Towards Sound Reassembly of Modern x86-64 Binaries

Hyungseok Kim
The Affiliated Institute of ETRI
Daejeon, Korea
hskim@nsr.re.kr

Abstract

Reassembly is a promising approach to transparently rewrite
binaries without source code. However, sound symbolization
remains an open problem as it requires precise identification
of all memory references in the binary. In this paper, we
systematically study the requirements for sound reassembly
of modern x86-64 binaries, and present a novel approach
to reassembly that symbolizes all memory references with-
out affecting the original semantics. The key insights are
twofold: (1) we find that Control-flow Enhancement Tech-
nology (CET), which has increasingly become the default
setting for major Linux distributions, adds a unique property
to binaries that can be leveraged to precisely symbolize dy-
namically computed pointers, and (2) we consider a superset
of all possible memory references for symbolization by over-
approximating indirect branch targets. With these insights,
we design and implement a novel reassembler, named SURJ,
and show its effectiveness on 9,600 real-world binaries.

CCS Concepts: » Software and its engineering — Soft-
ware reverse engineering; « Security and privacy —
Software reverse engineering.

Keywords: reassembly; binary rewriting; reverse engineer-
ing; binary hardening; binary analysis; superset CFG

ACM Reference Format:

Hyungseok Kim, Soomin Kim, and Sang Kil Cha. 2025. Towards
Sound Reassembly of Modern x86-64 Binaries. In Proceedings of
the 30th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2 (ASPLOS
’25), March 30-April 3, 2025, Rotterdam, Netherlands. ACM, New York,
NY, USA, 17 pages. https://doi.org/10.1145/3676641.3716026

1 Introduction

Binary rewriting is essential for enhancing the security of
Commercial-Off-The-Shelf (COTS) applications where source
code is unavailable. Unlike dynamic binary instrumentation
approaches [6, 9, 9, 31, 35, 37], binary rewriting is a static
approach that modifies the binary code before execution,
causing negligible runtime overhead compared to dynamic

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ASPLOS ’25, Rotterdam, Netherlands

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1079-7/2025/03
https://doi.org/10.1145/3676641.3716026

Soomin Kim
KAIST
Daejeon, Korea
soomink@kaist.ac.kr

Sang Kil Cha
KAIST
Daejeon, Korea
sangkilc@kaist.ac.kr

approaches. Therefore, it is desirable for security applica-
tions that require high performance, such as Control-Flow
Integrity (CFI) [1, 20, 55, 57].

Reassembly [22, 47, 48, 52] is a promising approach to
binary rewriting where the binary code is transformed into
relocatable assembly code, allowing effortless addition of
instrumentation and patching. Since it does not require any
runtime support, such as table lookups [5, 42, 51, 56] and
detouring [8, 15, 18, 24, 29] it can achieve significantly better
performance than other binary rewriting techniques.

Unfortunately, reassembly has never been a solved prob-
lem [26]. The main difficulty lies in identifying and trans-
lating numbers into symbolic labels, which is often referred
to as a symbolization process. For example, given an x86-64
instruction push 0x12345678, one should be able to decide
whether the immediate is an address or a simple literal, and
transform it into a symbolic label if it is an address in order
to make the disassembled code relocatable.

Recent studies [17, 46, 52] have shown potential for sound
reassembly when the target binary is a Position-Independent
Executable (PIE). Indeed, one can easily distinguish an ad-
dress from a numeral in a PIE binary as every absolute ad-
dress is tagged with relocation information, which is used
by the loader to relocate the binary at runtime.

However, sound symbolization (and, thus, sound reassem-
bly) is still far from being solved even for PIE binaries as
noted by Kim et al. [26], although previous studies inac-
curately claim the soundness of their tools [17, 46]. The
key challenge is that compilers often use complex symbolic
expressions to represent addresses, which are inherently
difficult to correctly symbolize. For instance, a PC-relative
operand is often represented as a combination of a label and
a numeral, e.g., “RIP + label; + 0x42” but the operand
will contain only a single numeral after compilation, e.g.,
RIP + @x10042, which could potentially be misinterpreted
as an address of another data or code block.

In this paper, we subdivide the types of symbolic labels
identified by Kim et al. [26] into seven categories by solely
focusing on x86-64 binaries. We then analyze how exist-
ing symbolization techniques address each category of sym-
bolic labels, or fail to do so. Next, we identify two remaining
(and less explored) challenges that need to be addressed for
sound reassembly: (1) reliable identification of dynamically
computed pointers, and (2) complete recovery of indirect
branches. Consequently, we present novel and practical so-
lutions to handle both challenges.

https://orcid.org/0009-0008-2158-9367
https://orcid.org/0000-0003-3129-3857
https://orcid.org/0000-0002-6012-7228
https://doi.org/10.1145/3676641.3716026
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3676641.3716026

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Our approach is based on the following two observations.
First, modern Intel binaries, where Control-flow Enforce-
ment Technology (CET) is enabled, have unique code pat-
terns that help symbolize dynamically computed pointers,
which are otherwise difficult. Note that Intel introduced CET
in 2016 to mitigate control-flow hijack exploits at the hard-
ware level [44], and it has been officially supported since the
11th generation. Furthermore, most Linux distributions to-
day release their binaries by enabling both CET and PIE as we
show in §2.3. Second, we can fully recover nodes and edges
in a CFG by over-approximating possible indirect branch
targets of it, which we refer to as a superset CFG. Although a
superset CFG may contain bogus nodes and edges, we devise
anovel way to handle them without affecting the correctness
of the reassembled binary.

We design and implement Superset CFG-based Reliable
Instrumentation framework, named SURI, to demonstrate
the feasibility of sound reassembly for CET-enabled x86-64
PIE binaries. We evaluate SURI on the largest reassembly
benchmark to date, consisting of 9,600 real-world binaries,
and show that SURI can soundly reassemble all of them.
Furthermore, we show that the reassembled binaries incur
negligible overhead when compared to the original binaries
(0.2% on average). In summary, our contributions are:

e We systematically analyze the challenges in reassem-
bling CET-enabled x86-64 PIE binaries, and identify
the key requirements for sound reassembly.

e We propose a novel way to reliably symbolize pointers
by using the characteristics of CET-enabled binaries.

e We propose a novel disassembly technique that recur-
sively recovers instructions and constructs a superset
CFG that includes all possible indirect edges.

e We demonstrate SUR], a symbolization-based binary
rewriting framework that enables reliable instrumen-
tation of CET-enabled x86-64 binaries, and show that
the rewritten binaries run with negligible overhead.

e We publicize our framework to foster future research:
https://github.com/SoftSec-KAIST/SURI.

2 Background And Motivation

In this section, we start by defining our problem scope. We
then introduce Intel CET and discuss its prevalence. Next, we
describe how compilers generate symbolic labels for x86-64
PIE binaries, and discuss why recovering them is challenging.
Finally, we motivate our approach by presenting symboliza-
tion errors found in the SOTA reassemblers.

2.1 Problem Scope

We focus on reassembling binaries that are compiled from
C/C++/Fortran' source code but do not consider hand-written

ISPEC CPU2006 and SPEC CPU2017, which are two of the benchmarks we
used, contain programs written in Fortran.

Hyungseok Kim, Soomin Kim, & Sang Kil Cha

assembly code nor self-modifying binaries. That is, we as-
sume that our target programs only perform operations spec-
ified by the C/C++/Fortran language standard. For example,
we assume that one will not write a program that performs
unsafe function pointer arithmetic, which is undefined be-
havior according to the C standard. Finally, we only consider
CET-enabled x86-64 PIE binaries as our target, which are
prevalent in modern Linux distributions.

2.2 Intel CET

Intel Control-flow Enforcement Technology (CET) enforces
Control-Flow Integrity (CFI) at a hardware level. Specifically,
Intel CET includes two different memory protection mecha-
nisms, Shadow Stacks (SHSTK) and Indirect Branch Tracking
(IBT), to protect backward and forward indirect control flows,
respectively. First, SHSTK stores return addresses in a sep-
arate memory region, called the shadow stack, to protect
against stack smashing attacks. Second, IBT verifies that
every indirect branch jumps to a predefined valid location,
marked by so-called endbr instructions.

A recent study [27] showed that the use of endbr instruc-
tions in modern CET-enabled binaries has a significant impli-
cation for binary analysis, particularly for identifying func-
tion entry points. In this paper, we build upon this observa-
tion and propose a novel solution to address the symboliza-
tion challenges in CET-enabled binaries.

2.3 Prevalence of Intel CET-enabled Binaries

Linux distributions have been actively adopting Intel CET
to enhance the security of their systems. Particularly, Linux
enables IBT and SHSTK support since kernel v6.2 [32] and
v6.6 [40], respectively.

To assess the prevalence of Intel CET-enabled binaries in
Linux distributions, we examined popular Linux distribu-
tions, including Arch Linux 2024.05.01, CentOS 8, Fedora
40, and Ubuntu 24.04. We first checked what kind of de-
fault compilation flags are used for building packages in
each distribution. We found that all distributions have uti-
lized the -fcf-protection option for building their pack-
ages [3, 10, 21, 45], meaning that CET is enabled by default.

We also downloaded their official Docker images and
investigated executable binaries in /bin, /sbin, /usr/bin
and /usr/sbin. We observed that 99.9% of the binaries in
the Docker image contain IBT and SHSTK properties in the
.note.gnu.property section, indicating that they are in-
deed CET-enabled binaries. It is worth noting that there
were even more CET-enabled binaries than PIE-enabled bi-
naries; 99.7% of the binaries were both CET-enabled and
PIE-enabled. This observation suggests that our approach is
applicable to a wide range of modern Linux systems.

While CET is increasingly being adopted in Linux distri-
butions, it is not yet widely supported in other operating
systems, such as Windows and macOS. Therefore, our ap-
proach is mainly applicable to Linux systems at the moment.

https://github.com/SoftSec-KAIST/SURI

Towards Sound Reassembly of Modern x86-64 Binaries

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Table 1. Seven different types of symbolic labels appeared in x86-64 assembly code generated by compilers, their characteristics,
and the impact of suggested solutions. Solution (1) and (2) are existing ones, and (3) and (@) are proposed in this paper. () is
focusing on PIEs", (@) is fixing the layouts of data sections*, (3) is CET-based pointer repairing, and (@) is superset symbolization.

