 𝑁 valid assembly instructions
(one random instruction per each opcode) as input to Arvada. We
also used our assemblers (see §4.1.1) as membership oracles.

Since both L∗ [4] and TTT [25] require an equivalence oracle
to operate, we employed a PAC (Probably Approximately Correct)
oracle [57] to perform stochastic equivalence testing. Specifically,
we implemented the oracle using the LearnLib [26] framework with
the error parameter 𝜖 = 0.01 and the confidence parameter 𝛿 = 0.01.
Note that simply considering all possible opcodes and operands
as an alphabet results in a significantly large number of possible
combinations, making it infeasible to find counterexamples. Thus,
we infer the grammar for each opcode separately by randomly
sampling possible operand combinations. For example, when tar-
geting an x86-64 assembler, we provide the learning module with

37 concrete operands, i.e., one instance per each of the operand
types shown in Table 2.

4.2.1 Grammar Inference Time. We ran AsFuzzer, Arvada, and
two learning modules, L∗ and TTT, for 24 hours to compare their
time efficiency in inferring grammar rules. Table 3 shows how
much time it took to infer the grammar of each assembler for each
architecture. Overall, AsFuzzer was significantly faster than the
others for all the configurations. AsFuzzer was 7.2× faster than
TTT, and for those cases where Arvada and L∗ were able to infer
the grammar rules within 24 hours, AsFuzzer was 37.5× faster
than Arvada and 9.7× faster than L∗. AsFuzzer spent more time
for MASM than for the other assemblers. We believe this is because
of two main reasons. First, we used Wine to run MASM on Linux
as it requires Windows to operate. Wine incurs a significant API
translation overhead, which can slow down the inference process.
Additionally, AsFuzzer generated more assembly files for MASM,
as discussed in §3.2.2, which also increased the inference time.

Note that Arvada and L∗ were not able to infer the grammar
of Intel assemblers within 24 hours (denoted as T.O.). We believe
this is because of the complexity of the Intel assembly language,
which has thousands of distinct opcodes and 3×–4× more operand
types compared to the other architectures. These results signify the
efficiency of our error-driven grammar inference algorithm.

4.2.2 Grammar Accuracy. To compare the accuracy of the inferred
grammars, we performed two experiments. First, we compared the
precision of the inferred grammars by AsFuzzer, Arvada, L∗, and
TTT. Second, we compared the coverage of the inferred instruction
formats by each tool. For the second experiment, however, we were



ISSTA ’24, September 16–20, 2024, Vienna, Austria Hyungseok Kim, Soomin Kim, Jungwoo Lee, and Sang Kil Cha

0

25

50

75

100

x8
6−Clang

x8
6−GAS

x8
6−IC

C

x8
6−MASM

x8
6−64−Clang

x8
6−64−GAS

x8
6−64−IC

C

x8
6−64−MASM

ARMv7
−Clang

ARMv7
−GAS

AArch
64−Clang

AArch
64−GAS

MIP
S−Clang

MIP
S−GAS

RIS
CV−Clang

RIS
CV−GAS

%
 o

f i
nf

er
re

d 
fo

rm
at

s

AsFuzzer
L*
TTT

Figure 3: The percentages of instruction formats covered by

AsFuzzer, L
∗
, and TTT.

not able to use Arvada because it was not straightforward to modify
the tool to generate acceptable assembly formats.

Grammar Precision. Since there is no ground truth, we first mea-
sured the precision, but not recall, of the inferred grammars. Specif-
ically, we generated 10,000 assembly instructions from each tool,
and then fed them to the oracle assemblers to see how many of
them were accepted. Table 4 shows the results. AsFuzzer, L∗, and
TTT achieved 100% precision for all the assemblers, while Arvada
achieved significantly less precision. We further analyzed the re-
sults and found that Arvada produced many invalid instructions
with invalid opcodes or operands. For example, Arvada produced
an invalid instruction “yieldmovk X7, #20” for AArch64, where
yield and movk are two distinct opcodes. From the results, we
conclude that AsFuzzer is more precise than Arvada in terms of
inferring assembly grammar rules.

Grammar Coverage. To measure the grammar coverage of each
tool, we enumerated all possible instruction formats that each tool
inferred, obtained a union of them, and then measured how much
of the union grammar was covered by each tool. Figure 3 shows
the results. Overall, AsFuzzer achieved the highest coverage, close
to 100%, for all the assemblers. We note that both TTT and L∗
achieve significantly lower coverage than AsFuzzer for Intel and
ARM assemblers, whose grammars are more complex than those of
other architectures. For instance, the valignd instruction in x86-64
requires four operands but the PAC oracle was not able to find a
counterexample via random sampling, which resulted in the failure
of TTT to infer the valid instruction format for the instruction. This
result suggests that the stochastic approach does not work effec-
tively when counterexamples are sparse. There were several cases
where AsFuzzer failed to identify valid instruction formats that
the other tools could infer. This deficiency originates from a mis-
leading error message from assemblers that incorrectly indicated
wrong operand counts. Nevertheless, AsFuzzer achieved signifi-
cantly higher coverage compared to L∗ and TTT, which suggests
that AsFuzzer is more effective in inferring assembly grammar
rules.

4.3 Comparing Test Case Generation Capability

We comparedAsFuzzer against Csmith, DifuzzRTL, and Grammari-
nator to evaluate the test case generation capabilities by generating
1M assembly instructions with each tool and comparing opcode

0

500

1000

1500

0.0 0.2 0.4 0.6 0.8 1.0

# of Test Cases (in million)

O
p

c
o

d
e

 C
o

ve
ra

g
e

AsFuzzer-Clang
Csmith-Clang
Grammarinator

(a) x86 Clang.

