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Abstract—JavaScript engines are an attractive target for
attackers due to their popularity and flexibility in building
exploits. Current state-of-the-art fuzzers for finding JavaScript
engine vulnerabilities focus mainly on generating syntactically
correct test cases based on either a predefined context-free
grammar or a trained probabilistic language model. Unfor-
tunately, syntactically correct JavaScript sentences are often
semantically invalid at runtime. Furthermore, statically analyzing
the semantics of JavaScript code is challenging due to its
dynamic nature: JavaScript code is generated at runtime, and
JavaScript expressions are dynamically-typed. To address this
challenge, we propose a novel test case generation algorithm
that we call semantics-aware assembly, and implement it in a
fuzz testing tool termed CodeAlchemist. Our tool can generate
arbitrary JavaScript code snippets that are both semantically and
syntactically correct, and it effectively yields test cases that can
crash JavaScript engines. We found numerous vulnerabilities of
the latest JavaScript engines with CodeAlchemist and reported
them to the vendors.

I. INTRODUCTION

JavaScript (JS) engines have become a core component of
modern web browsers as they enable dynamic and interactive
features on web pages. As of July of 2018, approximately
94.9% of all the websites use JS [34], and almost all smart-
phones are equipped with a JS-enabled browser today.

The growing popularity of JS also means that JS engines
are an appealing target for attackers. As developers attempt to
improve performance and functionality of modern JS engines,
they continuously introduce new security vulnerabilities. Such
vulnerabilities can be exploited by an attacker to compromise
arbitrary victim machines [19], [20] that are potentially behind
a firewall. In this case, the attacker simply needs to entice the
victim to visit a malicious web page containing a malicious
JS snippet.

As such, there has been much research on finding JS engine
vulnerabilities. LangFuzz [17] is one of the most successful
fuzzers in this field, finding more than 2,300 bugs in JS engines
since 2011 [16]. LangFuzz initially parses sample JS files,
referred to here as JS seeds, and splits them into code frag-
ments. It then recombines the fragments to produce test cases,
i.e., JS code snippets. Another successful JS engine fuzzer is

jsfunfuzz [27], which does not require any sample files unlike
LangFuzz. Instead, it randomly generates syntactically valid JS
statements from a JS grammar manually written for fuzzing.
Although this approach requires significant manual effort to
implement language production rules, it is extremely efficient
in finding JS engine vulnerabilities: it has found more than
2,800 bugs since 2006 [16].

Although successful, current state-of-the-art JS engine
fuzzers suffer from generating semantically valid JS code
snippets. According to our preliminary study, more than 99%
of test cases produced by jsfunfuzz raise a runtime error after
consuming only three JS statements. Given that LangFuzz
does not consider the JS semantics while associating the code
fragments, it has more or less the same problem. For example,
test cases generated from current fuzzers may refer to variables
that are not defined in the current execution context.

One may argue that it is possible to extend jsfunfuzz
to handle full-fledged JS semantics, but writing a complete
grammar for fuzzing requires effort nearly identical to that
required when writing a JS engine, which is not feasible in
practice. To mitigate requirement of the manual effort while
reducing the number of invalid JS test cases to generate,
jsfunfuzz makes JS errors silent by wrapping JS code snippets
with try-catch statements. However, such an approach
does not resolve the root cause of JS runtime errors, and it may
change the semantics of JS code snippets. For instance, the
Proof of Concept (PoC) exploit snippet of CVE-2017-11799
shown in Figure 1 triggers the vulnerability only without a
try-catch statement as a try-catch block suppresses the
JIT optimization, which is critical to trigger the vulnerability.

Skyfire [35] and TreeFuzz [24] partially learn JS language
semantics by building probabilistic language models from a
corpus of JS seed files, and they use the models to generate test
cases. However, these approaches largely rely on the accuracy
of the language models, and they currently suffer from han-
dling the complex type system of JS language, meaning they
are highly likely to produce semantically invalid test cases.
For example, consider the JS statement x.toUpperCase().
When the variable x is not a string, and it does not have a
method toUpperCase, we will observe a type error when
executing the statement. Unraveling such language semantics
with a language model is difficult in practice.

In this paper, we propose a novel test case generation
technique that we call semantics-aware assembly, which can
systematically generate JS code snippets that are both syntac-
tically and semantically correct in a fully automatic fashion.
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The crux of our approach is to break JS seeds into fragments
that we refer to as code bricks. Each code brick is tagged with
a set of constraints representing in which condition the code
brick can be combined with other code bricks. We call such a
condition as an assembly constraint. Specifically, we compute
which variables are used and defined in each code brick using a
classic data-flow analysis [1], and dynamically figure out their
types. We merge code bricks only when the used variables in
each code brick are properly defined from the other code bricks
in front, and their types match. Unlike LangFuzz where it
joins arbitrary code fragments together as long as the language
syntax allows it, the assembly constraints naturally help us
follow the language semantics when interlocking code bricks.
We note that some test cases generated from semantics-aware
assembly may still throw a runtime error as it may over-
approximate the assembly constraints. However, our empirical
study shows that our technique can drastically reduce the
likelihood of encountering runtime errors from the generated
test cases compared to the state-of-the-art JS engine fuzzers.

Furthermore, semantics-aware assembly does not require
any manual effort for implementing language grammars be-
cause it learns JS semantics from existing JS seeds. The similar
intuition is used by LangFuzz, but our focus is not only on
resolving syntactic errors, but also on semantic errors unlike
any other existing JS engine fuzzers.

We implement semantics-aware assembly on a fuzzing tool
that we refer to as CodeAlchemist, and evaluate it on four ma-
jor JS engines: ChakraCore of Microsoft Edge, V8 of Google
Chrome, JavaScriptCore of Apple Safari, and SpiderMonkey
of Mozilla Firefox. Our tool was able to find 4.7× more unique
crashes than jsfunfuzz in one of our experiments. It also dis-
covered numerous previously-unknown security vulnerabilities
from the latest JS engines at the time of writing.

Our main contributions are as follows.

1) We present semantics-aware assembly, a novel tech-
nique for fuzzing JS engines. The proposed tech-
nique can produce random yet semantics-preserving
JS code snippets during a fuzzing campaign.

2) We implement our idea on a prototype called CodeAl-
chemist. To the best of our knowledge, CodeAl-
chemist is the first semantics-aware JS engine fuzzer.

3) We evaluate CodeAlchemist on four major JS en-
gines, and found a total of 19 bugs including 11
security bugs. We reported all of them to the vendors.

II. BACKGROUND

In this section we start by describing the characteristics
of JS language and its type system. We then discuss the
meaning of JS runtime errors that may occur while evaluating
JS code. Since our design goal is to minimize such errors while
generating JS test cases, it is essential to understand what are
they, and what are their implications.

A. JavaScript and the Type System

JS is a dynamic programming language. Thus, JS programs
can modify the type system at runtime, and can dynamically
generate code on the fly, e.g., the infamous eval function
evaluates JS code represented as a string. The dynamic nature

1 //try {
2 class MyClass {
3 constructor() {
4 this.arr = [1, 2, 3];
5 }
6 f() {
7 super.arr = [1];
8 this.x;
9 }

10 }
11 let c = new MyClass();
12 for (let i = 0; i < 0x10000; i++) {
13 c.f();
14 }
15 //} catch (e) {}

Fig. 1: A PoC JS snippet that triggers CVE-2017-11799 in
ChakraCore. If the try-catch statement, which is currently
commented out, is used, the code does not crash ChakraCore.

of the language significantly hurts the precision of static
analyses [29].