Impact of Solutions

g A
g .k { ©)
= &= T
= < Example Code
.) 5 S p
ID Representation Format Location Ptr. Type 4 ke (c:) (:D (¢ represents a label)
g ® ® ©
= Eg + + +
2 2l 0 0 ©
S1 (F1) Label Code/Data Code/Data X v v v v .quad ¢
S2 (F2) Label + Const. Code/Data Code/Data X X X v v .quad ¢ + 42
Absolute
S3 Address Code/Data Data X X v v v
(F3) Label — Label .long & — £,
S4 Data Code X X X X v
S5 (F1) Label Code Code v v v v v jmp ¢
s6 Rgg;ze (F4) RIP + Label Code Code/Data v ooV v v lea RBX, [RIP + ¢]
S7 (F5) RIP + Label + Const. Code Code/Data X X X v v lea RAX, [RIP + ¢ + 42]

f (D is employed by RetroWrite [17], Egalito [52], and Verbeek et al. [46].

2.4 Symbolic Labels in Assembly

Symbolization is the process of recovering symbolic labels
from numeric values, which is the core step in reassembly-
based binary rewriting. To understand the challenges of sym-
bolization, we first categorize what kind of labels compilers
can generate, and how they are represented in assembly. Par-
ticularly, we divide symbolic labels into seven groups based
on (1) what they represent, (2) their corresponding assem-
bly expression format, (3) their location, and (4) the type of
pointer they are evaluated to. Table 1 summarizes the seven
categories of symbolic labels that compilers can generate for
x86-64 binaries, which are denoted as S1 to S7 in the first
column. Our categorization is based on the previous work
by Kim et al. [26], but we further refine it by considering
expression formats and pointer types. Specifically, Type I,
Type 11, and Type IV in [26] correspond to S1, S2, and S7,
respectively. Type IIl is divided into S5 and S6, and Type VII
is divided into 83 and S4. We exclude Type V and Type VI,
as they are not relevant to x64 binaries.

2.4.1 Representation. Compilers generate symbolic la-
bels to represent two kinds of values: absolute addresses
and relative offsets. The second column of Table 1 makes
a distinction between them. Absolute addresses are a plain
pointer to a memory location. They typically point to a global
variable or a function. Relative offsets are a relative distance
from a base address. They are only meaningful when they
are added to a base address. Note that we group S3 and S4
in the absolute address category as each label represents an

*(2) is employed by Uroboros [48] and Egalito [52].

absolute address, although the aggregated expression means
a relative offset.

2.4.2 Assembly Expression Format. In x86-64 assembly,
symbolic labels can appear in five different expression for-
mats, denoted as F1-F5 in the third column of Table 1. F1
and F4 are a plain label that represents either an absolute
address or a relative offset. The rest (F2, F3, and F5) are com-
posite expressions that are composed of a label and other
expression(s). Composite expressions are the main source
of symbolization errors, as Kim et al. [26] showed. The last
column of the table presents an example assembly for each
format.

2.4.3 Location of Symbolic Labels. Symbolic labels can
appear either in code or data sections. The third column of
Table 1 denotes in which section each kind of symbolic label
can appear. For brevity, we merge some of the categories by
denoting them as “Code/Data” in the table as they share the
same characteristics. For example, S1 represents a plain label
located in either a code or data section.

$4 can only be generated by compilers because high-level
language standards (i.e., C, C++, and Fortran) do not define
the behavior of adding or subtracting code pointers. We find
that $4 can only appear in a data section to represent an array
of compiler-generated offsets, such as jump tables, for x86-64
binaries. S5 can only appear through a branch instruction,
e.g., jmp Label, hence, it should be in a code section.

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

; .section .text
0x01414b9: lea RAX, [RIP+0x64b08] # 0x1a5fc8

; .section .data.rel.ro.local
0x01a5e40: 0766 0300 0000 0000 # var

; .section .fini_array

0x01a5fc8: 0635 1100 0000 0000 # var+392

Figure 1. Example taken from addr21line, Binutils.

2.4.4 Pointer Type. Symbolic labels, regardless of whether
they represent absolute addresses or relative offsets, are even-
tually evaluated to a pointer of code or data. The fifth column
of Table 1 presents what is the ultimate target of each kind of
symbolic expressions when they are evaluated to a pointer.
For example, consider an x86-64 instruction “lea RAX, [RIP
+ 0x41]” that loads a function pointer into the RAX register.
As the memory expression “[RIP + 0x41]” will be evaluated
to a code pointer, its pointer type is “Code”.

2.5 Symbolization Challenges and Solutions

Each kind of symbolic labels (S1-S7) has its own challenges
in terms of symbolization. Previous works [17, 46, 48, 52]
have proposed two major solutions (1) and (2)) to address the
symbolization challenges. The “Impact of Solutions” columns
of Table 1 present how each solution addresses the challenges.
The “Without Solution” column shows which symbolic la-
bels need no special treatment of existing solutions. Indeed,
relative branch targets and plain RIP-relative addresses are
readily available by disassembling the binary (S5 and $6). We
include them in the table only for the sake of completeness.

2.5.1 Focusing on PIEs (Solution (1)). RetroWrite [17],
Egalito [52], as well as Verbeek et al. [46], shift their focus
to PIE binaries to ease the symbolization problem. Since
absolute addresses in PIE binaries need to be relocated at
load time, compilers always generate relocation information
for them. This means one can easily distinguish between ad-
dresses and numerals by checking the existence of relocation
information; thus, handling S1 becomes trivial. Neverthe-
less, correctly recovering composite symbolic expressions is
challenging even for PIE binaries, as the seventh column of
Table 1 indicates.

2.5.2 Fixing the Layouts of Data Sections (Solution
(). Handling composite symbolic expressions, which in-
volve arithmetic operations on symbolic labels, is the biggest
hurdle in symbolization. Unfortunately, compilers often gen-
erate composite expressions to optimize data access. For
example, a composite expression of the form “Label + 0x42”
enables direct access without having to load the base address
into a register and add the offset to it.

However, composite expressions can represent a tempo-
rary (and potentially invalid) pointer that is later used to form
a final (and valid) pointer. Such a temporary pointer may
not point to a valid memory location because the compiler

Hyungseok Kim, Soomin Kim, & Sang Kil Cha

; .section .text
0x0001320: endbré64

0x00064f1: lea RDI, [RIP+Oxffffffffffffe918]# 0x01320

0x000c9dd: lea R9, [RIP+@x4a74] # 0x11458

0x000c9ea: subsd XMMO, QWORD PTR [R9+RCXx1]

0x0011458: mov EAX, DWORD PTR [RSP+@x4c] # var-142600

; .section .bss
0x0034160: 0000 0000 0000 0000 # var

Figure 2. Example taken from 434 . zeusmp, a SPEC CPU2006
binary, where a temporary pointer is pointing to an instruc-
tion in the middle of a function.

generates it temporarily, just to be able to dynamically com-
pute the final pointer. For example, it may point to another
section, in which case symbolizing the temporary pointer
can lead to a runtime error.

Figure 1 illustrates such a case. The memory operand of the
lea instruction points to an element of the . fini_array sec-
tion, but the original symbolic expression from the compiler-
generated assembly code is [RIP + var + 3921, where var
is a variable defined in the .data.rel.ro.local section. If
areassembler puts a label ¢ at the address 0x1a5fc8 and sym-
bolizes the operand to be [RIP + £], then the final pointer
derived from this expression will become invalid depending
on the relative distance between the two sections.

To mitigate this problem, Uroboros [48] and Egalito [52]
lock the layouts of data sections in the rewritten binary,
assuming that data modification is not allowed. With this so-
lution, we can guarantee the validity of the final pointer even
though reassemblers incorrectly symbolize the temporary
pointer to [RIP + ¢] because relative distances between
data sections are always preserved. However, this solution
fails when a data pointer points to a code section or vice
versa. Furthermore, we cannot simply fix the layout of the
code section as it would prevent instrumenting the code,
which suggests the need for solution (3) (§2.6.1).

2.6 Remaining Challenges and Our Solutions

The eighth column of Table 1 shows that the existing solu-
tions (D) and (2)) can only address a subset of the challenges.
There are three types (S2, S4, and S7) that have no sound
solution yet. Thus, we describe what are the remaining chal-
lenges, and then motivate our solutions (3) and (@).

2.6.1 CET-based Pointer Repairing (Solution (3)). Re-
call from §2.5.2, locking the layouts of data sections is in-
sufficient to handle cases where a temporary code pointer
is pointing to a data section, or a temporary data pointer is
pointing to a code section. Figure 2 illustrates such a case,
where R9 stores a temporary pointer, which will be eventu-
ally used to point to a global variable in the .bss section.

Towards Sound Reassembly of Modern x86-64 Binaries

; .section .text

0x012a71b: lea RDX, [RIP+0xc885e] # 0x1f2f80
0x012a722: movsxd RCX, DWORD PTR [RDX+RCX*4]
0x012a726: add RCX, RDX

0x012a729: notrack jmp RCX

; .section .rodata

0x01f2f80: ac77 f3ff # start of jump table

0x01f2fdo: a378 f3ff # end of jump table
0x01f2fd4: 25e7 fbff # var

Figure 3. Example taken from 600.perlbench_s, SPEC
CPU2017, showing the jump table symbolization challenge.

However, the temporary pointer is pointing to a valid instruc-
tion at @x11458 in the . text section, even though it is not
a function entry point. If we assign a label to 0x11458 and
symbolize the operand of the lea instruction at @xc9dd, then
R9 can have a wrong temporary value when the distance
between the two instructions changes via instrumentation.

To address the problem, we propose a novel solution that
leverages the characteristics of CET-enabled binaries. In par-
ticular, we statically identify pointers that are evaluated to
a code pointer by checking the presence of CET-specific
instructions (i.e., endbr64) inserted by compilers (see §3.4).

2.6.2 Superset Symbolization (Solution (2)). Assembly
expression of the form “Label - Label” (F3) represents a
compiler-generated offset. There are two kinds (S3 and S4),
but S3 is not our interest because such expressions are used
to represent a data pointer, which can be handled by (2. Ac-
cording to our study, S4 can only represent a jump table
entry, where each entry represents a relative offset from a
base address to a target address. Unfortunately, we find that
recovering such symbolic labels is as difficult as recovering
a complete CFG of the binary.