0

500

1000

1500

0.0 0.2 0.4 0.6 0.8 1.0

# of Test Cases (in million)

O
p

c
o

d
e

 C
o

ve
ra

g
e

AsFuzzer-GAS
Csmith-GCC
Grammarinator

(b) x86 GAS.

0

50

100

150

200

0.0 0.2 0.4 0.6 0.8 1.0

# of Test Cases (in million)

O
p

c
o

d
e

 C
o

ve
ra

g
e

AsFuzzer-Clang
Csmith-Clang

DifuzzRTL
Grammarinator

(c) RISCV64 Clang.

0

50

100

150

200

0.0 0.2 0.4 0.6 0.8 1.0

# of Test Cases (in million)

O
p

c
o

d
e

 C
o

ve
ra

g
e

AsFuzzer-GAS
Csmith-GCC

DifuzzRTL
Grammarinator

(d) RISCV64 GAS.

Figure 4: AsFuzzer vs. test case generators.

coverage. We modified AsFuzzer to stop after generating 1M ran-
dom assembly instructions, skipping its regular fuzzing process. We
used Clang and GAS assemblers for x86 and RISCV64 architectures,
but we used only RISCV64 assemblers to compare DifuzzRTL as it
only supports RISCV64. We denote the combination of a tool and an
assembler with a hyphen, e.g., AsFuzzer-Clang means AsFuzzer
that uses Clang as an assembler to infer the grammar and generate
assembly instructions.

Figure 4 shows the opcode coverage of each tool.AsFuzzer signif-
icantly outperforms all the other tools in terms of opcode coverage.
Csmith achieved the lowest opcode coverage among them, which
clearly indicates that C source-based test case generation is not
effective in testing assemblers. This result confirms our motivation
that we need a dedicated tool for testing assemblers.

We also note that pre-defined assembly grammars do not help
much to achieve high opcode coverage. Specifically, the exper-
imental results confirm that the assembly grammars defined in
ANTLR [36] are not comprehensive enough to generate diverse
assembly instructions. We also observed that over 40.6% of instruc-
tions generated from Grammarinator were invalid due to the lack
of precision of the grammar rules defined in ANTLR. Figure 4c and
Figure 4d also show that manually written grammar rules of Di-
fuzzRTL are not as effective as the automatically inferred grammar
rules of AsFuzzer in generating diverse assembly instructions.

4.4 Bug Finding

We now evaluate the effectiveness of AsFuzzer in terms of its bug
finding ability. In this experiment, we ran AsFuzzer with a total of
24 different configurations with four different 𝑁 (= 1, 5, 10, 50) and
six different architectures (x86, x86-64, ARMv7, AArch64, MIPS,
and RISCV64). To test Intel (x86 and x86-64) assemblers, we ran
AsFuzzer with the four target assemblers altogether as they all
support Intel architectures. To test the other assemblers of different
architectures, we ran AsFuzzer with Clang and GAS only. For each
configuration, we ran AsFuzzer for 6 hours.



AsFuzzer: Differential Testing of Assemblers with Error-Driven Grammar Inference ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 5: Bugs found by AsFuzzer on different assemblers after a 6-hour fuzzing campaign for each different configuration.

𝑁 Assembler x86 x86-64 ARMv7 AArch64 MIPS RISCV64

All Op Fin All Op Fin All Op Fin All Op Fin All Op Fin All Op Fin

1

Clang 971 168 62 944 134 72 22,238 67 3 1,262 8 0 81,715 126 5 1,324 10 0
GAS 272 82 21 320 97 27 21,185 69 1 6,132 73 3 77,038 91 4 1,558 11 4
ICC 532 198 117 323 97 26 - - - - - - - - - - - -
MASM 375 47 36 620 86 48 - - - - - - - - - - - -

5

Clang 1,341 223 62 1,214 150 72 34,845 67 3 1,493 8 0 80,881 127 5 2,820 10 0
GAS 502 97 22 542 111 27 37,646 69 1 12,625 73 3 78,967 98 4 3,558 11 4
ICC 1,418 255 178 549 111 27 - - - - - - - - - - - -
MASM 442 53 36 799 92 48 - - - - - - - - - - - -

10

Clang 1,513 230 62 1,293 152 72 36,456 67 3 1,562 8 0 78,832 126 5 3,419 10 0
GAS 530 98 21 606 113 27 41,661 69 1 14,061 73 3 77,036 97 4 4,441 11 4
ICC 2,029 257 182 617 112 27 - - - - - - - - - - - -
MASM 464 54 36 876 93 48 - - - - - - - - - - - -

50

Clang 1,940 245 62 1,404 163 72 37,260 67 3 1,531 8 0 76,493 126 5 4,195 10 0
GAS 624 110 22 648 118 25 43,412 69 1 14,216 73 3 76,286 97 4 5,372 11 4
ICC 3,085 266 182 691 118 27 - - - - - - - - - - - -
MASM 483 53 36 887 93 48 - - - - - - - - - - - -

Op: # of bugs found, grouped by their opcode.
Fin: Final # of bugs found after manual triage.

Table 5 summarizes the number of buggy opcodes found by
AsFuzzer for each configuration. The “All” column for each ar-
chitecture shows the total number of buggy test cases reported
by AsFuzzer for each assembler for each configuration. The “Op”
column shows the number of buggy test cases grouped by their
opcode for each assembler. Finally, the “Fin” column shows the total
number of bugs found after manually inspecting their root causes.
We reported all the bugs found to the developers.