There are seven kinds of primitive types in JS:
Undefined, Null, String, Boolean, Symbol,
Number, and Object. An Object type is simply a
collection of properties. Since JS is a dynamically-typed
language, variables can be assigned with any type at runtime.
For instance, one can assign the number 42 to a string variable
s with no problem:

1 var s = ’string variable’;
2 s = 42; // This is valid

Unlike classic object-oriented languages such as C++ and
Java, JS is a prototype-oriented language, which means that
an object instance A can inherit properties of another object
instance B at runtime by simply setting B as a prototype of
A. Any object instances in JS have a __proto__ property,
which can be accessed and modified at runtime. Consider the
following JS statement as an example:

1 var arr = new Array(42);

After evaluating the above statement, the initialized array
variable arr will have the Array object as its prototype.
By accessing the property (arr.__proto__), we can easily
figure out which prototype is used by an object instance at
runtime. Additionally, we can also dynamically assign a new
prototype to an object instance during a program execution.
Since the type system of JS can dynamically change, it is
likely to encounter runtime errors during the evaluation of JS
statements.

B. JavaScript Runtime Errors

Even a syntactically valid JS snippet can raise runtime
errors, which is indeed the key motivation to our research.
There are five kinds of native runtime errors defined in the
ECMAScript standard [9] (corresponding object names are
in parentheses): syntax error (SyntaxError), range error
(RangeError), reference error (ReferenceError), type
error (TypeError), and URI error (URIError). Figure 2
presents sample statements that can raise them. Each line in
the figure is independent to each other, and can run separately
to throw a specific runtime error.
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1 eval(’break’); // SyntaxError
2 var r = new Array(4294967296); // RangeError
3 u; // ReferenceError
4 var t = 10; t(); // TypeError
5 decodeURIComponent(’%’); // URIError

Fig. 2: Sample statements for runtime errors. Each line throws
a specific runtime error when it is individually evaluated.

Syntax errors trigger when a JS engine interprets syntac-
tically invalid code. Since JS is a dynamic language, code
that looks syntactically correct can still raise a syntax error
at runtime. For example, Line 1 in Figure 2 presents a case
where a break statement is evaluated on the fly with the
eval function. Note that the statement itself is syntactically
correct, but a syntax error is raised when it is evaluated because
it is not within a loop in the current context.

Range errors happen when we try to use a value that is not
in the allowed range. For example, Line 2 shows a syntactically
valid JS statement, which will throw a range error because the
Array constructor only accepts a number less than 232 − 1,
and 4294967296 = 232.

Reference errors occur when accessing an undefined vari-
able. The variable u in Line 3 is used without any prior
definition. According to our study, this is the most common
error that we can detect while fuzzing JS engines.

Type errors arise when the actual type of a value is different
from the expected type. For example, Line 4 declares an integer
variable t, but then, we consider the variable as a function,
and make a function call. As a result, we will encounter a type
error after executing the line.

Finally, URI errors appear during the execution of global
URI functions when they were used in a way that is incom-
patible with their definition. Line 5 raises a URI Error because
the given parameter string is not a valid URI.

In addition to the native errors, there can be runtime errors
defined by programmers, which we refer to as a custom error
in this paper. One can define custom errors by instantiating the
Error object, and can raise them with a throw statement.
Our focus in this paper is on reducing the number of native
runtime errors, but not custom errors as they are a part of the
JS semantics anyways.

III. MOTIVATION

Our research is inspired by a preliminary study that we
performed with jsfunfuzz [27], one of the state-of-the-art JS
engine fuzzers. We chose jsfunfuzz because it is historically
the most successful JS engine fuzzer that is open-sourced.
LangFuzz [17], for instance, is not publicly accessible.

We ran jsfunfuzz on the four major JS engines, i.e.,
ChakraCore, V8, JavaScriptCore, SpiderMonkey, and observed
interesting phenomena: (1) we encountered a runtime error for
every JS file that jsfunfuzz generated; and (2) each of the file
returned a runtime error after evaluating only few statements.
Particularly, we were able to catch a runtime error in 99.5%
of the cases with only three or less top-level 1 statements.

1Each top-level statement generated from jsfunfuzz included 2.5 statements
on average.

Kind # of Occurrences
Î ¹ ¸ º

Syntax Error 18,200 17,429 17,998 17,135
Range Error 310 285 328 308
Reference Error 78,294 79,116 78,401 78,935
Type Error 3,196 3,169 3,273 3,507
URI Error 0 0 0 0
Custom Error 0 1 0 115

Total Count 100,000 100,000 100,000 100,000

(a) Classification of runtime errors encountered while fuzzing the
four major JS engines with jsfunfuzz for 100,000 iterations. The
four engines are ChakraCore Î, V8 ¹, JavaScriptCore ¸, and
SpiderMonkey º.
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(b) The frequency of JS files (out of 100,000 generated files) over
the number of valid top-level statement(s).

Fig. 3: Our preliminary study on jsfunfuzz.

We counted how many runtime errors that we can catch
while evaluating 100,000 dynamically generated JS code snip-
pets on each of the engines. Note that jsfunfuzz generates a
stream of a potentially infinite number of JS statements until it
finds a crash while suppressing any runtime error by wrapping
JS code blocks with try-catch statements as appeared in
the comments in Figure 1. For the purpose of this study, we
ran jsfunfuzz on each JS engine for 20 fuzzing iterations.
This means that we used jsfunfuzz to generate a sequence
of 20 JS code blocks, which have 2.5 statements on average,
wrapped with a try-catch statement, and stored the entire
sequence to a file. We collected 100,000 of such JS files for
each engine, and then removed try-catch statements from
the files, so that we can immediately detect a runtime error
while evaluating them. As a consequence, all the generated JS
files produced a runtime error when evaluated.

Figure 3a summarizes the result. We found on average
78.7% and 17.7% of the JS files raised a reference error and
a syntax error, respectively. In theory, grammar-based fuzzers
such as jsfunfuzz should not produce any syntax error unless
they produce some dynamically changing code, e.g., eval.
However, we observed that most of the JS files were throwing
a syntax error without dynamically modifying code. For ex-
ample, we observed that jsfunfuzz can produce JS statements
with a mismatching bracket. This is because jsfunfuzz has a
manually written grammar, which may contain incorrect or
incomplete production rules. And this result highlights the
difficulty of writing grammars for fuzzing, which motivates
one of our design goal: our fuzzer should automatically
generate JS test cases while minimizing runtime errors without
manually written grammar.
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We further analyzed the result to check how many valid
top-level statements—we counted a block statement as one
regardless of how many nested statements it has—jsfunfuzz
was able to evaluate for each JS file until it hits a runtime error.
As we discussed, all the JS files from jsfunfuzz threw a runtime
error when evaluated, but the first few statements in each JS
file were indeed valid. Figure 3b presents the histogram of the
number of valid top-level statements evaluated for each JS file
with jsfunfuzz. Notably, more than 75% of the JS files threw
a runtime error at the very first top-level statement, i.e., there
was no semantically valid JS statement. And 99.5% of the JS
files triggered a runtime error after evaluating three or less JS
top-level statements. That is, only a few top-level statements
produced by jsfunfuzz were valid at runtime, which is indeed
the key observation that motivated our research.

The aforementioned observations point out a primary chal-
lenge in JS engine fuzzing: automatically generating seman-
tically valid JS code snippets during a fuzzing campaign. In
this paper, we address the challenge by introducing a novel
fuzzing technique, called semantics-aware assembly.

IV. OVERVIEW

In this section, we start by introducing semantics-aware
assembly, a novel test case generation algorithm for JS engine
fuzzing. We then outline the overall architecture of CodeAl-
chemist, which implements semantics-aware assembly. Finally,
we describe how CodeAlchemist generates valid JS test cases
by stepping through each step it performs on a running
example.

A. Semantics-aware Assembly

The primary challenge of CodeAlchemist is to generate
test cases, i.e., JS code snippets that are both syntactically
and semantically valid. To address the challenge, we propose
semantics-aware assembly, a novel test case generation al-
gorithm for JS engine fuzzing. The key intuition behind our
approach is to fragmentize JS seeds into a set of combinable
building blocks that we call code bricks. A code brick repre-
sents a valid JS Abstract Syntax Tree (AST). Therefore, a code
brick itself can be evaluated by a JS engine. For example, a JS
statement can become a code brick, and a block of statements
(BlockStatement) can also become a code brick.