More specifically, predicting the boundary of the jump
table is challenging because compilers often do not emit
bounds-checking logic when the table indices are statically
determined [33]. Existing reassemblers [17, 22, 46, 52] em-
ploy several heuristics to recover jump tables, but they often
incorrectly predict the boundaries of jump tables, leading to
symbolization errors.

Figure 3 demonstrates why symbolizing jump table en-
tries is challenging. The RDX register stores the base address
(0x1f2f80), which is the start address of a jump table in the
.rodata section. The jump table contains 21 entries, each
of which is a four-byte offset from the base address to a
target address. However, binary analysis tools can easily
misidentify the boundary of the table because the global ar-
ray (located at 0x1f2fd4) immediately follows the last entry
of the jump table. Furthermore, the global array contains
seemingly valid offsets, which can form a valid pointer when
they are added to the base address.

We handle this problem by considering all possible jump
table entries, thereby constructing superset CFGs that contain

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

B i

Binary Instrumentation
[{ ------------------------------- + -------------------- 1
: ¥ ¥ |
: SUPERSET PomTer :
' REPAIRER '
! CFG BUILDER B !
! (Solution (3) !
' .
: '\--l l :

.
| s B |
' SUPERSET ’ 1
! CFG SYMBOLIZER S Emitter —— E
' SERIALIZER (Solution (@) '
' | Rewritten
b e e e e e e e e e e e e e | Binary

SURI

Figure 4. SURI architecture.

all possible indirect branch targets. A superset CFG may
contain invalid nodes, and thus, the rewritten binary with the
CFG can include unreachable code, but it does not affect the
correctness of the rewritten binary because such code will
never be executed. Such an over-approximation, however,
introduces another challenge as it can disturb the correctness
of the jump table recovery algorithm itself. Thus, we propose
a novel way to soundly symbolize jump table entries with
superset CFGs (see §3.5).

3 Design

In this section, we first introduce the overall architecture of
SURI and then describe the challenges involved in designing
SURI and how we address them.

3.1 SURI Architecture Overview

At a high level, SURI takes in a binary as input and returns
a rewritten binary as output. Specifically, SURI runs in five
major steps as illustrated in Figure 4.

1. SurERSET CFG BUILDER takes in a stripped binary as
input, and constructs superset CFGs by recursively
disassembling the binary (§3.2).

2. CFG SERIALIZER takes in superset CFGs as input, and
transforms the CFGs into a sequence of assembly in-
structions ¢qpy, which constitutes the executable code
section of the rewritten binary (§3.3).

3. POINTER REPAIRER takes in X qpy and the original bi-
nary as input, and returns an intermediate assembly
file S, which contains the sections in the original bi-
nary as well as a new section for Xcqpy. It fixes up
every cross-reference in Xy to point to the origi-
nal code/data sections except for the case where the
cross-reference evaluates to a valid branch target by
leveraging endbr64 instructions (§3.4).

4. SUPERSET SYMBOLIZER takes in an intermediate assem-
bly file S as input, modifies S to soundly symbolize
jump tables, and returns a modified assembly file S’.
Users can modify S’ at this stage to add instrumenta-
tion (e.g., adding a security monitor) to it (§3.5).

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

5. EMITTER converts S’ into a binary while ensuring that
the original code and data sections are located at the
same addresses as in the original binary (§3.6).

Note that the main novelty of SURI lies in the use of super-
set CFGs to address the symbolization challenges in reassem-
bly, but not in the use of superset CFGs themselves. As we
will discuss in the rest of this section, using superset CFGs
introduces additional challenges in terms of handling bogus
nodes and edges. In order to over-approximate jump tables,
we need to repeatedly perform dataflow analysis whenever
we encounter a new indirect edge in the superset CFGs (§3.2).
We also need to emit overlapping basic blocks in a way that
does not affect the semantics of the rewritten binary (§3.3).
Furthermore, we need to handle over-approximated jump
tables in order to soundly execute the rewritten binary (§3.5).

Another key novelty of SURI is that it identifies pointers
that evaluate to a code pointer by leveraging endbr64 in-
structions in order to reliably symbolize code pointers in the
rewritten binary (§3.4).

3.2 Superset CFG Builder

Existing recursive disassemblers often fail to cover critical
code blocks due to their unsound heuristics for recovering
indirect branch targets. SOTA reassemblers, such as Egal-
ito [52] and Ddisasm [22], also suffer from the same problem.
To address this, we over-approximate possible (and reach-
able) indirect edges to construct superset CFGs, which are
CFGs that include every node and every edge in the original
CFGs while potentially including bogus nodes and edges.
Those bogus nodes and edges, however, will not affect the
execution of the rewritten binary as they will never be exe-
cuted. To our knowledge, SURI is the first to construct super-
set CFGs to handle symbolization challenges in reassembly.
There are two main steps in recovering superset CFGs.
First, SURI collects an initial set of function entry points from
a given binary (§3.2.1). Second, it recursively disassembles
the binary from each entry point to construct superset CFGs
while over-approximating indirect branch targets (§3.2.2).

3.2.1 Harvesting Entry Points. SURI collects a set of de-
terminate function entry points to start our analysis. Specifi-
cally, it first identifies the program entry point (i.e., _start)
from the ELF header, and collects all function pointers from
the relocation section. Then, it recursively disassembles each
of those function entry points to build superset CFGs for
them in the next step.

While it is sufficient to generate superset CFGs with them,
we can optimize the CFG recovery process by gathering
more function entry points. With more entry points, we can
have tighter function boundaries, which can help reduce the
number of bogus nodes and edges in our superset CFGs.

To harvest more function entry points, SURI leverages
three conservative heuristics. First, we consider direct branch
targets that lie outside the current function boundary as

Hyungseok Kim, Soomin Kim, & Sang Kil Cha

additional function entry points. Second, we include RIP-
relative addresses as a function entry point if they point to
an endbr64 instruction. Finally, we leverage call frame in-
formation stored in the .eh_frame section, which includes
critical data for stack unwinding [38], to recover function
entry points. Note we do not rely on call frame information
to operate, as it merely helps improve the efficiency of the
superset CFG construction. All these heuristics are conserva-
tive in that they do not affect the correctness of the rewritten
binary, but can help reduce the number of bogus nodes and
edges in our superset CFGs.

Furthermore, our approach ensures that all reachable code
regions are included in the resulting superset CFGs. If there
is a function that is not referenced by either a direct branch
or a code pointer, it can be considered dead code, and thus,
it does not affect the reliability of the rewritten binary.

3.2.2 Building Superset CFGs. For each function entry
point, SURI first creates an intermediate CFG by recursively
following every direct branch target. After recovering all
reachable direct edges, it then statically analyzes jump table
entries and recursively follows them to construct superset
CFGs. A unique design choice of SURI is that it always over-
approximates jump tables as well as their entries.

Particularly, it performs backward slicing from each indi-
rect branch instruction (e.g., jmp rdx) to recover a symbolic
expression for the target register of the form “base_address
+ index * 47 It then calculates all possible values of
base_address using a classic dataflow analysis. Unlike ex-
isting approaches [12], however, SURI always performs data
flow analysis whenever a new indirect edge is encountered
in order to ensure that there is no missing jump table.

Typically, there should only be a single base address, but
our over-approximated analysis can include bogus data flows,
which can potentially result in multiple addresses, as we will
discuss in §3.5. SURI decides the range of each jump table
by checking whether each jump table entry evaluates to a
valid code address in the current function boundary, which
is the range between the current function entry point and
the next function entry point.

Additionally, SURI includes fall-through edges after call
instructions without relying on non-returning function anal-
ysis as long as the edges remain within the current function
boundary. This approach aids in incorporating indirect edges
into the CFG, thereby ensuring its completeness.

Since SURI over-approximates indirect branch targets, our
superset CFGs can include overlapping basic blocks. In such
cases, we merge those blocks to remove duplicates. Figure 5
describes the merging process. First, SURI detects duplicate
basic blocks A and B during the CFG construction (Figure 5a).
Second, SURI splits the block A to A” and C, and the block B
to B” and C (Figure 5b). Finally, SURI creates a merged block
C and connects A’ to C and B’ to C (Figure 5c). The trimmed

Towards Sound Reassembly of Modern x86-64 Binaries

¥ v
¥
A B A’ B
B
R I N I il Sl N
! Duplicate |
i n | C C C
¢ | Instructions | |

(a) Discover. (b) Split. (c) Merge.

Figure 5. Merging overlapping basic blocks.

basic blocks need special treatment during serialization, as
discussed in §3.3.

3.3 CFG Serializer

After constructing superset CFGs, we transform them into
a sequence of assembly instructions, which we call X¢qpy
in this paper. To handle implicit control flows introduced
by overlapping basic blocks, we explicitly add a branch in-
struction to non-overlapping basic block(s) to ensure that
the control flows can merge into the overlapping basic block
when the emitted assembly code runs.

Algorithm 1 shows the serialization algorithm handling
overlapping basic blocks. First, we sort all the basic blocks in
G, a superset CFG, by their addresses and store them in list
B (Line 3). We then iterate the sorted list B until it becomes
empty. At each iteration, we first pick the basic block b with
the lowest address (Line 5). We then obtain a set of basic
blocks overlapped with b and store them in O (Line 6). If
there is no overlapping basic block, we simply disassemble b
and append the instructions to the output list code (Line 19).
If otherwise, we iterate over the overlapped basic blocks O
in a nested loop to make control flows explicit by selectively
modifying them (Line 10). We first get an overlapping basic
block o from O, which has the lowest address (Line 11). We
then check if o has a fall-through basic block f (Line 13). If f
exists and there exists another overlapping basic block in O,
then we add a direct branch instruction to o (Line 15). Note
we do not add a branch instruction to the last overlapping
basic block, as it will be directly connected to f. Finally,
we accumulate instructions by disassembling o and append
them to the output list code (Line 16).

3.4 Pointer Repairer

Recall from §2.6.1 that we aim to reliably symbolize com-
posite expressions found in $2 and S7 by preserving the
original sections while making a copy of the original code
section. However, we do not rely on the dynamic resolution
of every indirect branch target as in Multiverse [5] since it
incurs a significant runtime overhead. Instead, we statically
figure out which pointers in the target binary will eventually

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Algorithm 1: CFG Serialization.