The total numbers of buggy test cases generated byAsFuzzer are
significantly larger than those after manual inspection because of
two reasons: (1) some bugs are caused by the same root cause even if
they are triggered from different instructions; and (2) AsFuzzer can
produce false positives. First, AsFuzzer produces many different
assembly instructions of the same format, which can trigger the
same bug. For example, the same bug shown in Figure 1 can be
found by varying registers and immediate values. Second,AsFuzzer
can produce false positives because there are subtle differences
between assembly instructions given as input and the machine
code obtained from the assemblers. For example, GAS would put
dummy instructions when the total size of the output binary is not
a multiple of 16 bytes, while Clang would not. This will produce
significant differences in the machine code even if given the input
assembly instructions are the same. This phenomenon explains the
unusually large numbers for RISC architectures, i.e., ARM, MIPS,
and RISCV64 assemblers.

To effectively triage the bugs found, we first filtered out most
of the buggy test cases by their opcodes (i.e., the “Op” columns).
This way we may lose some bugs that are triggered by the same
opcode, but we can significantly reduce the number of test cases to
inspect manually. We then manually analyzed the root causes of
the remaining bugs while examining their source code (if available)
as well as the architecture reference manuals to fill out the “Fin”
columns. It is noteworthy that one could leverage existing bug
isolation techniques [3, 10, 20] to further reduce the manual effort.
However, we are not aware of assembler-specific techniques and
developing such techniques is beyond the scope of this paper.

From the results, we observe the following two findings: (1) the
parameter 𝑁 does not affect the number of bugs found significantly,
and (2) both the consistency check and differential testing mecha-
nisms of AsFuzzer are effective in finding real-world bugs from
assemblers.

4.4.1 Impact of 𝑁 . Recall from §3.1 that 𝑁 decides how many
instructions we generate in each iteration of the fuzzing process
for a selected opcode. Thus, setting this parameter too low will
generate assembly files with too few instructions, making the over-
all throughput of AsFuzzer low. On the other hand, setting this
parameter too high will allocate too much time to generate assem-
bly instructions for a single opcode, thereby reducing the overall
throughput of AsFuzzer. We observed that by increasing 𝑁 from 1
to 50, the number of buggy test cases generated gradually increases.
However, the triaged number of bugs (i.e., the “Fin” column) does
not change significantly as we change 𝑁 because many buggy in-
structions share the common root cause. Although there is a slight
difference in the numbers, we found that it is mainly due to the
randomness of the fuzzing process.

4.4.2 Impact of Two Testing Methods. We further investigated the
results to see which of the two testing methods (diff_two_asms()
(§3.3.1) and diff_asm_disasm() (§3.3.2) is more effective in finding
bugs. Figure 5 compares the numbers of bugs found (after manual
triage) by each method. As a result, the consistency check method
found 9× more buggy opcodes than the differential testing method.
Out of 497 we found, 448 were from the consistency check method.

4.4.3 Manual Bug Triage. We manually triaged the buggy opcodes
found by AsFuzzer and grouped them into six major categories
as shown in Table 6. (C1) There were cases where the assembler
silently changed a register into another one as described in §4.5.1.
(C2) Assemblers often misinterpret a register/immediate/memory
operand as a label. (C3) Assemblers often ignore pointer directives,
thereby producing instructions that have wrong memory access
sizes. (C4) Assemblers sometimes accept or produce an incorrect
number of operands as described in Figure 1. (C5) There were



ISSTA ’24, September 16–20, 2024, Vienna, Austria Hyungseok Kim, Soomin Kim, Jungwoo Lee, and Sang Kil Cha

x86 x86−64 ARMv7 AArch64 MIPS RISCV64

C
la

ng

G
A

S

IC
C

M
A

S
M

C
la

ng

G
A

S

IC
C

M
A

S
M

C
la

ng

G
A

S

IC
C

M
A

S
M

C
la

ng

G
A

S

IC
C

M
A

S
M

C
la

ng

G
A

S

IC
C

M
A

S
M

C
la

ng

G
A

S

IC
C

M
A

S
M

100

101

102

103

B
ug

s 
(in

 lo
g)

Consistency Check Differential Testing

Figure 5: Number of buggy opcodes found for each assembler.

Table 6: Categories of bugs that AsFuzzer found.

Clang GAS ICC MASM

C1. Using wrong register(s) 23 18 11 11
C2. Confusing an operand and a label 52 19 8 0
C3. Ignoring pointer directives 47 23 22 73
C4. Incorrect # of operands 0 1 169 0
C5. Emitting invalid code 17 0 0 0
C6. Emitting nothing 3 0 0 0

Total 142 61 210 84

several cases from Clang where it generates invalid binary code
for valid instructions. (C6) There were several cases from Clang
where it accepts a wrong instruction and silently produces nothing
as shown in §4.5.2. We reported our findings to the developers, and
110 buggy opcodes (C1: 20, C2: 5, C4: 65, C5: 17, C6: 3) have been
confirmed and 23 of them have been fixed by the developers at the
time of writing this paper.

4.5 Case Study

Recall that we have already demonstrated a bug found by AsFuzzer
with Figure 1 in §2.2. In this section, we present two additional
bug cases found by AsFuzzer, which highlight the importance of
assembler-specific grammars in testing assemblers.