Each code brick can be annotated with an assembly con-
straint, which is a set of rules to follow when interconnecting
the code brick with other code bricks. Specifically, an assem-
bly constraint encodes two conditions: a precondition and a
postcondition. A precondition is a set of variable symbols as
well as their types that are required to be defined to execute
the code brick without a runtime error.

A postcondition describes what kinds of variables are
available, i.e., defined, at the end of the code brick after
evaluating it. Given a code brick B, which does not have
any preceding code brick in front, any code brick B′ 6= B
can be a valid candidate that can be placed next to B if the
postcondition of B satisfies the precondition of B′. Starting
from a small code brick, semantics-aware assembly repeatedly
extends it by merging it with additional code bricks. Note, by
definition, a code brick can always become a valid JS code
snippet.

1 var f = function (){ return 42; };
2 var n = f();

(a) A sample JS seed with two statements. We assume that we create
one code brick for each statement, respectively.

var f = function(){ return 42; }

s0s0: func

B1B1

var n = f(); 

s2s2: funcs1s1: num

s0s0: func

B2B2

(b) Two code bricks obtained from the seed. The teeth and holes on
each code brick represent the assembly constraints.

Fig. 4: Code bricks with assembly constraints.

Suppose that CodeAlchemist splits the sample seed in
Figure 4a into two initial code bricks that contain only the
first and the second statement, respectively. Figure 4b shows
the resulting code bricks. The first code brick B1 has no
precondition, but it has a postcondition with a function symbol
s0, which indicates any code brick calling a function can
follow. The second code brick B2 requires a definition of
a function symbol s0 in its precondition. It also has its
postcondition that defines two symbols s1 and s2 as a number
and a function, respectively.

We can use B1 at the beginning, but not B2 because of its
assembly constraint: the precondition of B2 requires a function
symbol to be defined, but there is no preceding code brick in
front of it. However, we can append both B1 and B2 to B1, as
the postcondition of B1 can satisfy the precondition of B1 and
B2. When two code bricks merge, unmatched symbols from
the postcondition of the front brick propagate to the resulting
code brick. For example, when we merge two B1 code bricks,
the final code brick will have a postcondition with two function
symbols.

There are several design challenges to overcome in order
to make semantics-aware assembly practical. We discuss the
challenges in detail and show how we address them in §V.
First, we need to decide how to break JS code into code
bricks (§V-A). Second, we want to maintain a pool of code
bricks while minimizing its size and preserving its semantics
(§V-B). Third, we should rename symbols in code bricks
when we assemble them so as to avoid potential reference
errors (§V-C). Fourth, we need to figure out data dependencies
between variables in each code brick in order to compute
assembly constraints (§V-D). Fifth, the precision of assembly
constraints largely depends on the quality of our type analysis.
Thus, we should design an effective way to infer types of
variables (§V-E). Lastly, we need to devise an effective way to
combine code bricks with assembly constraints to build highly-
structured code snippets (§V-F).
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Fig. 5: CodeAlchemist Architecture.

B. CodeAlchemist Architecture

Figure 5 depicts the architecture of CodeAlchemist. At
a high level, it takes in as input a JS engine under test,
a set of JS seed files, and a set of user-configurable pa-
rameters, and it outputs a set of bugs found in the engine.
CodeAlchemist consists of three major components: SEED
PARSER, CONSTRAINT ANALYZER, and ENGINE FUZZER.
The SEED PARSER module breaks given JS seeds into a set of
code bricks. The CONSTRAINT ANALYZER module then infers
assembly constraints for each code brick, and annotates them
with the computed assembly constraints, which ultimately
constitute a code brick pool. Finally, the ENGINE FUZZER
module assembles the code bricks from the pool based on their
assembly constraints to generate test cases and to execute the
generated test cases against the target JS engine.

1) SEED PARSER: This module first parses each JS seed
down to an AST based on the ECMAScript language spec-
ification [9]. The Parse function returns an AST from a
given seed as long as it is syntactically correct. To filter out
semantically unique code bricks, the Split function breaks
the ASTs into code bricks and normalizes the symbols in
them. All the broken code bricks should represent a valid AST,
although they are not tagged with assembly constraints yet.

2) CONSTRAINT ANALYZER: This module figures out an
assembly constraint for each of the fragmentized code bricks.
First, the Analyze function recognizes which symbols are
used and defined in each code brick using a classic data-flow
analysis [1]. The Instrument function then traces types of
the variables by dynamically instrumenting code bricks. As a
result, CONSTRAINT ANALYZER returns a set of code bricks,
each of which is tagged with an assembly constraint. We call
such a set as a code brick pool, which is later used to generate
test cases, i.e., JS code snippets, for fuzzing.

3) ENGINE FUZZER: Now that we have code bricks to play
with, the ENGINE FUZZER module uses them to fuzz the target
JS engine. Specifically, the Generate function iteratively
assembles code bricks based on their assembly constraints
in order to generate test cases. It also takes a set of user-
configurable parameters which adjusts the way of combining
the code bricks (see §V-F). Finally, the Execute function
executes the target JS engine with the generated test cases. If
the engine crashes, it stores the corresponding test case (a JS
file) on a file system.

1 var n = 42; // Var1
2 var arr = new Array(0x100); // Var2
3 for (let i = 0; i < n; i++) // For3-0, For3-1
4 { // Block4
5 arr[i] = n; // Expr5
6 arr[n] = i; // Expr6
7 }

(a) An example JS code snippet used as a seed.

1 var s0 = new Array(0x100); // Var2
2 var s1 = 42; // Var1
3 for (let s2 = 0; s2 < s1; s2++) { // For3-1
4 for (let s3 = 0; s3 < s2; s3++) { // For3-0
5 s0[s3] = s2;
6 s0[s2] = s3;
7 }
8 }

(b) A generated code snippet from the seed.

Fig. 6: A running example.

C. Running Example

We now discuss the detailed procedure of CodeAlchemist
step by step. Suppose CodeAlchemist takes in the code snippet
shown in Figure 6a as a seed. At a high level, CodeAlchemist
will repeatedly produce test cases based on the semantic
structure that it learned from the seed. Figure 6b presents one
of such test cases.

First, CodeAlchemist parses the given seed to obtain an
AST. It then breaks the AST into a set of code bricks. In the
current implementation of CodeAlchemist, we fragmentize an
AST in the granularity of JS statements. Figure 6a presents in
the comments what kind of code bricks are generated for each
statement. Specifically, the seed is broken into seven distinct
code bricks: two code bricks for the variable declaration
statements (Var1, Var2); a code brick for the whole for-
loop statement and another with an empty body (For3-0,
For3-1); a code brick for the body of the loop itself
(Block4); and two code bricks for the expression statements
(Expr5, Expr6). Note that the body of For3-1 is empty
and it can be used to generate diverse for-loops, whereas
For3-0 represents the whole for-loop statement. For exam-
ple, we can construct nested for-loops with For3-1, but not
with For3-0.

Next, CodeAlchemist normalizes all the identifiers in the
code bricks, and deduplicates them to minimize the number
of code bricks to consider when assembling them. We exclude
built-in symbols such as Array from normalization to pre-
serve the semantics of code bricks. In our case, Expr5 and
Expr6 are the same code brick as they appear in the form of
s0[s1] = s2, where s0, s1, and s2 are placeholders for
three distinct variables. Thus, we will have a total of six code
bricks in our pool after this step.

Now that we have obtained a set of unique code bricks,
CodeAlchemist annotates each of them with an assembly
constraint. To compute assembly constraints, we first figure
out which variables are used and defined in each code brick
with a static data-flow analysis. Note that we will not use
normalized symbols in this example to ease the explanation.
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As an example, let us consider Var1, which does not have
any used variable, but has one defined variable n. If we denote
the use-def variables by U → Code Brick → D, where U
is a set of used variables and D is a set of defined variables,
then we can obtain the use-def variables for each code brick
as follows.