1 function cfg_serialization(G)

2 code « [-]

3 B «— G.BBLs

4 while B # @ do

5 b «— get_bbl_of_lowest_addr(B)

6 O « get_overlapped_bbls(G, b)

7 if O # @ then

8 O« O - {b}

9 B—B-0

10 while O # @ do

11 o0 « get_bbl_of_lowest_addr(O)
12 O« O0-{o}

13 f « get_fallthrough_bbl(G, o)
14 if f# @and O # @ then

15 L 0 « add_br_instruction(o, f)
16 code < append_code(code, 0)

17 else

18 B« B-{b}

19 B code < append_code(code, b)
20 | return code

point to a branch target using endbr64 instructions, which
are designed to mark valid destinations for indirect jumps.
We then make every code/data pointer in the copied code
section point to the original code/data section, except for
those pointers that reference an endbr64 instruction.

Specifically, SURI takes the following two steps. First, it
creates a new assembly file S that includes the serialized as-
sembly instructions X.py. Second, it identifies all the point-
ers used in S, symbolizes them depending on their target, and
returns S as output. If the target is an endbr64 instruction,
it puts a label on the instruction and makes the pointer to
reference the label. Otherwise, it makes the pointer to point
to the original code/data sections. This way, we can safely
instrument the copied code while preserving the values in
temporary pointers.

To preserve the original sections, we use the . set directive
of GNU AS to assign a particular address to a label. Figure 6
shows an example usage of the .set directive. The expres-
sion “.set .L8000, 0x8000” defines the label .L8000 that
references the address 0x8000. Although the assembly file
does not define any code/data in the address, the . set direc-
tive allows us to define a label referencing a non-existing ad-
dress. The final binary will eventually include the code/data
in the address 9x8000 as EMITTER will keep the original sec-
tions at the same addresses as in the original binary (§3.6).

3.5 Superset Symbolizer

After repairing all the pointers in S, SURI creates new jump
tables and adds them to S to produce S’. Recall from §2.6.2
that we address the jump table symbolization challenge by
over-approximating jump table entries with superset CFGs.

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands Hyungseok Kim, Soomin Kim, & Sang Kil Cha

.section .text I, .section .text_origin
fun_1000 : €——— > 0x2000: 4863 ...

0x1000: endbr64 endbré4 [

; .section .rodata_origin

; .section .text

]

0x1100: lea RAX, [RIP+oxfffffef9] # 0x1000 lea RAX, | [RIP+fun_1000]

|
I
:0x4000: 0102 0304 0506 0708

0x1107: lea RBX, [RIP+@xef2] # 0x2000 lea RBX, | [RIP+L2000] [

0x110e: lea RCX, [RIP+@x6eeb] # 0x8000 lea RCX, [[RIP+L8000 ;4 0x8000: 00a1 ffff 20a1 ffff
L o)

0x2000: movsxd RSI, DWORD PTR [RCX+RSI*4] # var-0x2000 ; if (RCX == L8000) Address space of the original (not in S”)

0x2004: add RSI, RCX lea RCX, | [RIP+Ljt8000]

0x2007: notrack jmp RSI

movxsd RSI, DWORD PTR [RCX+RSI*4] ,§6ction .rodata

add RSI, RCX —> Ljt_8000:

notrack jmp RSI .long Lcode_2100 - Ljt_8000
.long Lcode_2120 - Ljt_8000

; .section .rodata

0x4000: 0102 0304 0506 0708 # var ..
.set L2000, 0x2000
.set L8000, 0x8000

0x8000: 00al ffff 20al ffff # start of jump table

Disassembled Code .text section in S’ .rodata section in §’

Figure 6. Example of supserset symbolization.

However, we face two additional problems when symbolizing
jump tables with superset CFGs. First, by over-approximating
jump table entries, we may falsely symbolize irrelevant data
values, which will corrupt the original data. We address this
problem by isolating the over-approximated jump tables
from the original data section (§3.5.1). Second, our superset
CFG includes bogus nodes and edges, which can introduce
bogus data flows between registers and memory locations,
thereby affecting the correctness of our static analysis. In par-
ticular, we may incorrectly approximate the base address of
a jump table, and thus obtain two or more base addresses for
a single jump table. We address this problem by dynamically
identifying the right base address (§3.5.2).

3.5.1 Jump Table Isolation. Our over-approximated jump
tables can naturally include false entries. For example, we
may include other global variables (e.g., var in Figure 3)
as jump table entries. To address this problem, we allocate
a new read-only data section to exclusively store the over-
approximated jump tables. Figure 6 illustrates how SURI sym-
bolizes jump tables. The bottom right of the figure shows the
newly created jump table (Ljt_8000), which includes over-
approximated jump offsets. Lcode_2100 and Lcode_2120
are indirect branch targets, and each entry stores the dif-
ference between the target address and the base address of
the jump table (Ljt_8000). Since we separately store each
of the over-approximated jump tables in a newly allocated
.rodata section, we can safely store overlapping jump ta-
bles, which may include bogus entries, without corrupting
the original data.

3.5.2 Dynamic Base Identification. As superset CFGs
can include bogus nodes and edges, we may incorrectly ap-
proximate the base address of a jump table during the static
analysis. Note, however, our approximation is conservative,
meaning that our analysis will not miss the correct base ad-
dress, although it may include wrong addresses. We tackle
this problem by adding instrumentation code to dynamically
fix up the base address.

For example, the third lea instruction in Figure 6 loads
the address of the jump table to RCX, and uses it to compute
a jump target with the movxsd instruction. The problem hap-
pens if our static analysis over-approximates the value of
RCX to be either 9x8000 and 0x9000, one of which is correct
and the other is wrong. In such a case, we cannot statically
determine which is the right one. To handle this problem,
we insert if-then-else statements (in assembly) to dynami-
cally check the base address at runtime, and assign the right
address, which is located at the newly allocated .rodata
section, to RCX (as shown in the fourth lea instruction in the
middle of Figure 6).

Although our dynamic base identification approach can
incur a runtime overhead, it is negligible in practice as our
experiments show (§4.3.1). This is mainly because we do
not need to add if-then-else statements for every indirect
jump, but only for those that our static analysis incorrectly
identifies two or more base addresses.

3.6 Emitter

EMITTER takes in as input the original binary as well as the
instrumented assembly file S’, and outputs a rewritten binary.
At a high level, it first compiles S’ into a binary file, and then
appends the sections in the binary to the original binary
while preserving the layouts of the original sections.

Specifically, we first create a binary from S’ using the
linker option --section-start in order to preserve the rel-
ative distances between the newly created sections and the
original sections. This way, we can also avoid any overlap
between the original sections and the newly added sections.
We then extract all the text and data sections from the newly
created binary, and append them to the original binary. Fig-
ure 7 describes this process.

Note that appending sections to a binary is not a trivial
task, as we need to update various metadata in the ELF file.
At a high level, SURI performs the following steps before
emitting a final binary.

e Update the program header and section table to include
newly added segments and sections.

Towards Sound Reassembly of Modern x86-64 Binaries

ELF Header ‘ ELF Header ‘ ‘ ELF Header
text .text_origin
ex (read-only)
.data .data_origin
.bss .bss_origin

+ =

.text (derived
from Zcopy)

.text (derived
from Zcopy)

.data (new) .data (new)
.bss (new) .bss (new)
Original Binary Binary obtained from S’ Final Binary

Figure 7. Layout Preservation

e Change the access permission of the original code
section to read-only.

e Merge symbol tables and string tables of both binaries.

e Adjust relocation entries in the original binary to ref-
erence the newly added code addresses.

e Update the dynamic section to correctly use updated
symbol, string, and relocation tables.

3.7 Implementation

We implemented SURI with approximately 4.5K SLoC of
Python and 1.1K SLoC of F#. To build superset CFGs, we
modified B2R2 [25], a binary analysis platform that supports
x86-64 binary lifting. Our jump table analysis is implemented
on top of B2R2’s Intermediate Representation (IR). Addi-
tionally, we used pyelftools [7] to parse exception handling
information from the binary.

4 FEvaluation

In this section, we evaluate SURI to answer the following
research questions.

RQ1. How well does SURI compare to the state-of-the-art
reassembly tools in terms of reliability? (§4.2)

RQ2. How big is the performance overhead introduced by
SURI for rewritten binaries? (§4.3)

RQ3. Is SURI applicable to real-world scenarios, such as
runtime memory sanitization? (§4.4)

4.1 Experiment Setup

4.1.1 Benchmark. To measure the reliability of reassem-
blers, one needs to run rewritten binaries with a large num-
ber of test cases to exercise diverse execution paths. Thus,
we chose four popular software packages that include well-
maintained test suites: Coreutils v9.1 (108 programs), Binutils
v2.40 (15 programs), SPEC CPU2006 (31 programs), and SPEC
CPU2017 (47 programs), which are written in C, C++, and
Fortran. The SPEC benchmarks include complex real-world
programs such as GCC, GNU assembler, GNU linker, Perl,

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

bzip2, and x264 encoder/decoder. Also, we used four major
compilers (GCC v11.0, GCC v13.0, Clang v10.0, and Clang
v13.0) and two linkers (GNU 1d v2.34 and GNU gold v1.16)
to produce our dataset with varying optimization levels (00,
01, 02, 03, 0s, and Ofast) to obtain a diverse set of binaries.

This gives us 48 (= 4 X 2 X 6) different configurations per
binary, and, hence, a total of 9,648 (= 48 x 201) CET-enabled
PIE binaries. Out of those 9,648 binaries, we had to exclude
4, 42, and 2 binaries from Coreutils v9.1, SPEC CPU2006, and
SPEC CPU2017, respectively, because they simply did not
pass the test suites. Therefore, our final benchmark consists
of 9,600 binaries. All the binaries we used in our experiments
are stripped, i.e., they do not contain any debugging infor-
mation. To our knowledge, this is the largest dataset used in
reassembly research to date.

4.1.2 Measuring Reliability. Rewritten binaries may func-
tion correctly in some cases but fail in others because symbol-
ization errors would only affect a subset of execution paths.
Therefore, we measured the reliability of each reassembler by
running the test suites provided by each software package on
the rewritten binaries. One may consider using automated
test case generation tools to have a more comprehensive test
suite, but we leave it as future work since manually written
test suites are already sufficient to demonstrate the effective-
ness of our approach: (1) the test suites are well maintained
and achieve a high code coverage, and (2) the test suites
can already expose many symbolization errors of the SOTA
reassemblers we compared against.