4.5.1 Case 1: Single Instruction Introducing Four Bugs in Four Assem-
blers. Figure 6 demonstrates four bugs in four different assemblers
found by AsFuzzer with a single assembly instruction. The lar
instruction in x86-64 can only take a 16- or 32-bit register as the
second operand, according to the manual [24]. However, AsFuzzer
found that all the assemblers we tested accept a 64-bit register as
the second operand, such as R11. As a result, AsFuzzer was able
to generate the assembly instruction: lar R11, R12. Although
this is an invalid instruction, all the assemblers we tested accept
it and emit a valid (although different than the original) machine
instruction as shown on the right side of Figure 6. Note that such an
invalid instruction cannot be generated by existing tools because
they do not consider such an invalid instruction as a test case. It is
also noteworthy that we were able to detect four different bugs in
four different assemblers with a single test case.

4.5.2 Case 2: Emitting Nothing vs. Rejecting. Figure 7 presents a bug
found by AsFuzzer in AArch64 assemblers. The dsb instruction in
AArch64 takes a special option symbol as its operand, such as sy, st,
etc. However, AsFuzzer found that Clang accepts dsb instructions
with a regular memory operand, such as “dsb [R3, #1]”. Although
Clang accepts such an instruction, it does not emit any machine

lar R11, R12

x86-64 instruction
made by AsFuzzer.

4d 0f 02 dc lar R11,R12W

Assembled machine instruction.

45 0f 02 dc lar R11D,R12W

Assembled machine instruction.

GAS,
ICC

Clang, MASM

Figure 6: (Case 1) Previously unseen bugs found byAsFuzzer.

All four assemblers accept the wrong instruction.

dsb [R3, #1]

AArch64 instruction
made by AsFuzzer.

Accepts, but produces nothing.

Rejected

Clang

GAS

Figure 7: (Case 2) Previously unseen bug found by AsFuzzer.

Clang accepts the wrong instruction, and then produces noth-

ing, while GAS simply rejects it.

code for it. So it will silently ignore the given instruction. On the
other hand, GAS rejects such an instruction with an error message.
Note that this is a subtle bug that cannot be found by existing tools
because it is unlikely that an assembly language model will contain
such an invalid instruction.

5 Related Work

Compiler Testing. Existing compiler testing approaches can be
categorized into two classes: differential testing and metamorphic
testing. Differential testing approaches compare the outputs of two
or more compilers (with varying compiler versions and options) [38,
41, 49, 52, 55, 59, 60]. Metamorphic testing approaches generate
two semantically equivalent programs and compile them with a
single compiler to compare the outputs [13, 37, 56]. Ours follows
the differential testing approach but we exclusively focus on testing
the assembler of a compiler pipeline, which has not been studied
in previous work.

To the best of our knowledge, there is only one prior work that
tests assemblers directly [16], which suggests a metamorphic test-
ing approach. However, their approach is specific to IBM’s HLASM
assembly language, and their main focus is not on assembly instruc-
tion generation. Hence, their approach is orthogonal to ours.

Assembly Synthesis. There has been a line of work on synthe-
sizing assembly programs from a given specification. McSynth [53]
employs a counter-example-guided interactive synthesis technique
to automatically synthesize assembly instructions from a semantic
specification. Assuage [22] is an interactive system to help users
synthesize assembly programs from a given specification. However,
these approaches require a specification of the desired assembly lan-
guage unlike ours. Moreover, they cannot produce implementation-
specific assembly constructs, making them less effective in finding
bugs from assemblers.

Emulator and CPU Testing. Since emulators and CPUs take
machine instructions as input, testing them is closely related to
testing assemblers. EmuFuzzer [46] presents a differential testing
approach for finding bugs in CPU emulators. The idea is to compare



AsFuzzer: Differential Testing of Assemblers with Error-Driven Grammar Inference ISSTA ’24, September 16–20, 2024, Vienna, Austria

the states of a physical CPU and a CPU emulator before and after
executing the same instructions. Several follow-up works [27, 45]
explore similar ideas to find emulator bugs but we cannot directly
apply these ideas to our problem since they directly produce ma-
chine instructions as outputs but not assembly programs. One ex-
ception is KEmuFuzzer [47], which generates assembly programs
based on assembly templates but the templates are not publicly
available. MeanDiff [32] tests binary lifters with a symbolic dif-
ferential testing approach, which is closely related to emulator
testing as a binary lifter is a core component of an emulator, such
as QEMU [8]. However, it also generates machine instructions as
a test case, and thus cannot be directly applied to our problem.
Similarly, recent CPU fuzzers [9, 23, 28, 29, 34] discover bugs in
RTL implementations of CPUs by generating machine instructions.
While DifuzzRTL [23] and TheHuzz [29] generate their test cases
in the form of assembly programs, they do not consider assembler-
specific grammars, making it less effective in finding bugs from
assemblers as discussed in §2.2

Grammar Inference. There have been numerous input gram-
mar inference approaches. AUTOGRAM [21] infers a context-free
grammar of a program by observing the data flow of each input
character at runtime. REINAM [58] symbolically executes the target
program to generate seed inputs, and then infers a probabilistic
context-free grammar using these inputs. Mimid [15] recovers parse
trees by observing dynamic control flows. As these approaches re-
quire source code to operate, one cannot use them to infer grammars
from commercial assemblers, such as MASM.

On the other hand, there have been black-box approaches [7, 33]
that do not require source-level instrumentation. Glade [7] con-
siders a program as an oracle and gradually infers a context-free
grammar by observing the behavior of the program given exam-
ple seed inputs. While this approach is directly applicable to our
problem, by replacing our Inferrer module, it suffers from a high
computation complexity of 𝑂 (𝑛4), where 𝑛 is the total length of
the initial seed inputs. Arvada [33] builds a maximally generalized
grammar from the given set of inputs which are accepted by the
target program. While it shows performance improvement com-
pared to Glade, the complexity of GetBubbles is still𝑂 (𝑛4), which
makes directly applying Arvada to assembly grammar inference
impractical. On the other hand, our algorithm utilizes useful in-
formation from assembler error messages, enabling significantly
faster assembly grammar inference.