1) {} → Var1→ {n}
2) {} → Var2→ {arr}
3) {n,arr} → For3-0→ {n,arr}
4) {n} → For3-1→ {n,i}
5) {i,n,arr} → Block4→ {i,n,arr}
6) {i,n,arr} → Expr5→ {i,n,arr}

We note that For3-0 corresponds to the whole for-loop
including its body, and it does not define any new variable,
because the variable i is not live after escaping from the for-
loop. However, the same variable i is considered as a defined
variable for For3-1 because it is accessible within the loop
body, i.e., it is live at the entry of the loop body. The For3-1
code brick is used to create a new for-loop from scratch by
filling in its body with other code bricks.

CodeAlchemist then rewrites the given seed file to log types
of all the variables in each of the code bricks. Since we split
off a seed in the granularity of JS statements, we instrument
every JS statement. By executing the rewritten seed, we can
dynamically identify types of all the variables used or defined
in each code brick. For example, we can figure out that the
variable i and n are a Number, and the variable arr is an
Array. CodeAlchemist annotates each code brick with the
inferred type information, which forms an assembly constraint.
For instance, the assembly constraint for Expr5 is as follows.

Pre: {s0: Number, s1: Number, s2: Array}
↓

Expr5
↓

Post: {s0: Number, s1: Number, s2: Array}.

The assembly constraint indicates that one or more code bricks
should precede Expr5 because its precondition requires the
three defined variables. After this step, our pool contains six
annotated code bricks.

Finally, CodeAlchemist generates test cases by interlocking
code bricks in the pool. It starts with an empty code brick
B0 that has an empty assembly constraint. Since B0 has no
postcondition, we can only append a code brick to B0 if it does
not have any precondition. There are two such code bricks:
Var1 and Var2. CodeAlchemist selects one at random, and
in this example, CodeAlchemist picks Var2. It then creates a
new code brick B1 by merging B0 with Var2, which simply
results in Var2 (Line 1 in Figure 6b).

The combined code brick B1 has a postcondition that
defines an Array variable. This means a code brick that uses
an Array variable in its precondition can follow B1. However,
in our case, there are still two available candidates: Var1
or Var2. For instance, For3-0 is not available, because
it depends on a Number variable as well as an Array
variable. Suppose CodeAlchemist selects Var1, and appends
it to B1 to obtain a new code brick B2 that contains two
consecutive JS statements Var2 and Var1. When we compute

the postcondition of B2, it contains two variables: an Array
and a Number variable.

Therefore, there are four distinct code bricks that we can
append to B2: Var1, Var2, For3-0, and For3-1. In
this example, CodeAlchemist randomly picks For3-1 among
the candidates, and connects it with B2, which results in a new
code brick B3 containing two assignment statements followed
by an empty for loop. We compute the postcondition of B3,
which has two Number variables (s1 and s2) and an Array
variable (s0). Therefore, at this point, any code bricks in
our pool can be appended to B3. Suppose CodeAlchemist
randomly picks For3-1 as the next code brick, and appends
it to B3 to generate a new code brick B4, which represents
the entire code snippet shown in Figure 6b. Assuming that
we have set the maximum number of attempts for code brick
generation to three, CodeAlchemist stops to expand the code
brick at this point. CodeAlchemist repeats this process to fuzz
the target engine until it hits a timeout.

V. CODEALCHEMIST DESIGN

In this section, we present the design and implementation
of CodeAlchemist in detail. CodeAlchemist enables semantics-
aware test case generation for JS engines, which allows us to
discover security vulnerabilities from the target engines.

A. Seed Fragmentization

In this paper, we have defined a code brick as a valid AST
(see §IV-A). According to the ECMAScript standard [9], a
JS AST is expressed as a set of statements and expressions,
where a statement can recursively include other statements and
expressions. For example, a while statement consists of a
guard and a body statement, where the body statement can
contain a group of other statements and expressions.

One straightforward way of fragmentizing ASTs is to
follow the approach of LangFuzz [17], where it breaks an AST
into a set of subtrees by making each of its non-terminal nodes
in the AST as a root node of a subtree. However, as the authors
admitted there can be many overlapped fragments in the pool
if we consider every non-terminal node in the AST.

Another way is to split them in the granularity of JS
expressions. Since a JS expression itself forms a valid AST, it
can be a valid code brick too. Expression-level fragmentization
results in smaller number of code bricks compared to the
LangFuzz’s approach, but it does not capture the high-level
structure of JS code. For instance, it is not straightforward
to generate a JS statement that contains a for-loop with
expression-level fragmentization.

In our current implementation of CodeAlchemist, we frag-
mentize seeds in the granularity of JS statements. Since every
code brick represents a valid statement, it is straightforward
to interconnect them to make a valid JS code snippet: we
can simply arrange them in a sequential order. Furthermore,
statement-level fragmentization significantly reduces the num-
ber of code bricks to consider compared to that of the two
aforementioned fragmentization approaches. However, it is not
difficult to express complex semantic structure of JS with our
code bricks.
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The SEED PARSER module recursively traverses each state-
ment in an AST, and returns a set of fragmentized code bricks.
Since a JS statement can be nested, we need to recursively find
every statement. While traversing an AST, we may encounter a
block statement, which is a group of statements. For example,
a body of a while-loop is a block statement. For every block
statement, we make two separate code bricks: one with the
whole original body, and another with an empty body. If the
block statement has a guard, we make an additional code brick
that contains the statement as a whole, but without the guard.
For instance, consider the following while statement:

1 while (x) { i += 1; }

This statement will produce four code bricks in total. One code
brick contains the whole while-loop including the body:

1 while (s0) { s1 += 1; } // Code Brick w/ body

Another code brick has the while-loop with an empty body:

1 while (s0) {} // Code Brick w/o body

Another code brick has the loop body without the guard:

1 { s0 += 1; } // Code Brick w/o guard

The final code brick is found by the recursive traversal:

1 s0 += 1; // Last Code Brick

This is to increase the likelihood of generating test cases with
a complex and nested control structure, while preserving the
original semantic structure of given seeds. From our experi-
ments, we observed that highly-constructed JS code tends to
trigger security-related bugs of JS engines.

B. Code Brick Pool

CodeAlchemist builds a code brick pool that contains a
unique set of code bricks obtained from various seed files.
Since there can be syntactically different, but semantically the
same code bricks, CodeAlchemist deduplicates them and only
stores unique code bricks to the pool. Particularly, CodeAl-
chemist considers two code bricks to be the same, when they
have the same AST except for their symbols. For instance, the
two statements in Line 5 and Line 6 in Figure 6a are the same
if we normalize their symbols.

CodeAlchemist also filters out several uninteresting code
bricks from the pool. First, there are several built-in functions
that hinder the fuzzing process when building a code brick
pool, such as crash function on SpiderMonkey. The crash
function will literally raise a SIGSEGV signal when executed.
Therefore, if we have such a code brick that contains a call to
crash, we may end up having too many false alarms from our
fuzzer. We also exclude the eval function when building code
bricks. Since CodeAlchemist currently cannot infer assembly
constraints for dynamically generated code, we may encounter
runtime errors when we combine code bricks that invoke the
eval function. Finally, we also eliminate code bricks that can
be considered as no-op, e.g., an expression statement with a
literal (42;) is effectively a no-op.

To ensure that generated code bricks are syntactically
correct, we evaluate all of them on the target JS engine once.
If there is a syntax error, we remove such code bricks from

our pool. From our empirical study, only 1.3% of code bricks
generated from semantics-aware assembly result in a syntax
error, and most of them are due to dynamically generated code
using the Function object.

C. Semantics-Preserving Variable Renaming

CodeAlchemist renames variables of code bricks in two
cases: (1) when it builds a code brick pool (recall §V-B), it
deduplicates semantically the same code bricks by normalizing
symbols in each code brick; and (2) when it assembles two
code bricks, it renames symbols so that all the used variables
can refer to variables of the same type.