Since Coreutils and Binutils do not provide a separate test
suite for each individual program, we counted the entire test
suite as a single test. That is, if one of the Coreutils/Binutils
binaries rewritten by a tool failed to pass the test suite, we
consider the tool to have failed the entire test. For SPEC
benchmarks, we counted each individual test as a separate
test. This choice may underestimate the symbolization errors
for Coreutils and Binutils, but it is sufficient to demonstrate
the effectiveness of our approach since it only makes the
comparison more favorable to other reassemblers—SURI has
no symbolization errors in our experiments.

4.1.3 Comparison Target. We selected two state-of-the-
art tools for comparison: Ddisasm [22] v1.7.0 (docker image
digests 7b6c27, Sep. 2023), and Egalito [52] (commit c5bccb,
Jun. 2020). We excluded RetroWrite [17] since it cannot re-
assemble stripped binaries. We also excluded the tool pre-
sented by Verbeek et al. [46] as it requires user interaction to
resolve function pointers. Furthermore, we excluded patch-
based rewriting tools, such as E9Patch [18], and table-driven
rewriting tools, such as Multiverse [5], as they are funda-
mentally different from SURI in that they do not perform
symbolization. We further discuss the limitations of the other
approaches in §6.

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Table 2. Comparison against Ddisasm in terms of rewriting
completion rate, rewriting time, and test suite pass rate.

SURI Ddisasm

Fint T (s)f Pass Fin. T (s) Pass

Clang 100% 6.4 Succ” 100% 1.6 Succ*

Coreutils 0" 100% 63 Succt 100% 15 Fail

Binutils Clang 100% 315 Succ* 100% 51.7 Succ®
GCC 100% 318 Succ® 100% 47.6 Fail*
Clang 100% 27.8 100% 100% 673 86.9%

PEC 2

SPEC2006 Goc 100% 279 100% 100% 719 85.9%

opEC 201, Clang 100% 977 100% 95.6% 1947 847%

GCC 100% 102.8 100% 99.1% 208.1 82.1%

T Rate of successfully rewriting binaries without errors.

Time taken (in seconds) to run the tool.

* Coreutils and Binutils do not support per-program testing. Thus, we
report either success (Succ) or failure (Fail). See §4.1.2 for more details.

4.2 Reliability Comparison

To answer RQ1, we measured the reliability of three reassem-
blers, including SURI, Ddisasm, and Egalito, following the
methodology described in §4.1.2, and compared them against
each other. We used two different operating systems, as Egal-
ito could not run on binaries compiled with Ubuntu 20.04
but worked with those from Ubuntu 18.04. Also, we used
a reduced set of binaries for comparing Egalito because it
does not support C++ binaries, and Ubuntu 18.04 is limited to
GCC v11.0 and Clang v10.0. When comparing rewriting time,
we only considered binaries that were successfully rewritten
by all the tools of interest.

4.2.1 Comparison Against Ddisasm. Table 2 presents
the comparison against Ddisasm, which individually shows
the results for GCC- and Clang-compiled binaries for each
package. First of all, SURI was the only tool that successfully
rewrote all the binaries in our benchmark. Although Ddisasm
was able to rewrite most of them, it failed to rewrite 8.5%
of the programs in SPEC CPU2017 as it produced invalid
labels in the resulting assembly code, making the compilers
fail to compile it. In terms of rewriting time, both tools were
similar, but SURI was slightly faster than Ddisasm. However,
the difference was just a matter of a few minutes at most,
and furthermore, rewriting speed is not a critical factor in
practice as it is a one-time cost.

Moreover, SURI successfully passed all the tests, whereas
Ddisasm faced challenges in passing all test suites for Core-
utils and Bintuils and failed in more than 16.1% of the tests
in SPEC benchmarks. Note that the “Pass” columns present
the pass rates of each tool for those binaries that were suc-
cessfully rewritten, i.e., the pass rates of each tool for the
entire benchmark are lower than the ones presented in the
table if we consider the failures in rewriting. This result

Hyungseok Kim, Soomin Kim, & Sang Kil Cha

Table 3. Comparison against Egalito in terms of rewriting
completion rate, rewriting time, and test suite pass rate. We
omitted C++ binaries here as Egalito does not support them.

SURI Egalito

Fin. T (s) Pass Fin. T (s) Pass

Clang 100% 7.3 Succ 100% 0.1 Fail

Coreutils 0" 100% 61 Succ 897% 01 Fail
Binutils Clang 100% 37.0 Succ 96.7% 2.2 Fail
GCC 100% 33.0 Succ 87.8% 2.0 Fail
Clang 100% 27.1 100% 98.9% 14 92.1%
SPEC 2006
GCC 100% 26.8 100% 93.2% 1.4 79.9%
SPEC 2017 Clang 100% 96.2 100% 97.4% 55 857%

GCC 100% 115.1 100% 90.9% 7.1 73.2%

clearly demonstrates the superior reliability of our rewriting
technique compared to Ddisasm, the SOTA reassembler.

4.2.2 Comparison Against Egalito. Table 3 presents the
comparison against Egalito. Egalito was not able to process
5.3% of the binaries in our benchmark due to assertion fail-
ures that occurred during the rewriting process. Thus, we
excluded those binaries when comparing the rewriting time
and test suite pass rate. Egalito was significantly faster than
SURI in terms of rewriting speed, but rewriting is a one-
time cost, as discussed earlier, and the differences were just
a matter of a few minutes. More importantly, SURI clearly
outperformed Egalito in terms of reliability. Egalito was un-
successful in passing all test suites for Coreutils and Binutils,
and it failed to pass more than 17.9% of the tests in the SPEC
benchmarks, while SURI passed all the tests without any
problems.

4.2.3 Reliability of SURI The experimental results clearly
demonstrate the practical impact of SURI; It was the only tool

that achieved a 100% rewriting completion rate and a 100%

test suite pass rate. However, it is noteworthy that having a

100% pass rate does not necessarily prove the soundness of

SURI because there could be uncovered execution paths that

can potentially cause symbolization errors. Thus, we do not

claim that SURI is sound, but instead, we empirically show

its reliability by demonstrating that it can pass all the tests

in our benchmark (see §5.1 for further discussion).

To further verify the reliability of SURI, we performed
extra experiments with 10 additional programs that are large
and complex: Apache-2.4.56, MariaDB-11.5.0, Nginx-1.23.3,
SQLite-3.31.2, 7-Zip-24.05, Epiphany-3.36.4, Filezilla-3.46.3,
Openssh-8.2p1, Putty-0.73, and Vim-8.1. The first five pro-
grams have their own Phoronix test suite [34], while the rest
do not. Thus, we manually verified the correctness of the
rewritten binaries for the latter five programs. As a result,
we were able to confirm that SURI can successfully rewrite
all the programs and completely pass all the tests.

Towards Sound Reassembly of Modern x86-64 Binaries

4.2.4 Effectiveness of 3) and (2. To evaluate the effec-
tiveness of our proposed solution (3) and (@), we analyzed
the distribution of symbol types in our benchmark binaries.
First, we utilize the tool proposed by Kim et al. [26] to classify
symbols into our symbol types. The resulting distribution of
symbols across categories S1 -S7 is as follows: 5.9%, 0.2%,
0.1%, 4.6%, 67.7%, 18.9%, and 2.7%. Therefore, symbols cate-
gorized under S2 and S7, which are addressed by solution
(3), account for 2.9% of the total. In contrast, symbols under
S4, handled by solution (), constitute a significant 4.6%.

Second, we examined approximately 8.9 million code point-
ers identified by SURI and confirmed that every pointer cor-
rectly targets valid code. This result demonstrates the effec-
tiveness of using endbr64 to analyze pointer types. That is,
SURI can effectively identify and symbolize code pointers.

Additionally, we note that our experimental results shown
earlier demonstrate the effectiveness of our solutions. A sin-
gle failure in symbolization can lead to runtime errors in
the rewritten program, making it a significant challenge to
ensure reliability. However, through rigorous testing on a
large dataset, SURI achieved a 100% success rate, demonstrat-
ing that our proposed methods reliably resolve previously
unresolved symbolization challenges.

4.3 Overhead of Rewritten Binaries

How much overhead does SURI introduce for a rewritten
binary? We answer this question by measuring the per-
formance difference between the original binaries and the
rewritten binaries produced by each tool. To measure the
performance, we used a machine with Intel Core 19-11900K
equipped with 128GB of RAM. We used a docker container
and assigned only a single core to each container to run the
tools. To reduce the noise in the measurements, we leveraged
only two cores of the machine to run our benchmarks.

4.3.1 Overhead Incurred by SURI. We rewrote all the
SPEC binaries in our benchmark (i.e., both SPEC CPU2006
and SPEC CPU2017) using SURI without any additional in-
strumentation (i.e., no-op instrumentation), and measured
the performance difference between the original binaries
and the rewritten binaries. We ran each pair of binaries three
times and took the average of the results. On average, SURI
incurred only negligible (0.2%) overhead to the rewritten
SPEC binaries.

We further analyzed the instrumentation overhead of
SURI by measuring (1) the number of instructions added
to the rewritten binaries; (2) the number of if-then-else state-
ments inserted for undecided jump table addresses; and (3)
the number of over-approximated jump table entries. On av-
erage, SURI added only 2.8% more instructions to the rewrit-
ten binaries, inserted if-then-else statements for about 1.9%
of jump tables, and added approximately 9.7% more jump
table entries due to over-approximation.

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Table 4. Runtime overhead of rewritten SPEC binaries pro-
duced by SURI, Ddisasm, and Egalito. We used the binaries
compiled with the 03 optimization level.

. Ubuntu18.04 Ubuntu20.04
of Bins
SURI Egalito SURI Ddisasm
SPEC CPU2006 24 0.46% 0.69% 0.33% 0.32%
SPEC CPU2017 21 0.17% 0.04% 0.12% 0.31%
Total 45 0.32% 0.39% 0.26% 0.32%

4.3.2 Comparison against SOTA Reassemblers. To un-
derstand how SURI compares to the other reassemblers (Ddis-
asm and Egalito), we first collected SPEC binaries that were
compiled with the 03 optimization level, and then filtered
out binaries that were not successfully rewritten by all three
reassemblers. We used no-op instrumentation to measure
the overhead introduced by each tool.

Table 4 summarizes the averaged overhead results over
three runs for each tool. We can see that all three tools in-
curred negligible overhead to the rewritten binaries. This
result demonstrates that the performance of SURI is compa-
rable to the state-of-the-art reassemblers while it can reliably
rewrite all the binaries in our benchmark at the same time.