Unlike the aforementioned grammar inference approaches de-
signed for context-free grammar, there are also regular language
inference works [4, 25, 50]. L∗ [4] and TTT [25] infer regular lan-
guage with two kinds of oracles: membership and equivalence
oracles, but obtaining equivalence oracles in practice is challenging.
Instead of equivalence oracles, we can employ stochastic equiva-
lence testing as described by Angluin [5]. However, as discussed in
§4.2, we observed that such a stochastic approach suffers in learning
assembly grammars, particularly when the valid instruction formats
are sparse within the entire set of possible operand combinations.
On the other hand, RPNI [50] algorithm utilizes both positive and
negative examples to infer regular languages. Nonetheless, it also
has a strong assumption of acquiring negative examples [54].

6 Discussion

Recall from §3.2.2, AsFuzzer leverages predefined operand types
to reduce its search space by considering only one operand in-
stance per type. However, this approach may miss some syntaxes
that require specific operand instances. For example, there are
some assembly instructions that only accept a specific register as
an operand: when shl on x86-64 takes two operands, the second
operand should always be the cl register. If we simply consider
a random register as the second operand, we may miss this par-
ticular syntax, and hence, we may miss some bugs. Extending our
approach to consider such cases is a promising future work.

Currently, we construct sets of predefined operand types for
each architecture by manually inspecting the architecture refer-
ence manuals. Although this is a one-time cost, it is still a tedious
and error-prone process. Fully automating this process is indeed a
promising future work.

We argue that assembler-specific grammar inference is essential
for finding assembler bugs. One may be able to extract a complete
grammar from instruction manuals, but it does not reflect the actual
grammar implemented by each assembler. As our experimental
results in §4.3 show, relying solely on grammars can significantly
limit the coverage of assembler fuzzing. Nevertheless, we believe
one can leverage available grammars for identifying unrecognized
assembly syntaxes that AsFuzzer may miss.

We use a reference disassembler, i.e., objdump, in many parts
of our system, including the pseudo instruction filtering (§3.2.3),
the differential testing (§3.3.1), and the inconsistency checking part
(§3.3.2). All these steps assume that our disassembler is correct, but
it is not always true. When the disassembler is buggy, our analysis
may produce both false positives and false negatives. One may
leverage multiple disassemblers to mitigate this problem, but it is
beyond the scope of this paper.

7 Conclusion

In this paper, we introduced AsFuzzer, a tool for finding bugs
in assemblers. AsFuzzer first infers assembler-specific grammars
from the assemblers under test with a novel error-message-driven
approach. Our grammar inference algorithm does not require any
heavy-cost analysis, and significantly reduces the search space com-
pared to the previous black-box approaches. AsFuzzer successfully
inferred grammars from four popular assemblers, including two
proprietary assemblers ICC and MASM. With the inferred gram-
mars, AsFuzzer successfully found 497 previously unknown bugs
from the four assemblers: 142, 61, 210, and 84 bugs from Clang, GAS,
ICC, and MASM, respectively. We reported them to the developers.

Data Availability

Our tool is available at https://github.com/SoftSec-KAIST/AsFuzzer
or via Zenodo [30].

Acknowledgements

We thank anonymous reviewers for their invaluable feedback. This
work was supported by Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) (No.2021-0-01332, Developing Next-Generation
Binary Decompiler).

https://github.com/SoftSec-KAIST/AsFuzzer


ISSTA ’24, September 16–20, 2024, Vienna, Austria Hyungseok Kim, Soomin Kim, Jungwoo Lee, and Sang Kil Cha

References

[1] 2024. ANTLR MASM Grammar. https://github.com/antlr/grammars-v4/tree/
master/asm/masm.

[2] 2024. ANTLR RISCV Assembler Grammar. https://github.com/antlr/grammars-
v4/tree/master/asm/asmRISCV.

[3] Rui Abreu, Peter Zoeteweij, and Arjan J.C. van Gemund. 2009. Spectrum-Based
Multiple Fault Localization. In Proceedings of the International Conference on
Automated Software Engineering. 88–99. https://doi.org/10.1109/ASE.2009.25

[4] Dana Angluin. 1987. Learning regular sets from queries and counterexamples.
Information and computation 75, 2 (1987), 87–106. https://doi.org/10.1016/0890-
5401(87)90052-6

[5] Dana Angluin. 1988. Queries and concept learning. Machine learning 2 (1988),
319–342. https://doi.org/10.1007/bf00116828

[6] ARM. 2018. ARM® Architecture Reference Manual. https://developer.arm.com/
documentation/ddi0406/latest/.

[7] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. 2017. Synthesizing
Program Input Grammars. In Proceedings of the ACM Conference on Programming
Language Design and Implementation. 95–110. https://doi.org/10.1145/3062341.
3062349

[8] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In Pro-
ceedings of the USENIX Annual Technical Conference. 41–46.

[9] Chen Chen, Rahul Kande, Nathan Nguyen, Flemming Andersen, Aakash Tyagi,
Ahmad-Reza Sadeghi, and Jeyavijayan Rajendran. 2023. HyPFuzz: Formal-
Assisted Processor Fuzzing. In Proceedings of the USENIX Security Symposium.
1361–1378.