However, there are pre-defined symbols that we cannot
simply rename as we may break their semantics. In particular,
each JS engine has pre-defined symbols, which are so-called
built-in objects. For example, RegExp is a pre-defined object
for a regular expression, and thus, we cannot simply change
the symbol as it means a specific built-in JS object.

To rename symbols in code bricks while preserving their
semantics, CodeAlchemist initially gets a list of built-in objects
by executing the target JS engine once at startup. When
renaming symbols in a code brick, we exclude symbols in
the list. More specifically, we incrementally assign a sequential
number for each unique symbol in the order of their appearance
in the AST, and assign a new name for each symbol by
prefixing “s” to its number. That is, we give a symbol name
s0, s1, · · · , sn to n distinct symbols in the code brick in
the order of their appearance in the AST.

D. Data-Flow Analysis

The Analyze function statically performs a data-flow
analysis to identify variables that are used and defined in each
code brick. For a given code brick B, defined variables of
B are the ones that are live at the exit point of B. We can
compute such variables for a given code brick with a traditional
live variable analysis [1] based on the control-flow graph of
the code brick. We say variables in a code brick B are used
variables if they do not have a reaching definition [1]. We
compute used variables of a code brick by maintaining a use-
def chain.

Since our analysis is path-insensitive as in traditional data-
flow analyses, we may incorrectly judge defined and used
variables from a code brick. For example, suppose there is
a code brick that contains a single if statement where the
true branch assigns a number to a variable x, and the false
branch does not touch the variable x at all. Depending on the
condition of the if statement, the variable x can be considered
as defined or not. However, our analysis will always say the
variable is defined. This means our analysis may incorrectly
judge the assembly constraint of a given code brick. However,
making the computation of assembly constraints precise with
a path-sensitive analysis is beyond the scope of this paper.

E. Type Analysis

Recall from §II-A, the JS type system has only seven
primitive types. If we only consider such primitive types, CON-
STRAINT ANALYZER may over-approximate types of variables
in each code brick as an Object type because nearly all
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objects in JS are instances of Object [21]. For example, any
useful data structure types in JS such as Array and Map are
inherited from the Object type.

The key problem here is that by over-approximating assem-
bly constraints for code bricks, we may easily hit a runtime
error when executing interconnected code bricks. For instance,
suppose there are three code bricks each of which consists of
a single JS statement as follows:

1 o = {}; // Code Brick A
2 a = new Array(42); // Code Brick B
3 s = a.sort(); // Code Brick C

If our type system can only distinguish primitive JS types,
the code brick A will have a postcondition {s0 : Object},
and the code brick C will have a precondition {s0 : Object}.
Since the precondition of C and the post condition of A match,
CodeAlchemist will happily combine them into a code brick,
which will produce the following JS code snippet:

1 s0 = {};
2 s1 = s0.sort();

Note, however, this will raise a runtime error (TypeError)
when evaluated because the sort member function is not
defined in s0.

To handle such problems, CodeAlchemist build our own
type system that includes the seven primitive types as well as
all the subtypes of Object defined in built-in constructors of
the target JS engine. With our type system, we can distinguish
between Array and Object. Thus, CodeAlchemist will not
attempt to combine A and C from the above example.

CodeAlchemist dynamically infers types of the variables
in each code brick by instrumenting the corresponding JS
seed file. Particularly, the Instrument function rewrites a
given JS seed by inserting type logging functions both at the
beginning and at the end of each code brick. We recursively
insert logging functions for every possible code brick of a
given JS seed file. Each logging function takes in a list of
variables as input, and returns a mapping from the variable
names to dynamically inferred types. By executing the target
JS engine with the rewritten seed, CodeAlchemist can compute
assembly constraints for every code brick in the seed.

Note that two or more distinct seed files may have seman-
tically the same code bricks after variable renaming. Although
two code bricks from two different seed files have exactly
the same AST, types of the variable in the code bricks may
differ depending on their execution context. Let us consider
the following code brick containing an if statement.

1 if (x < 42) y = 42;
2 else y = [];

From the above snippet, the variable y can be either a Number
or an Array depending on the value of x. Suppose there are
two seed files that contain the above code brick, and each seed
executes the if statement with two distinct values 0 and 50
for x, respectively. Then the type of y can be either Number
or Array depending on which seed we execute.

In this case, we give a union type for the variable y in
the code brick. Specifically, when there are two or more seed
files for a given code brick, we may have union types in

Algorithm 1: Code Generation Algorithm.
Input : A pool of code bricks (P ),

A code brick (B),
The max number of iterations for code generation (imax),
The probability of reinventing block statements (pblk),
The max number of statements in a block body (iblk),
The max nesting level for a block statement (dmax).

Output: A generated code brick representing a test case.

1 function Generate(P , B, imax, pblk, iblk, dmax)
2 for i = 1 to imax do
3 if RandProb() < pblk and dmax > 0 then
4 B′ ← GenBlkBrick(P , B, pblk, iblk, dmax-1)

5 else
6 B′ ← PickBrick(P , B)

7 B ← MergeBricks(B, B′)

8 return B

9 function GenBlkBrick(P , B, pblk, iblk, dmax)
10 B′ ← PickEmptyBlock(P , B)
11 B0 ← GetDummyBrick(B, B′)
12 i← RandInt(iblk)
13 B′′ ← Generate(P , B0, i, pblk, iblk, dmax)
14 return MergeBricks(B′, B′′)

the assembly constraint. This is another instance where our
technique lacks precision due to its path-insensitivity. As we
discussed in §V-D, employing a path-sensitive way to compute
assembly constraints is beyond the scope of this paper.

F. Code Brick Assembly

The Generate function of ENGINE FUZZER assembles
code bricks in the code brick pool (P ) to produce test cases.
Algorithm 1 presents the pseudo code of it. There are four
user-configurable parameters that Generate takes in.

imax The maximum number of iterations of the genera-
tion algorithm. This parameter essentially decides
how many top-level statements to produce.

pblk The probability of reinventing block statements.
This parameter decides how often we generate
block statements from scratch.

iblk The maximum number of iterations for generating
a block statement. This parameter decides how
many statements are placed within a newly gen-
erated block statement.

dmax The maximum nesting level for a reassembling
block statement. When CodeAlchemist generates
a new block statement from scratch, it limits the
nesting depth of the block statement with dmax,
because otherwise, the generation algorithm may
not terminate.

In this paper, we only focus on the first two parameters among
the four (imax and pblk) while using the default values for
the other two (iblk = 3 and dmax = 3). That is, we used the
default values for the two parameters for all the experiments we
performed in this paper. The default values were empirically
chosen though several preliminary experiments we performed
with varying iblk and dmax. For example, if iblk and dmax were
too large, generated test cases ended up having too complicated
loops, which are likely to make JS engines stuck or hang when
evaluated.
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The algorithm starts with a code brick pool P , an empty
code brick B, and the four parameters given by an analyst.
In the for-loop of the algorithm (Line 2–7), CodeAlchemist
repeatedly appends a code brick to B, and returns the updated
B at the end, which becomes a new test case for fuzzing
the target engine. The loop iterates for imax times. Note our
algorithm only appends code bricks: we currently do not
consider code hoisting while stitching code bricks.

For every iteration, CodeAlchemist picks the next code
brick B′ to append, which can be either a regular JS statement
or a reinvented block statement as we described in §V-A. It
selects a reinvented block statement with the probability of
pblk, or a regular statement with the probability of 1 − pblk.
The RandProb function in Line 3 returns a floating number
from 0 to 1 at random.

The GenBlkBrick function in Line 4 randomly selects a
code brick among the ones that have an empty block statement
and the precondition of it satisfy the postcondition of B. It
then fills up the body of the block statement, and returns
the newly constructed code brick. On the other hand, the
PickBrick function in Line 6 randomly picks a code brick,
the precondition of which satisfies the postcondition of B, from
the pool P . When there are multiple candidate code bricks,
PickBrick randomly selects one with probability propor-
tional to the number of unique symbols in the precondition.
This is to increase the dependency among statements in the
generated test cases as semantically complex code tends to
trigger JS engine bugs more frequently.