4.3.3 Impact of Call Frame Information. We conducted

additional experiments to evaluate the impact of using call

frame information. To elide call frame information, we pro-
duced a dataset with compiler flags -fno-unwind-tables

and -fno-asynchronous-unwind-tables. We then ran SURI
on these binaries to evaluate if the absence of call frame in-
formation would impact the reliability and performance of
the reassembled code.

SURI successfully reassembled all the binaries, regardless
of the presence of call frame information. However, SURI
required more time for rewriting without call frame informa-
tion. On average, SURI constructs superset CFGs 4.1x faster
with call frame information than without it in our bench-
marks. The generated superset CFGs also include 20.2% more
instructions when omitting call frame information. Also, we
observed that rewritten binaries passed all the test suites
even without the presence of call frame information.

Lastly, we measured the runtime overhead of rewritten
binaries. We collected 77 SPEC binaries compiled with the
O3 optimization level and ran each pair of binaries three
times. On average, SURI shows a runtime overhead of ap-
proximately 0.23% with call frame information, and 0.65%
without it. We believe the additional runtime overhead is
due to the increased number of overlapping blocks and if-
then-else statements. The result demonstrates that SURI still
incurs negligible overhead to rewritten binaries even without
call frame information.

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Table 5. Memory corruption detection results on Juliet Test
Suite binaries.

Ours BASan ASan
True Positives 10,233 9,552 13,378
False Positives 0 8 0
False Negatives 5,528 6,209 2,383
True Negatives 577 569 577
Total Binaries 16,338 16,338 16,338

4.4 Application of SURI

We now demonstrate the applicability of SURI to real-world
scenarios by showing that it can be used to instrument bina-
ries for sanitization. In particular, we implemented a binary-
only address sanitizer on top of the instrumentation frame-
work of SURIL. Our sanitizer adds a runtime check for every
memory access to detect out-of-bound memory accesses.
Unlike the original address sanitizer (ASan) [43], though,
our sanitizer does not sanitize global variables because it is
not feasible to identify global variables in a binary without
any debugging information. The same limitation applies to
BASan, a binary-only address sanitizer implemented on top
of RetroWrite [17].

We used the same benchmark (Juliet Test Suite v1.3) used
by RetroWrite [17] to evaluate the effectiveness of our binary-
only address sanitizer. The authors of RetroWrite reported
in their paper that they extracted 11,828 binaries that are
related to five CWEs (CWE121, CWE122, CWE124, CWE126,
and CWE127) from the Juliet Test Suite. However, we were
able to obtain about 5K more binaries (thus, 16,338 binaries
in total) that are related to the same CWEs. Therefore, we
used the 16,338 binaries extracted from the Juliet Test Suite
to evaluate our binary-only address sanitizer.

We first ran our sanitizer as well as BASan (commit ef4e5,
Nov. 2023) and ASan on the 16,338 programs. Overall, binary-
only tools show less precision than source-based ASan due
to the inherent limitation of binary-only analysis, e.g., we do
not sanitize global variables. However, our sanitizer shows
comparable precision to ASan and demonstrates zero false
positives. It also shows slightly better precision than BASan,
an existing binary-only approach. We further investigated
the reason behind the difference in precision between our
sanitizer and BASan, and found that it was mainly due to
the implementation bug in BASan. Particularly, BASan can
corrupt stack memory when saving register values, leading
to unintended program behavior.

5 Discussion
5.1 Soundness of SURI

Although our empirical study shows that SURI can soundly
reassemble all the binaries in our dataset, it is worth noting
that there could be a corner case where our technique may

Hyungseok Kim, Soomin Kim, & Sang Kil Cha

fail to correctly symbolize references. In particular, we may
falsely consider a numeral value as an endbr64 instruction
when we analyze pointer types, as we solely rely on the
byte pattern of the instruction. As demonstrated in §4.2.4,
it is indeed extremely unlikely for a compiler to generate
a temporary pointer whose target is 0xf30f1efa, which is
the encoded value of endbr64. Nonetheless, our CET-based
pointer type detection method could suffer from this partic-
ular problem.

For this reason, we do not argue that SURI is sound. In-
stead, this paper systematically finds what are the current
requirements for designing a sound reassembler, and sug-
gests a practical method towards sound reassembly.

5.2 Generalizability

Our current focus is on CET-enabled x86-64 binaries, but
superset CFG construction and superset symbolization tech-
niques are not dependent on the target ISA. Since SURI lever-
ages an architecture-neutral IR, as discussed in §3.7, it can
be readily applied to other architectures. On the other hand,
the pointer repairing mechanism (§3.4) currently depends
on the Intel architecture, but the idea is generalizable to
other architectures, such as ARMv8 where there is a sim-
ilar hardware-based CFI mechanism, such as BTI [4]. We
leave it as future work to extend our technique to ARM bi-
naries. As our technique assumes the existence of a specific
hardware feature, it is not generally applicable to legacy bi-
naries. Although we believe that CET is already a popular
and general technique for modern Intel CPU products and
has been widely adopted by modern Linux OSes, existing
reassemblers, such as Ddisasm [22], are still valuable. Fur-
thermore, they can benefit from our technique when dealing
with modern binaries.

6 Related Work

Binary rewriting is essential for a wide range of applications
as it enables program analysis and instrumentation on bina-
ries. There are techniques that retrofit security monitors into
COTS applications [2, 11, 13, 14, 19, 23, 30, 39, 41, 49, 50, 53].
This section discusses the related work on binary rewrit-
ing, symbolization, and understanding the characteristics of
modern binaries.

6.1 Binary Rewriting

While classical binary rewriting techniques have played a
crucial role in patching source-less binaries, they come with
limitations concerning the fine-grained binary instrumen-
tation. Patch-based rewriting approaches [8, 15, 18, 24, 29]
modify specific code segments while preserving other binary
addresses, making them primarily suitable for straightfor-
ward binary repairs. Specifically, Detour [24] installs hooks
at the start of target functions to intercept function calls.
PEBIL [29] and Bistro [15] provide general frameworks to

Towards Sound Reassembly of Modern x86-64 Binaries

rewrite target functions by inserting branch instructions at
the function entries to redirect to a new address. Dyninst [8]
offers more comprehensive APIs for inserting branch in-
structions at target addresses. E9Patch [18] introduces vari-
ous techniques for installing jump instructions at arbitrary
addresses without control flow recovery. However, the ap-
proach is limited in the scope of instrumentation points since
it overwrites existing code for instrumentation. Additionally,
E9Patch may corrupt inlined data in the text section since
it does not distinguish between code and data when adding
instrumentation. Furthermore, it suffers from high runtime
overhead when handling many instrumentation points due
to excessive detouring.

There is another class of rewriting approaches that we re-
fer to as table-driven rewriting, where the rewriter maintains
mapping tables to resolve indirect branches [5, 42, 51, 56]. In
particular, they modify indirect branch instructions to jump
to trampoline code, which dynamically computes indirect
branch targets. Specifically, REINS [51] and puSBS [42] con-
struct address mapping tables to resolve indirect branches in
target binaries. PSI [56] and Multiverse [5] employ two-level
address mapping tables to manage indirect branches across
shared libraries. Additionally, Multiverse proposes superset
disassembly to address the disassembly challenge. Although
this approach does support fine-grained instrumentation, it
suffers from high performance overhead due to excessive
table lookups.

6.2 Symbolization-based Rewriting

Symbolization-based rewriting approaches address the afore-
mentioned limitations. The core idea is to transform a bi-
nary into a relocatable form using symbolization techniques,
which enables the insertion of fine-grained instrumentation
to any point in the code with minimum time and space over-
head. To our knowledge, the concept of symbolization is
first introduced in Trace-Oriented Programming (TOP) [54],
which is a technique to transform an execution trace into
relocatable code. Uroboros [48] is the first in adopting the
idea of symbolization to statically rewrite binaries. Ram-
blr [47] proposes systematic approaches to address several
symbolization challenges. Ddisasm [22] employs data ac-
cess patterns to precisely identify code pointers and recover
original symbolic expressions. RetroWrite [17] proposes to
focus on PIE binaries to circumvent several symbolization
challenges. Egalito [52] presents a novel way to this line of
research by leveraging metadata of ELF binaries, such as ex-
ception handling information. However, they are susceptible
to disassembly and symbolization errors.

Recently, there has been an attempt to design a reliable
reassembly for AArch64 architecture which has 4-byte wide
fixed-length instructions. ARMore [16] disassembles all 4-
byte aligned code and installs a rebound table, which redi-
rects control transfer to the corresponding address in re-
assembled code, into an original code section. However, their

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

solution does not apply to architectures that have variable
instruction lengths, such as x86-64. Moreover, ARMore re-
quires call emulation to support C++ binaries, which intro-
duces a significant overhead (about 10% slowdown).

Verbeek et al. [46] recently proposes a way to verify the
soundness of a reassembled binary, but they do not present
a sound reassembly method. Their approach essentially has
the same limitations as existing reassemblers as we discussed
in §2.5. Their verification method, however, is orthogonal to
our work and can be applied to SURI to further validate the
soundness of reassembled binaries.

6.3 Analysis of Modern Binaries

Several studies have been conducted to understand and lever-
age the characteristics of modern binaries. Ghidra [36] and
Egalito [52] utilize call frame information, which is now in-
serted by default by several compilers even for C programs
to support C++ interoperability, to disassemble stripped bi-
naries. However, they still encounter disassembly errors due
to the imprecision of static analysis. FunSeeker [27] shows
that not every compiler generates call frame information
and proposes a novel way to identify function entry points
by utilizing the characteristics of CET instructions. Addition-
ally, FunProbe [28] recently presents a practical method to
identify function entry points even without relying on CET
instructions. Currently, our system does not leverage those
techniques, but as we showed in §3.2.1, precisely identifying
function entry points can benefit SURI in terms of increasing
the performance of our superset CFG-based analyses. We
leave it as future work to integrate them into SURL

7 Conclusion

In this paper, we designed and implemented a novel re-
assembler by identifying and addressing currently unmet
needs in symbolization-based reassembly. Particularly, we
showed that existing reassemblers suffer from symbolization
errors caused by the imprecise identification of dynamically
computed pointers and the unsound disassembly of indi-
rect branches. We addressed these issues by (1) leveraging
CET instructions to identify whether a pointer is referenc-
ing a valid branch target, and (2) using superset CFGs to
over-approximate the set of possible branch targets. We im-
plemented our design in a tool called SURI, and showed its
efficacy by evaluating it on the largest reassembly bench-
mark to date, consisting of 9,600 real-world binaries.