[10] Junjie Chen, Jiaqi Han, Peiyi Sun, Lingming Zhang, Dan Hao, and Lu Zhang.
2019. Compiler Bug Isolation via Effective Witness Test Program Generation. In
Proceedings of the International Symposium on Foundations of Software Engineering.
223–234. https://doi.org/10.1145/3338906.3338957

[11] Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang,
and Bing Xie. 2016. An Empirical Comparison of Compiler Testing Techniques.
In Proceedings of the International Conference on Software Engineering. 180–190.
https://doi.org/10.1145/2884781.2884878

[12] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan
Hao, and Lu Zhang. 2020. A Survey of Compiler Testing. Comput. Surveys 53, 1
(2020), 1–36. https://doi.org/10.1145/3363562

[13] Alastair F. Donaldson andAndrei Lascu. 2016. Metamorphic Testing for (Graphics)
Compilers. In Proceedings of the International Workshop on Metamorphic Testing.
44–47. https://doi.org/10.1145/2896971.2896978

[14] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. 2008. Grammar-based
Whitebox Fuzzing. In Proceedings of the ACM Conference on Programming Lan-
guage Design and Implementation. 206–215.

[15] Rahul Gopinath, Björn Mathis, and Andreas Zeller. 2020. Mining Input Grammars
from Dynamic Control Flow. In Proceedings of the International Symposium on
Foundations of Software Engineering. 172–183.

[16] Aynel Gül and Vadim Zaytsev. 2019. Mutative Fuzzing for an Assembler Compiler.
In Proceedings of the Belgium-Netherlands Software Evolution Workshop.

[17] Chris Hawblitzel, Shuvendu K. Lahiri, Kshama Pawar, Hammad Hashmi, Sedar
Gokbulut, Lakshan Fernando, Dave Detlefs, and Scott Wadsworth. 2013. Will
You Still Compile Me Tomorrow? Static Cross-Version Compiler Validation. In
Proceedings of the International Symposium on Foundations of Software Engineering.
191–201. https://doi.org/10.1145/2491411.2491442

[18] Renáta Hodován, Ákos Kiss, and Tibor Gyimóthy. 2018. Grammarinator: a
Grammar-based Open Source Fuzzer. In Proceedings of the 9th SIGSOFT Inter-
national Workshop on Automating TEST Case Design, Selection, and Evaluation.
45–48. https://doi.org/10.1145/3278186.3278193

[19] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with Code
Fragments. In Proceedings of the USENIX Security Symposium. 445–458.

[20] Josie Holmes and Alex Groce. 2018. Causal Distance-Metric-Based Assistance
for Debugging after Compiler Fuzzing. In Proceedings of the IEEE International
Symposium on Software Reliability Engineering. 166–177. https://doi.org/10.1109/
ISSRE.2018.00027

[21] Matthias Höschele and Andreas Zeller. 2016. Mining Input Grammars from
Dynamic Taints. In Proceedings of the International Conference on Automated
Software Engineering. 720–725.

[22] Jingmei Hu, Priyan Vaithilingam, Stephen Chong, Margo Seltzer, and Elena L.
Glassman. 2021. Assuage: Assembly Synthesis Using A Guided Exploration.
In Proceedings of the Annual ACM Symposium on User Interface Software and
Technology. 134–148. https://doi.org/10.1145/3472749.3474740

[23] Jaewon Hur, Suhwan Song, Dongup Kwon, Eunjin Baek, Jangwoo Kim, and
Byoungyoung Lee. 2021. DifuzzRTL: Differential Fuzz Testing to Find CPU
Bugs. In Proceedings of the IEEE Symposium on Security and Privacy. 1286–1303.
https://doi.org/10.1109/SP40001.2021.00103

[24] Intel Corporation. [n. d.]. Intel® 64 and IA-32 Architectures Software Developer’s
Manual. https://software.intel.com/en-us/articles/intel-sdm.

[25] Malte Isberner, Falk Howar, and Bernhard Steffen. 2014. The TTT algorithm: a
redundancy-free approach to active automata learning. In Runtime Verification,

Lecture Notes in Computer Science, Vol. 96. Elsevier, Amsterdam, Netherlands,
307–322. https://doi.org/10.1007/978-3-319-11164-3_26

[26] Malte Isberner, Falk Howar, and Bernhard Steffen. 2015. The Open-source Learn-
Lib: A Framework for Active Automata Learning. In Computer Aided Verification.
Springer, San Francisco, CA, USA, 487–495. https://doi.org/10.1007/978-3-319-
21690-4_32

[27] Muhui Jiang, Tianyi Xu, Yajin Zhou, Yufeng Hu, Ming Zhong, Lei Wu, Xiapu
Luo, and Kui Ren. 2022. Examiner: Automatically Locating Inconsistent Instruc-
tions between Real Devices and CPU Emulators for ARM. In Proceedings of the
International Conference on Architectural Support for Programming Languages and
Operating Systems. 846–858. https://doi.org/10.1145/3503222.3507736

[28] Nursultan Kabylkas, Tommy Thorn, Shreesha Srinath, Polychronis Xekalakis, and
Jose Renau. 2021. Effective Processor Verification with Logic Fuzzer Enhanced
Co-Simulation. In Proceedings of the Annual IEEE/ACM International Symposium
on Microarchitecture. 667–678. https://doi.org/10.1145/3466752.3480092

[29] Rahul Kande, Addison Crump, Garrett Persyn, Patrick Jauernig, Ahmad-Reza
Sadeghi, Aakash Tyagi, and Jeyavijayan Rajendran. 2022. TheHuzz: Instruction
Fuzzing of Processors Using Golden-Reference Models for Finding Software-
Exploitable Vulnerabilities. In Proceedings of the USENIX Security Symposium.
3219–3236.