Both Line 4 and Line 6 return a new code brick B′ to use,
which will be appended to B with the MergeBricks func-
tion in Line 7. To avoid reference errors, it replaces symbols in
the precondition of B′ with the symbols in the postcondition of
B based on their types. When there are multiple symbols with
the same type, we randomly select one of them, and replace
its symbol. After renaming, CodeAlchemist recomputes the
assembly constraint of the merged code brick in order to
preserve the semantics of it.

The GenBlkBrick function builds a code brick for a
block statement from scratch. The PickEmptyBlock func-
tion in Line 10 the pool P and the current code brick B
maintained by CodeAlchemist as input, and returns a code
brick B′ in P that satisfies the following two conditions: (1)
B′ should contain an empty block statement, which may or
may not include a guard, and (2) the precondition of B′ should
meet the postcondition of B. The GetDummyBrick function
in Line 11 then extracts a random subset of the postconditions
of B and B′ in order to build a new postcondition c, and then
create a dummy code brick B0, where the postcondition of it
is c. Next, CodeAlchemist generates a code brick B′′ for the
body of the block statement using the Generate function
with the dummy code brick B0.

Note that the Generate and GenBlkBrick are mu-
tually recursive, and they allow us to generate nested block
statements. We limit the nesting depth of a newly generated
block by dmax. The RandInt function in Line 12 decides the
maximum number of iterations to be used in generating the
block body. It returns a random integer from 1 to iblk. Finally,
GenBlkBrick merges B′ and B′′, and returns the merged
one as a new code brick containing a new block statement,

which is potentially nested up to the depth dmax.

G. Implementation

We have implemented CodeAlchemist with 0.6K lines of
JS code, 0.1K lines of C code, and 5K lines of F# code. We use
JS for parsing and instrumentation, C for executing JS engines,
and F# for the entire system. Our system heavily relies on the
asynchronous programming feature of F#. Since our algorithm
is written in a functional manner, i.e., no side-effects, it is
straightforward to achieve concurrency.

To parse JS seeds, we use Esprima [15], which is a
Node.js [22] library for parsing JS code. The parsed ASTs are
then passed to the Split function, which is written in F#,
as a JSON file. The counter part of JS parsing is to convert
an AST to a JS code snippet. There exists a famous library in
Node.JS, called escodegen [30], for that purpose. However, we
implemented our own code generator in F# in order to reduce
the communication cost between Node.JS and F#.

We also implemented our own JS library that includes
several helper functions for figuring out types of variables in
each code brick with dynamic instrumentation. Our system
currently supports the seven primitive types and built-in types
we mentioned in §V-E. The Instrument function (written in
F#) rewrites given JS seeds in such a way that each code brick
will call the instrumentation functions defined in the library.

Finally, the ENGINE FUZZER module is written in both F#
and C. The Generate function, which is purely written in
F#, generates test cases for fuzzing as we discussed in §V-F.
The core of the Execute function, however, is written in C,
in order to efficiently interact with native system functions.
We make our source code public on GitHub: https://github.
com/SoftSec-KAIST/CodeAlchemist.

VI. EVALUATION

We now evaluate CodeAlchemist to answer the followings:

1) Can CodeAlchemist generate semantically valid test
cases? (§VI-B)

2) Does the fuzzing parameters such as imax and pblk
affect the effectiveness of CodeAlchemist? If so,
which values should we use? (§VI-C)

3) How does CodeAlchemist perform compared to the
state-of-the-art fuzzers in terms of finding bugs?
(§VI-D)

4) Can CodeAlchemist find real-world vulnerabilities in
the latest JS engines? (§VI-E)

5) What do the vulnerabilities found by CodeAlchemist
look? (§VI-F)

A. Experimental Setup

We ran experiments on a machine equipped with two Intel
E5-2699 v4 (2.2 GHz) CPUs (88 cores) and 512 GB of main
memory, which is operated with 64-bit Ubuntu 18.04 LTS. We
selected the four major JS engines of the latest stable version as
of July 10th, 2018: (1) ChakraCore 1.10.1; (2) V8 6.7.288.46;
(3) JavaScriptCore 2.20.3; (4) SpiderMonkey 61.0.1. Note that
we used only ChakraCore for the first three experiments due
to our resource limit. We chose ChakraCore because it has
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number of evaluated top-level statement(s).

well-organized commit logs that specify which commit patches
which CVE vulnerability. On the other hand, we used all the
four JS engines for the rest of the experiments.

Seed Collection. Recall that semantics-aware assembly
learns language semantics from JS seeds, and thus, having a
reasonable set of seed corpus is essential. To gather JS seeds,
we first downloaded (1) regression tests from repositories of
the four major JS engines, and (2) test code snippets from
Test262 [31], which is an official ECMAScript conformance
test suite. From all the collected JS seed files, we filtered
out some of them that are syntactically invalid or containing
statements using engine-specific syntax. Finally, we were able
to collect a total of 63,523 unique JS files from both test
suites. In addition, we collected 169 PoC exploits, which can
trigger previously known security vulnerabilities, by manually
crawling bug trackers and GitHub repositories. In total, we
gathered 63,692 unique JS seeds for our experiments.

Code Brick Pool. We first ran the SEED PARSER module
to obtain 264,629 unique code bricks from the 63,692 seeds.
We then ran the CONSTRAINT ANALYZER module to assign
assembly constraints to the code bricks. Finally, we filtered
out code bricks that contain uninteresting statements as we
discussed in §V-B. Consequently, we gathered 49,800 code
bricks in our code brick pool. Note that the reason why
we have significantly less code bricks after the filtering step
is because most regression tests use the eval function to
compare evaluation results between two JS statements.

B. Validity of Generated Test Cases

Can semantics-aware assembly produce semantically valid
test cases? To answer the question, we measured the number
of runtime errors encountered by executing ChakraCore with
test cases generated from CodeAlchemist. In this subsection,
we say a test case is valid up to N statements if it does not
raise any runtime error when the first N statements in the test
case are evaluated. The success rate for N top-level statements
is the rate between the number of valid test cases up to N top-
level statements and the total number of evaluated test cases.

1) Comparison against jsfunfuzz: Recall from §III that all
of the test cases obtained from jsfunfuzz threw a runtime error
after evaluating only a few top-level statements. To compare
CodeAlchemist against jsfunfuzz under the same condition, we
configured CodeAlchemist to produce 20 top-level statements

per each test case, i.e., imax = 20. We then ran CodeAlchemist
while randomly varying the block reinvention rate pblk from
0.0 to 1.0 in order to obtain a set of 100,000 test cases (Tours).
We compared Tours with the set of 100,000 test cases (Tjs) that
we used in §III, which are generated by jsfunfuzz. Particularly,
we measured the success rate for N top-level statements by
running ChakraCore with Tours and Tjs.

Figure 7 presents the success rates for 20 distinct N . The
green line indicates the success rate of CodeAlchemist, and the
red line indicates that of jsfunfuzz. When we evaluated only
the first top-level statement for each test case (N = 1), 24.7%
of test cases in Tjs were valid, whereas 60.7% of test cases
in Tours were valid. That is, CodeAlchemist produced about
2.5× more valid test cases in this case. Similarly, when we
evaluated the first three top-level statements for each test case
(N = 3), 1.8% of test cases in Tjs and 30.0% of test cases in
Tours were valid.

Overall, CodeAlchemist generated 6.8× more semantically
valid test cases on average. Thus, we conclude that CodeAl-
chemist can produce substantially more valid test cases than
jsfunfuzz, the current state-of-the-art JS engine fuzzer.