Acknowledgements

We thank our shepherd, Sotiris Apostolakis, and the anony-
mous reviewers for their valuable feedback. This work was
supported by Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by
the Korea government (MSIT) (No.2021-0-01332, Developing
Next-Generation Binary Decompiler).

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

References

(1]

—
Do
—

(10]

[11

—

[12

—

(13]

(14]

[15]

[16]

(17]

(18]

(19]

Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-
flow integrity. In Proceedings of the ACM Conference on Computer and
Communications Security, pages 340-353, 2005.

Anil Altinay, Joseph Nash, Taddeus Kroes, Prabhu Rajasekaran, Dixin
Zhou, Adrian Dabrowski, David Gens, Yeoul Na, Stijn Volckaert, and
Cristiano Giuffrida. BinRec: Dynamic binary lifting and recompilation.
In Proceedings of the ACM European Conference on Computer Systems,
pages 1-16, 2020.

Arch Linux. Updates to build flags. https://rfc.archlinux.page/0003-
buildflags/.

ARM. Branch target identification (BTI). https://developer.arm.com/
documentation/ddi0596/2021-06/Base-Instructions/BTI--Branch-
Target-ldentification-.

Erick Bauman, Zhigiang Lin, and Kevin Hamlen. Superset disassembly:
Statically rewriting x86 binaries without heuristics. In Proceedings of
the Network and Distributed System Security Symposium, 2018.
Fabrice Bellard. QEMU, a fast and portable dynamic translator. In
Proceedings of the USENIX Annual Technical Conference, pages 41-46,
2005.

Eli Bendersky. pyelftools. https://github.com/eliben/pyelftools, 2011.
Andrew R Bernat and Barton P Miller. Anywhere, any-time binary
instrumentation. In Proceedings of ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools, pages 9-16, 2011.

Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An
infrastructure for adaptive dynamic optimization. In Proceedings of the
International Symposium on Code Generation and Optimization, pages
265-275, 2003.

CentOS Git Server. rpms/redhat-rpm-config. https://git.centos.org/
rpms/redhat-rpm-config/blob/c8s/f/SOURCES/buildflags.md.

Sang Kil Cha, Maverick Woo, and David Brumley. Program-adaptive
mutational fuzzing. In Proceedings of the IEEE Symposium on Security
and Privacy, pages 725-741, 2015.

Cristina Cifuentes and Mike Van Emmerik. Recovery of jump table
case statements from binary code. In Proceedings of the International
Workshop on Program Comprehension, pages 192-199, 1999.

Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. Ropdefender:
A detection tool to defend against return-oriented programming at-
tacks. In Proceedings of the ACM Symposium on Information, Computer
and Communications Security, pages 40-51, 2011.

Daniele Cono D’Elia, Emilio Coppa, Simone Nicchi, Federico Palmaro,
and Lorenzo Cavallaro. SoK: Using dynamic binary instrumentation
for security (and how you may get caught red handed). In Proceedings
of the ACM Asia Conference on Computer and Communications Security,
pages 15-27, 2019.

Zhui Deng, Xiangyu Zhang, and Dongyan Xu. BISTRO: Binary com-
ponent extraction and embedding for software security applications.
In Proceedings of the European Symposium on Research in Computer
Security, pages 200-218, 2013.

Luca Di Bartolomeo, Hossein Moghaddas, and Mathias Payer. ARMore:
Pushing love back into binaries. In Proceedings of the USENIX Security
Symposium, pages 6311-6328, 2023.

S Dinesh, N Burow, D Xu, and M Payer. Retrowrite: Statically instru-
menting COTS binaries for fuzzing and sanitization. In Proceedings of
the IEEE Symposium on Security and Privacy, pages 128-142, 2020.
Gregory] Duck, Xiang Gao, and Abhik Roychoudhury. Binary rewrit-
ing without control flow recovery. In Proceedings of the ACM Con-
ference on Programming Language Design and Implementation, pages
151-163, 2020.

Mohamed Elsabagh, Dan Fleck, and Angelos Stavrou. Strict virtual call
integrity checking for C++ binaries. In Proceedings of the ACM Asia
Conference on Computer and Communications Security, pages 140-154,
2017.

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]
[37]

[38]

[39]

Hyungseok Kim, Soomin Kim, & Sang Kil Cha

Ulfar Erlingsson, Martin Abadi, Michael Vrable, Mihai Budiu, and
George C Necula. XFI: Software guards for system address spaces. In
Proceedings of the USENIX Symposium on Operating System Design and
Implementation, pages 75-88, 2006.

Fedora Project Wiki. Changes/hardeningflags28. https://fedoraproject.
org/wiki/Changes/HardeningFlags28.

Antonio Flores-Montoya and Eric Schulte. Datalog disassembly. In
Proceedings of the USENIX Security Symposium, pages 1075-1092, 2020.
Jason Hiser, Anh Nguyen-Tuong, Michele Co, Matthew Hall, and
Jack W. Davidson. ILR: Where’d my gadgets go? In Proceedings
of the IEEE Symposium on Security and Privacy, pages 571-585, 2012.
Galen Hunt and Doug Brubacher. Detours: Binary interception of
win32 functions. In Proceedings of the Conference on USENIX Windows
NT Symposium, 1999.

Minkyu Jung, Soomin Kim, HyungSeok Han, Jaeseung Choi, and
Sang Kil Cha. B2R2: Building an efficient front-end for binary analysis.
In Proceedings of the NDSS Workshop on Binary Analysis Research, 2019.
Hyungseok Kim, Soomin Kim, Junoh Lee, Kangkook Jee, and Sang Kil
Cha. Reassembly is hard: A reflection on challenges and strategies. In
Proceedings of the USENIX Security Symposium, pages 1469-1486, 2023.
Hyungseok Kim, Junoh Lee, Soomin Kim, Seungll Jung, and Sang Kil
Cha. How’d security benefit reverse engineers? the implication of
intel CET on function identification. In Proceedings of the International
Conference on Dependable Systems and Networks, pages 559-566, 2022.
Soomin Kim, Hyungseok Kim, and Sang Kil Cha. FunProbe: Probing
functions from binary code through probabilistic analysis. In Pro-
ceedings of the International Symposium on Foundations of Software
Engineering, pages 1419-1430, 2023.

Michael Laurenzano, Mustafa M Tikir, Laura Carrington, and Allan
Snavely. PEBIL: Efficient static binary instrumentation for linux. In
Proceedings of the IEEE International Symposium on Performance Anal-
ysis of Systems & Software, pages 175-183, 2010.

Juanru Li, Zhigiang Lin, Juan Caballero, Yuanyuan Zhang, and Dawu
Gu. K-hunt: Pinpointing insecure cryptographic keys from execu-
tion traces. In Proceedings of the ACM Conference on Computer and
Communications Security, pages 412-425, 2018.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. Pin: Building customized program analysis tools with dynamic
instrumentation. In Proceedings of the ACM Conference on Program-
ming Language Design and Implementation, pages 190-200, 2005.
LWN.net. Kernel release status. https://lwn.net/Articles/924113/.
Xiaozhu Meng and Barton P. Miller. Binary code is not easy. In
Proceedings of the International Symposium on Software Testing and
Analysis, pages 24-35, 2016.

Michael Larabel and Matthew Tippett. Phoronix test suite. https:
//phoronix-test-suite.com.

Susanta Nanda, Wei Li, Lap-Chung Lam, and Tzi-cker Chiueh. BIRD:
Binary interpretation using runtime disassembly. In Proceedings of the
International Symposium on Code Generation and Optimization, pages
358-370, 2006.

National Security Agency. Ghidra. https://ghidra-sre.org.

Nicholas Nethercote and Julian Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In Proceedings of the
ACM Conference on Programming Language Design and Implementation,
pages 89-100, 2007.

Chengbin Pang, Ruotong Yu, Dongpeng Xu, Eric Koskinen, Georgios
Portokalidis, and Jun Xu. Towards optimal use of exception handling
information for function detection. In Proceedings of the International
Conference on Dependable Systems and Networks, pages 338-349, 2021.
Fei Peng, Zhui Deng, Xiangyu Zhang, Dongyan Xu, Zhigiang Lin, and
Zhendong Su. X-Force: Force-executing binary programs for security
applications. In Proceedings of the USENIX Security Symposium, pages
829-844, 2014.

https://rfc.archlinux.page/0003-buildflags/
https://rfc.archlinux.page/0003-buildflags/
https://developer.arm.com/documentation/ddi0596/2021-06/Base-Instructions/BTI--Branch-Target-Identification-
https://developer.arm.com/documentation/ddi0596/2021-06/Base-Instructions/BTI--Branch-Target-Identification-
https://developer.arm.com/documentation/ddi0596/2021-06/Base-Instructions/BTI--Branch-Target-Identification-
https://github.com/eliben/pyelftools
https://git.centos.org/rpms/redhat-rpm-config/blob/c8s/f/SOURCES/buildflags.md
https://git.centos.org/rpms/redhat-rpm-config/blob/c8s/f/SOURCES/buildflags.md
https://fedoraproject.org/wiki/Changes/HardeningFlags28
https://fedoraproject.org/wiki/Changes/HardeningFlags28
https://lwn.net/Articles/924113/
https://phoronix-test-suite.com
https://phoronix-test-suite.com
https://ghidra-sre.org

Towards Sound Reassembly of Modern x86-64 Binaries

(40]

[41]

[42]

[43]

(45]

[46]

(47]

(48]

(49]

Phoronix. Intel shadow stack finally merged for linux 6.6. https:
//www.phoronix.com/news/Intel-Shadow-Stack-Linux-6.6.

Aravind Prakash, Xunchao Hu, and Heng Yin. vfGuard: Strict protec-
tion for virtual function calls in cots c++ binaries. In Proceedings of
the Network and Distributed System Security Symposium, 2015.

Majid Salehi, Danny Hughes, and Bruno Crispo. uSBS: Static binary
sanitization of bare-metal embedded devices for fault observability.
In Proceedings of the International Conference on Research in Attacks,
Intrusions, and Defenses, pages 381-395, 2020.