[30] Hyungseok Kim, Soomin Kim, Jungwoo Lee, and Sang Kil Cha. 2024. Artifact
for "AsFuzzer: Differential Testing of Assemblers with Error-Driven Grammar
Inference". https://doi.org/10.5281/zenodo.12786604.

[31] Hyungseok Kim, Soomin Kim, Junoh Lee, Kangkook Jee, and Sang Kil Cha. 2023.
Reassembly is Hard: A Reflection on Challenges and Strategies. In Proceedings of
the USENIX Security Symposium. 1469–1486.

[32] Soomin Kim, Markus Faerevaag, Minkyu Jung, Seungil Jung, DongYeop Oh,
JongHyup Lee, and Sang Kil Cha. 2017. Testing Intermediate Representations
for Binary Analysis. In Proceedings of the International Conference on Automated
Software Engineering. 353–364. https://doi.org/10.1109/ASE.2017.8115648

[33] Neil Kulkarni, Caroline Lemieux, and Koushik Sen. 2021. Learning highly recur-
sive input grammars. In Proceedings of the International Conference on Automated
Software Engineering. 456–467. https://doi.org/10.1109/ase51524.2021.9678879

[34] Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan Bachrach, and Koushik Sen.
2018. RFUZZ: Coverage-Directed Fuzz Testing of RTL on FPGAs. In Proceedings
of the International Conference on Computer-Aided Design. https://doi.org/10.
1145/3240765.3240842

[35] Chris Lattner. 2010. Intro to the LLVM MC Project. https://blog.llvm.org/2010/
04/intro-to-llvm-mc-project.html.

[36] Chris Lattner. 2024. ANTLR v4. https://github.com/antlr/antlr4.
[37] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler Validation via

Equivalence Modulo Inputs. ACM SIGPLAN Notices 49, 6 (june 2014), 216–226.
https://doi.org/10.1145/2594291.2594334

[38] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Randomized Stress-Testing of
Link-Time Optimizers. In Proceedings of the International Symposium on Software
Testing and Analysis. 327–337. https://doi.org/10.1145/2771783.2771785

[39] Xuan-Bach D. Le, Corina Pasareanu, Rohan Padhye, David Lo, Willem Visser,
and Koushik Sen. 2019. Saffron: Adaptive Grammar-Based Fuzzing for Worst-
Case Analysis. ACM SIGSOFT Software Engineering Notes 44, 4 (2019). https:
//doi.org/10.1145/3364452.3364455

[40] Suyoung Lee, HyungSeok Han, Sang Kil Cha, and Sooel Son. 2020. Montage: A
Neural Network Language Model-Guided JavaScript Fuzzer. In Proceedings of the
USENIX Security Symposium. 2613–2630.

[41] Shaohua Li and Zhendong Su. 2023. Finding Unstable Code via Compiler-Driven
Differential Testing. In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems. 238–251. https:
//doi.org/10.1145/3582016.3582053

[42] Xiao Liu, Xiaoting Li, Rupesh Prajapati, and Dinghao Wu. 2019. DeepFuzz:
Automatic Generation of Syntax Valid C Programs for Fuzz Testing. In Proceedings
of the AAAI Conference on Artificial Intelligence. 1044–1051. https://doi.org/10.
1609/aaai.v33i01.33011044

[43] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random Testing
for C and C++ Compilers with YARPGen. In Proceedings of the ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages &
Applications. 196:1–196:25. https://doi.org/10.1145/3428264

[44] Valentin J. M. Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J. Schwartz, and Maverick Woo. 2021. The Art, Science, and
Engineering of Fuzzing: A Survey. IEEE Transactions on Software Engineering 47,
11 (2021), 2312–2331. https://doi.org/10.1109/TSE.2019.2946563

[45] Lorenzo Martignoni, Stephen McCamant, Pongsin Poosankam, Dawn Song, and
Petros Maniatis. 2012. Path-Exploration Lifting: Hi-Fi Tests for Lo-Fi Emula-
tors. In Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems. 337–348.

[46] Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and Danilo Bruschi.
2009. Testing CPU Emulators. In Proceedings of the International Symposium on
Software Testing and Analysis. 261–272. https://doi.org/10.1145/1572272.1572303

[47] Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and Danilo Br-
uschi. 2010. Testing System Virtual Machines. In Proceedings of the International

https://github.com/antlr/grammars-v4/tree/master/asm/masm
https://github.com/antlr/grammars-v4/tree/master/asm/masm
https://github.com/antlr/grammars-v4/tree/master/asm/asmRISCV
https://github.com/antlr/grammars-v4/tree/master/asm/asmRISCV
https://doi.org/10.1109/ASE.2009.25
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/bf00116828
https://developer.arm.com/documentation/ddi0406/latest/
https://developer.arm.com/documentation/ddi0406/latest/
https://doi.org/10.1145/3062341.3062349
https://doi.org/10.1145/3062341.3062349
https://doi.org/10.1145/3338906.3338957
https://doi.org/10.1145/2884781.2884878
https://doi.org/10.1145/3363562
https://doi.org/10.1145/2896971.2896978
https://doi.org/10.1145/2491411.2491442
https://doi.org/10.1145/3278186.3278193
https://doi.org/10.1109/ISSRE.2018.00027
https://doi.org/10.1109/ISSRE.2018.00027
https://doi.org/10.1145/3472749.3474740
https://doi.org/10.1109/SP40001.2021.00103
https://software.intel.com/en-us/articles/intel-sdm
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1145/3503222.3507736
https://doi.org/10.1145/3466752.3480092
https://doi.org/10.5281/zenodo.12786604
https://doi.org/10.1109/ASE.2017.8115648
https://doi.org/10.1109/ase51524.2021.9678879
https://doi.org/10.1145/3240765.3240842
https://doi.org/10.1145/3240765.3240842
https://blog.llvm.org/2010/04/intro-to-llvm-mc-project.html
https://blog.llvm.org/2010/04/intro-to-llvm-mc-project.html
https://github.com/antlr/antlr4
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2771783.2771785
https://doi.org/10.1145/3364452.3364455
https://doi.org/10.1145/3364452.3364455
https://doi.org/10.1145/3582016.3582053
https://doi.org/10.1145/3582016.3582053
https://doi.org/10.1609/aaai.v33i01.33011044
https://doi.org/10.1609/aaai.v33i01.33011044
https://doi.org/10.1145/3428264
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1145/1572272.1572303