2) Effectiveness of Assembly Constraints: The crux of our
system is that we can generate semantically valid test cases
by assembling code bricks based on their assembly constraints.
To justify our intuition, we ran a modified CodeAlchemist that
does not produce assembly constraints for code bricks. That
is, it produces code bricks and assembles them to generate
test cases, but none of the code bricks will have its assembly
constraint. Therefore, any code bricks can be interconnected
to each other in this case. The lines in Figure 7 show that
the success rate goes down as N increases because more
statements are likely to have more type errors and reference
errors. The modified CodeAlchemist (the blue line) has the
same success rate as jsfunfuzz (the red line). However, it
produced 5.7× less valid test cases on average compared to the
unmodified CodeAlchemist: the unmodified CodeAlchemist
has much less type errors and reference errors than the others.
This result highlights the importance of assembly constraints,
and confirms our intuition.

3) Note on the Success Rate: Although the success rate
shows the overall quality of the generated test cases, there
is a caveat: one can easily obtain a high success rate by
producing meaningless test cases that are always semantically
correct. Imagine a hypothetical fuzzer that always generates
a sequence of variable assignments such as “a = 1;”. This
will never produce test cases that are semantically invalid, and
thus, the success rate of this fuzzer is going to be always 100%.
Nevertheless, we argue that our results in this subsection is still
meaningful, because CodeAlchemist can generate test cases
that trigger more number of vulnerabilities than the state-of-
the-art fuzzers as we show in the rest of this paper.

In this regard, if we use a smaller range of pblk from 0.0 to
0.5 for the same experiment we did in §VI-B1, CodeAlchemist
produces twice more valid test cases than the result we showed.
For our own purpose, CodeAlchemist needs to produce both
semantically valid and highly-structured JS code snippets so
that they can trigger various vulnerabilities in the target JS
engine. Therefore, we need to find a good value for pblk that
can hit the sweet spot (see §VI-C2).
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imax. For each imax, we generated 100,000 test cases.

C. Choosing Parameters

Recall from §V-F that CodeAlchemist has four user-
configurable parameters, and our focus in this paper is on imax
and pblk. To understand the impact of using different parameter
values, we conducted two independent experiments: (1) we
measured how imax affects the validity of generated test cases;
and (2) we evaluated how pblk changes the bug finding ability
of CodeAlchemist.

1) Dose imax Affect The Validity of Test Cases?: Intuitively,
the number of generated statements in a test case can affect
the validity of test cases because it is likely to have more
complex semantic structure as we have more statements, and
our analysis can be imprecise. To confirm this intuition, we
ran CodeAlchemist with varying imax values (from 1 to 20)
to generate 100,000 test cases per each imax value. Thus, we
generated a total of 2,000,000 test cases for this experiment.
We fix the block reinvention rate pblk to zero for this particular
experiment, because we wanted to see how imax solely affect
the validity of generated test cases. However, there exists the
similar tendency even for larger pblk because the likelihood
of generating invalid test cases increases as we generate more
statements in a test case.

Figure 8 illustrates the average number of valid statements
in each set of test cases we generated with different imax. Note
from the figure that the average number of valid statements
of the test cases converges to 8 as imax increases. Therefore,
it is reasonable to choose 8 as the value of imax as we can
minimize the size of generated test cases while keeping the
chance of generating a sequence of eight potentially valid
statements. Smaller test cases are better than bigger ones as
we can generate them more quickly.

2) Dose pblk Affect The Bug Finding Ability?: Recall from
§V-F, the probability of reinventing block statements (pblk)
decides how often we create block statements from scratch
during the assembly process. The key intuition here is that
security vulnerabilities often arise from a highly-structured
JS code. Therefore, as we alter the value of pblk, the bug
finding effectiveness of CodeAlchemist may vary. To confirm
this intuition, we ran CodeAlchemist with eight distinct pblk
from 0.0 to 0.64 (from 0% to 26%) on ChakraCore 1.10.1, and
counted the number of crashes found in Figure 9. The red and
the green line indicate the number of total crashes found and
the number of unique crashes found, respectively.
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Fig. 9: # of bugs found over the probability of reinventing
block statements (pblk).

First, we recognize that creating block statements from
scratch significantly helps in finding more crashes. When
pblk = 0.0, we found the least number of unique crashes,
but when pblk is greater than 0, we found at least 3 unique
crashes in each case. We believe this is because guarded block
statements such as for-loops can initiate JIT optimization,
which may trigger memory corruption in the end. Note that
many recent CVEs were indeed assigned to JIT optimization
vulnerabilities.

Second, increasing the block reinvention probability does
not always help find unique bugs. For instance, when pblk =
0.16, CodeAlchemist found 6 unique crashes and a total of
41 crashes. However, we found 3 unique crashes and a total
of 67 crashes with pblk = 0.64. This is mainly because (1)
CodeAlchemist was stuck with infinite loops as the number
of guarded block statements increases, and (2) several JIT
optimization-based crashes potentially prevent us from observ-
ing other meaningful bugs.

From the above experiments it is obvious that finding an
appropriate value for pblk is important. Both 0.08 and 0.16 of
pblk found the most number of unique crashes, but we found
more number of total crashes with 0.16. Thus, we decided to
use pblk = 0.16 for the rest of experiments.

D. Comparison against State-of-the-Art JS Engine Fuzzers

How does CodeAlchemist perform compared to existing JS
fuzzers in terms of their bug finding ability? To answer this
question, we compared CodeAlchemist against jsfunfuzz [27],
which is the state-of-the-art fuzzers maintained by Mozilla,
and IFuzzer [33], which is a variant of LangFuzz [17]. We
first evaluated these three fuzzers to compare how many known
CVEs and bugs they can find in an old version of ChakraCore.
We then compared them on the latest stable version of the four
major JS engines to see how many unknown bugs they can find.

1) Comparison on an Old ChakraCore: We selected an
old version of ChakraCore (1.7.6), which was the first stable
version of ChakraCore released after Jan. 1st, 2018. In order
to run CodeAlchemist and IFuzzer, which require seed files to
start with, we gathered JS seed files appeared before Jan. 1st,
2018 (as we did in §VI-A). Note we excluded regression tests
released after Jan. 1st, 2018 because they may contain test
cases that can trigger bugs in the old version of ChakraCore.
For fair comparison, we also set the version of jsfunfuzz
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TABLE I: The number of unique crashes found on ChakraCore
1.7.6 (released on Jan. 9th, 2018) by three different fuzzers.

CodeAlchemist jsfunfuzz IFuzzer

# of Unique Crashes 7 3 0
# of Known CVEs 1 1 0

to be the latest one released before Jan. 1st, 2018. When
we run CodeAlchemist, we use the following parameters:
imax = 8, pblk = 0.16. We ran the three fuzzers for 2,112 CPU
hours (24 hours with 88 cores) each, and compared the number
of crashes found. Note that we counted only the crashes
that involve memory corruption by manually verifying them,
because JS engines sometimes intentionally raise a SIGSEGV
signal, e.g., WTFCrash of JavaScriptCore [4].

Table I summarizes the number of unique crashes and
known CVEs each fuzzer found. Note that CodeAlchemist
found the most number of unique crashes, while IFuzzer was
not able to find any crash. CodeAlchemist found twice more
unique bugs than jsfunfuzz, and the two fuzzers were on a par
with regard to the number of CVEs found: both found the same
CVE-2018-0859. This result indicates that CodeAlchemist is
more effective than the existing fuzzers in terms of its bug
finding ability. In addition, jsfunfuzz found two bugs that are
not discovered by CodeAlchemist, and CodeAlchemist found
six bugs that are not discovered by jsfunfuzz. The result
suggests that the two fuzzers could be complementarily used
for finding bugs in JS engines.

We also note that three of the bugs CodeAlchemist found
are still alive in the latest version of ChakraCore. The three
bugs had been latent for about seven months undetected by
other fuzzers or security researchers. This result reflects the
fact that CodeAlchemist can find meaningful bugs deeply
hidden in the JS engines.

2) Comparison on the Latest JS Engines: Now that we
know CodeAlchemist can effectively find vulnerabilities on
an old version of ChakraCore, it is natural to ask if CodeAl-
chemist is effective in finding vulnerabilities on the latest JS
engines. We answer the question by running CodeAlchemist,
jsfunfuzz, and IFuzzer on the latest stable version of the four
major JS engines as of July 10th, 2018. In this experiment, we
used the seeds we collected prior to the date (as we discussed
in §VI-A), and the latest jsfunfuzz released before the date.