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. AddressSanitizer: A fast address sanity checker. In
Proceedings of the USENLX Annual Technical Conference, pages 309-318,
2012.

Vedvyas Shanbhogue, Deepak Gupta, and Ravi Sahita. Security analy-
sis of processor instruction set architecture for enforcing control-flow
integrity. In Proceedings of the International Workshop on Hardware
and Architectural Support for Security and Privacy, 2019.

Ubuntu wiki. Compilerflags. https://wiki.ubuntu.com/ToolChain/
CompilerFlags.

Freek Verbeek, Nico Naus, and Binoy Ravindran. Verifiably correct
lifting of position-independent x86-64 binaries to symbolized assembly.
In Proceedings of the ACM Conference on Computer and Communications
Security, 2024.

Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry,
John Grosen, Paul Grosen, Christopher Kruegel, and Giovanni Vigna.
Ramblr: Making reassembly great again. In Proceedings of the Network
and Distributed System Security Symposium, 2017.

Shuai Wang, Pei Wang, and Dinghao Wu. Reassembleable disassem-
bling. In Proceedings of the USENLX Security Symposium, pages 627-642,
2015.

Xinran Wang, Yoon-Chan Jhi, Sencun Zhu, and Peng Liu. Behavior
based software theft detection. In Proceedings of the ACM Conference
on Computer and Communications Security, pages 280-290, 2009.

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Richard Wartell, Vishwath Mohan, Kevin W Hamlen, and Zhigiang
Lin. Binary stirring: Self-randomizing instruction addresses of legacy
x86 binary code. In Proceedings of the ACM Conference on Computer
and Communications Security, pages 157-168, 2012.

Richard Wartell, Vishwath Mohan, Kevin W Hamlen, and Zhigiang
Lin. Securing untrusted code via compiler-agnostic binary rewriting.
In Proceedings of the Annual Computer Security Applications Conference,
pages 299-308, 2012.

David Williams-King, Hidenori Kobayashi, Kent Williams-King, Gra-
ham Patterson, Frank Spano, Yu Jian Wu, Junfeng Yang, and Vasileios P.
Kemerlis. Egalito: Layout-agnostic binary recompilation. In Proceed-
ings of the International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 133-147, 2020.
Yuan Xiao, Mengyuan Li, Sanchuan Chen, and Yinqian Zhang.
STACCO: Differentially analyzing side-channel traces for detecting
SSL/TLS vulnerabilities in secure enclaves. In Proceedings of the ACM
Conference on Computer and Communications Security, pages 859-874,
2017.

Junyuan Zeng, Yangchun Fu, Kenneth A Miller, Zhiqiang Lin, Xiangyu
Zhang, and Dongyan Xu. Obfuscation resilient binary code reuse
through trace-oriented programming. In Proceedings of the ACM Con-
ference on Computer and Communications Security, pages 487-498,
2013.

Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres,
Stephen McCamant, Dawn Song, and Wei Zou. Practical control flow
integrity and randomization for binary executables. In Proceedings of
the IEEE Symposium on Security and Privacy, pages 559-573, 2013.
Mingwei Zhang, Rui Qiao, Niranjan Hasabnis, and R. Sekar. A platform
for secure static binary instrumentation. In Proceedings of the Interna-
tional Conference on Virtual Execution Environments, pages 129-140,
2014.

Mingwei Zhang and R. Sekar. Control flow integrity for COTS binaries.
In Proceedings of the USENIX Security Symposium, pages 337-352, 2013.

https://www.phoronix.com/news/Intel-Shadow-Stack-Linux-6.6
https://www.phoronix.com/news/Intel-Shadow-Stack-Linux-6.6
https://wiki.ubuntu.com/ToolChain/CompilerFlags
https://wiki.ubuntu.com/ToolChain/CompilerFlags

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

A Artifact Appendix
A.1 Abstract

The artifact contains the code and datasets used in our exper-
iments, along with scripts to reproduce the results presented
in our evaluation. Specifically, it includes: (a) Coreutils-9.1
and Binutils-2.40 binaries used in our tests; (b) scripts for
generating SPEC CPU 2006 and SPEC CPU 2017 binaries; (c)
scripts for generating rewritten binaries with SURI, Ddisasm,
and Egalito; (d) scripts for running the test suite to evaluate
reliability; (e) scripts for measuring SURI’s overhead; and (f)
scripts for demonstrating realworld applications; and (e) de-
tailed instruction documentation for using SURI. Everything
is packaged and pre-built as a Docker image. We expect a
standard x86-64 Linux machine with Docker and Python 3
installed to run this artifact.

Our artifact does not include SPEC CPU 2006 nor SPEC
CPU 2017 binaries due to license restrictions. However, we
provide scripts to generate SPEC binaries to help fully repro-
duce our results in case the reader has a valid SPEC license
and their source code.

A.2 Artifact check-list (meta-information)

e Program: NET 7.0, Python 3 with pip installed, gcc-11 is
required to run SURI locally. For this artifact evaluation,
Python 3 and Docker are necessary.

e Data set: Coreutils (v9.1), Binutils (v2.40), SPEC CPU 2006
(v1.2), SPEC CPU 2017 (v1.1.5). For SPEC CPU benchmarks,
please see A.3.4.

¢ Run-time environment: Linux

e Hardware: x86-64 Machine

e Output: Evaluation results of reassembly on our dataset,
reproducing Table 2 to Table 5 in our paper.

e How much disk space required (approximately)?: Run-
ning experiments only on the Coreutils and Binutils provided
in the artifact dataset requires about 500GB. If including
SPEC benchmark programs by building them, approximately
3TB is needed.

e How much time is needed to prepare workflow (ap-
proximately)?: Using the provided dataset, the setup with
Docker takes around 2-3 hours. If including SPEC bench-
marks, additional time for building and generating metadata
is required, bringing the total preparation time to approxi-
mately 5-6 days.

o How much time is needed to complete experiments (ap-
proximately)?: Running experiments with the basic bench-
mark binaries takes about 7 days. If including the SPEC
benchmarks, the total runtime increases to approximately
30 days.

e Publicly available?: Yes.

e Code licenses (if publicly available)?: MIT License

e Archived (provide DOI)?: On Zenodo (https://doi.org/10.
5281/zenodo.14788616)

A.3 Description

A.3.1 How to access. Download the artifact from the Zen-
odo (https://doi.org/10.5281/zenodo.14788616), or GitHub
(https://github.com/SoftSec-KAIST/SURI).

Hyungseok Kim, Soomin Kim, & Sang Kil Cha

A.3.2 Hardware dependencies. A standard x86-64 ma-
chine with more than 64GB of RAM is required. The Docker
instance used in the artifact is allocated 64GB of memory.
For our experiments, we used a machine equipped with an
Intel Core i9-11900K processor and 128GB of RAM.

A.3.3 Software dependencies. Our artifact is based on
Linux system. If you want to run SURI locally, .NET 7.0,
Python 3, and gec-11 should be installed on your system. For
the artifact evaluation, the minimal software requirement is
Docker and Python 3.

A.3.4 Data sets. In our experiments, total five different
kinds of benchmark binaries are used: Coreutils-9.1, Binutils-
2.40, SPEC CPU 2006 and 2017, 10 real-world programs, and
Juliet test suite.

Our artifact includes prebuilt Coreutils and Binutils bina-
ries as well as metadata containing information about their
assembly code. Moreover, our dataset also contains prebuilt
real-world programs and Juliet test suite binaries. We did
not include SPEC CPU 2006 and SPEC CPU 2017 binaries in
the artifact because of the license restrictions, but readers
can generate them using the provided scripts if they have a
valid SPEC license.

For more details about our dataset, please refer to our
README.md for the artifact evaulation.

A.4 Installation

To install SURI on your local environment, execute the fol-
lowing commands:

$ python3 setup.py install -user

$ cd superCFGBuilder

$ dotnet build

If you want to use SURI with Docker environment, execute
the following commands:

$ python3 setup.py install -user

$ docker build -t suri:vi1.0 .

A.5 Experiment workflow

A.5.1 Preparation. To reproduce our evaluation results,
you need to prepare the experimental environments first.
Our PREPARATION.md explains how you can download
our artifact, how to build Docker images for the evaluation
workflows, and how to build SPEC benchmark binaries in
case you have a valid license of SPEC CPU benchmark.

A.5.2 Experiment. We provide five experiments to repro-
duce our evaluation results.

1. Reassembly completion comparison (RQ1).

2. Test suite pass rate comparison (RQ1).

3. Reliability test on real-world programs (RQ1).
4. Overhead of rewritten binaries (RQ2).

5. Application of SURI (RQ3).

https://doi.org/10.5281/zenodo.14788616
https://doi.org/10.5281/zenodo.14788616
https://doi.org/10.5281/zenodo.14788616
https://github.com/SoftSec-KAIST/SURI

Towards Sound Reassembly of Modern x86-64 Binaries

For more detailed information, please refer to EXPERI-
MENT.md.

A.6 Evaluation and expected results

The first two experiments reproduce Table 2 and 3, as well
as results shown on Section 4.3.3 in our paper. The third
experiment reproduces results explained on Section 4.2.3
in our paper. The fourth experiment reproduces Section 4.3

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

including Table 4, and the last experiment reproduces Table
5.

A.7 Methodology
Submission, reviewing, and badging methodology:

e https://www.acm.org/publications/policies/artifact-review-
and-badging-current
e https://cTuning.org/ae

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://cTuning.org/ae

	Abstract
	1 Introduction
	2 Background And Motivation
	2.1 Problem Scope
	2.2 Intel CET
	2.3 Prevalence of Intel CET-enabled Binaries
	2.4 Symbolic Labels in Assembly
	2.5 Symbolization Challenges and Solutions
	2.6 Remaining Challenges and Our Solutions

	3 Design
	3.1 SURI Architecture Overview
	3.2 Superset CFG Builder
	3.3 CFG Serializer
	3.4 Pointer Repairer
	3.5 Superset Symbolizer
	3.6 Emitter
	3.7 Implementation

	4 Evaluation
	4.1 Experiment Setup
	4.2 Reliability Comparison
	4.3 Overhead of Rewritten Binaries
	4.4 Application of SURI

	5 Discussion
	5.1 Soundness of SURI
	5.2 Generalizability

	6 Related Work
	6.1 Binary Rewriting
	6.2 Symbolization-based Rewriting
	6.3 Analysis of Modern Binaries

	7 Conclusion
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Methodology