AsFuzzer: Differential Testing of Assemblers with Error-Driven Grammar Inference ISSTA ’24, September 16–20, 2024, Vienna, Austria

Symposium on Software Testing and Analysis. 171–182. https://doi.org/10.1145/
1831708.1831730

[48] William M. McKeeman. 1998. Differential Testing for Software. Digital Technical
Journal 10, 1 (1998), 100–107.

[49] Robin Morisset, Pankaj Pawan, and Francesco Zappa Nardelli. 2013. Compiler
Testing via a Theory of Sound Optimisations in the C11/C++11 Memory Model.
In Proceedings of the ACM Conference on Programming Language Design and
Implementation. 187–196. https://doi.org/10.1145/2491956.2491967

[50] José Oncina and Pedro Garcia. 1993. Identifying regular languages in polynomial
time. In Advances In Structural And Syntactic Pattern Recognition. 99–108. https:
//doi.org/10.1142/9789812797919_0007

[51] Roberto Paleari, Lorenzo Martignoni, Giampaolo Fresi Roglia, and Danilo Bruschi.
2010. N-version Disassembly: Differential Testing of x86 Disassemblers. In
Proceedings of the International Symposium on Software Testing and Analysis.
265–274.

[52] Flash Sheridan. 2007. Practical Testing of a C99 Compiler Using Output Compar-
ison. Softw. Pract. Exper. 37, 14 (nov 2007), 1475–1488. https://doi.org/10.1002/
spe.812

[53] Venkatesh Srinivasan and Thomas Reps. 2015. Synthesis of Machine Code from
Semantics. In Proceedings of the ACM Conference on Programming Language
Design and Implementation. 596–607. https://doi.org/10.1145/2737924.2737960

[54] Andrew Stevenson and James R. Cordy. 2014. A survey of grammatical inference
in software engineering. Science of Computer Programming 96 (2014), 444–459.

https://doi.org/10.1016/j.scico.2014.05.008
[55] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding and Analyzing Com-

piler Warning Defects. In Proceedings of the International Conference on Software
Engineering. 203–213. https://doi.org/10.1145/2884781.2884879

[56] Qiuming Tao, Wei Wu, Chen Zhao, and Wuwei Shen. 2010. An Automatic
Testing Approach for Compiler Based on Metamorphic Testing Technique. In
Proceedings of the Asia Pacific Software Engineering Conference. 270–279. https:
//doi.org/10.1109/APSEC.2010.39

[57] Leslie G Valiant. 1984. A theory of the learnable. Commun. ACM 27, 11 (1984),
1134–1142. https://doi.org/10.1145/1968.1972

[58] Zhengkai Wu, Evan Johnson, Wei Yang, Osbert Bastani, Dawn Song, Jian Peng,
and Tao Xie. 2019. REINAM: Reinforcement Learning for Input-Grammar Infer-
ence. In Proceedings of the International Symposium on Foundations of Software
Engineering. 488–498. https://doi.org/10.1145/3338906.3338958

[59] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Under-
standing Bugs in C Compilers. In Proceedings of the ACM Conference on Program-
ming Language Design and Implementation. 283–294.

[60] Qirun Zhang, Chengnian Sun, and Zhendong Su. 2017. Skeletal Program Enu-
meration for Rigorous Compiler Testing. In Proceedings of the ACM Confer-
ence on Programming Language Design and Implementation. 347–361. https:
//doi.org/10.1145/3062341.3062379

Received 2024-04-12; accepted 2024-07-03

https://doi.org/10.1145/1831708.1831730
https://doi.org/10.1145/1831708.1831730
https://doi.org/10.1145/2491956.2491967
https://doi.org/10.1142/9789812797919_0007
https://doi.org/10.1142/9789812797919_0007
https://doi.org/10.1002/spe.812
https://doi.org/10.1002/spe.812
https://doi.org/10.1145/2737924.2737960
https://doi.org/10.1016/j.scico.2014.05.008
https://doi.org/10.1145/2884781.2884879
https://doi.org/10.1109/APSEC.2010.39
https://doi.org/10.1109/APSEC.2010.39
https://doi.org/10.1145/1968.1972
https://doi.org/10.1145/3338906.3338958
https://doi.org/10.1145/3062341.3062379
https://doi.org/10.1145/3062341.3062379

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Generating Assembly Code
	2.2 Motivating Example

	3 AsFuzzer Design
	3.1 Overview
	3.2 Inferrer Module
	3.3 Fuzzer Module
	3.4 Implementation

	4 Evaluation
	4.1 Experimental Setup
	4.2 Effectiveness of Inferrer
	4.3 Comparing Test Case Generation Capability
	4.4 Bug Finding
	4.5 Case Study

	5 Related Work
	6 Discussion
	7 Conclusion
	References