Table II presents the number of unique crashes each
engine found after 2,112 CPU hours of fuzzing. In total,
CodeAlchemist found 4.7× more unique bugs than jsfunfuzz:
CodeAlchemist and jsfunfuzz found 14 and 3 unique bugs,
respectively, while IFuzzer found nothing. CodeAlchemist was
the only fuzzer who found bugs in three distinct JS engines:
ChakraCore, V8, and JavaScriptCore. In contrast, jsfunfuzz
was able to find bugs only in JavaScriptCore. One out of
three bugs jsfunfuzz found was also found by CodeAlchemist.
The other two bugs found by jsfunfuzz were not overlapped
with the bugs found by CodeAlchemist. It is obvious from the
results that CodeAlchemist prevails over the state-of-the-art JS
engine fuzzers in both old and the latest version of JS engines.

TABLE II: The number of unique crashes found on the latest
JS engines as of July 10th, 2018.

JS Engine CodeAlchemist jsfunfuzz IFuzzer

ChakraCore 1.10.1 6 0 0
JavaScriptCore 2.20.3 6 3 0
V8 6.7.288.46 2 0 0
SpiderMonkey 61.0.1 0 0 0

1 var s0 = { // Var1
2 get p() {},
3 p : 2
4 };
5 function s1(s2) { // Func2
6 ++s2.p;
7 }
8 Object.defineProperty(s0, 0, {}); // Expr3
9 s1(s0); // Expr4

Fig. 10: A test case generated by CodeAlchemist triggering
CVE-2018-8283 of ChakraCore 1.10.0.

E. Real-World Bugs Found

We have shown so far that CodeAlchemist is effective in
finding bugs in JS engines within a controlled environment.
However, we have also found numerous bugs in the latest
JS engines. Particularly, we have run CodeAlchemist with a
variety of different parameters for about a week on the same
server machine we used. As a result, we found a total of 19
unique bugs on the four major JS engines.

Table III summarizes the list of bugs we have found so
far. The third column of the table indicates whether the bug
we found can trigger a crash in the corresponding browser.
The fifth column indicates the security impact of each bug we
found. We manually investigated each bug and mark them as
“not exploitable” if we confirmed the root cause of the bug
and it is obvious that the bug is not exploitable, e.g., a NULL
dereference, and we also mark them as “likely exploitable” if
a way the bug triggers memory corruption is similar to that of
previously known PoC exploits.

First of all, we found 19 bugs including 11 exploitable
bugs. Eight of them were not publicly known, although vendors
had known them. The other 11 bugs we found were previously
unknown. We reported all of them to the vendors and obtained
3 CVEs for the 7th, 8th, and the 9th bug.

We manually analyzed the other bugs too. As indicated by
the fourth column of the table, all these bugs are related to
diverse parts of the JS engines including JIT compilation, data
parsing, and string handling. We believe this result highlights
the impact of our research.

F. A Case Study

What do real-world bugs found by CodeAlchemist look?
We now describe one of the bugs that we found in detail
to answer the question. For responsible disclosure, we chose
the one that is already patched (the 13th bug in Table III)
as an example. Figure 10 shows a test case generated by
CodeAlchemist, which triggers CVE-2018-8283 on Chakra-
Core 1.10.0. We simplified the test case for ease of explanation.
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TABLE III: Unique bugs CodeAlchemist found.

Idx JS Engine Browser Description Impact Status

1 JSC 2.20.3 Safari 11.1.1 Uninitialized memory access due to incorrect scoping Exploitable CVE-2018-4264
2 JSC 2.20.3 Safari 11.1.1 Use after free due to incorrect garbage collection Exploitable Confirmed
3 JSC 2.20.3 Safari 11.1.2 Memory corruption due to incorrect scoping Exploitable Confirmed
4 JSC 2.20.3 Safari 11.1.2 Memory corruption due to incorrect async function handling Exploitable Confirmed
5 JSC 2.20.3 Safari 11.1.2 Memory corruption due to incorrect regex parsing Exploitable Confirmed
6 JSC 2.20.3 Safari 11.1.2 Memory corruption due to incorrect date parsing Exploitable Confirmed
7 JSC 2.21.4 (beta) Safari 11.1.2 Heap overflow due to incorrect string handling Exploitable CVE-2018-4437
8 JSC 2.21.4 (beta) Safari 11.1.2 Memory corruption due to incorrect stack overflow handling Exploitable CVE-2018-4372
9 JSC 2.21.4 (beta) Safari 12.0.0 Memory corruption due to incorrect JIT compilation Exploitable CVE-2018-4378
10 JSC 2.21.4 (beta) Safari 11.1.2 Memory corruption due to incorrect string handling Not Exploitable Confirmed
11 V8 6.7.288.46 Chrome 67.0.3396.99 Out of bound access due to side effect in Float64Array Exploitable Confirmed
12 V8 6.7.288.46 Chrome 67.0.3396.99 Stack overflow due to incorrect recursively defined class handling Not Exploitable Confirmed
13 ChakraCore 1.10.0 - Type confusion due to incorrect duplicated property handling Exploitable CVE-2018-8283
14 ChakraCore 1.10.1 - Memory corruption due to incorrect yield handling in async function Likely Exploitable Reported
15 ChakraCore 1.10.1 - Memory corruption due to incorrect JIT compilation Likely Exploitable Reported
16 ChakraCore 1.10.1 - Use after free due to incorrect JIT compilation Likely Exploitable Reported
17 ChakraCore 1.10.1 Edge 43.17713.1000.0 Use after free due to incorrect JIT compilation Not Exploitable Confirmed
18 ChakraCore 1.10.1 Edge 43.17713.1000.0 Memory corruption due to incorrect JIT compilation Not Exploitable Confirmed
19 ChakraCore 1.10.1 Edge 43.17713.1000.0 Null dereference due to incorrect JIT compilation Not Exploitable Confirmed

The first statement declares an Object that has both
(1) a property p and (2) the corresponding getter for the
property. The second statement defines a function, and the third
statement defines a property named “0” for the Object s0.
After the property is defined, the JS engine traverses an internal
dictionary that stores the mapping from a property name to a
property object, and creates a new object that contains both the
property 0 and p. At this point, the engine incorrectly judges
the type of the property p as a ‘getter’ function type even
though it is an integer value. Due to this incorrect type casting,
a type confusion vulnerability triggers. Next, when the function
s1 is called, it accesses the property p of s0. However, due to
the type confusion, this access tries to dereference an invalid
getter function pointer, which causes a segmentation fault.

Note that generating such a code snippet is not trivial
as each statement is deeply related to each other. The vari-
able s0 is used by both the function call statement and
the defineProperty method. The function s1 should be
defined first and then be invoked with s0 as its parame-
ter. CodeAlchemist used the four code bricks annotated in
Figure 10 to generate the test case: a code brick for the
variable declaration statement (Var1), a code brick for the
function declaration statement (Func2), and two code bricks
for the expression statements (Expr3, Expr4). They have
the following assembly constraints.

1) {} → Var1→ {s0: Object}
2) {} → Func2→ {s1: Function}
3) {s0: Object} → Expr3→ {s0: Object}
4) {s0: Object, s1: Function}

→ Expr4→ {s0: Object, s1: Function}

CodeAlchemist successfully assembled the code bricks based
on their assembly constraints to generate the test case trigger-
ing the vulnerability.

VII. DISCUSSION

Seed Selection. Semantics-aware assembly is essentially
a seed-based fuzzing approach. Thus, collecting and selecting
good seeds may substantially affect the performance of fuzzing
as it does not create object types that are never seen in seeds.
In our experiments, we obtained a set of seeds from existing
JS test suites, but we believe CodeAlchemist can benefit by
adopting state-of-the-art seed selection strategies [23], [25].
Additionally, automated seed generation techniques such as
Skyfire [35] may help expand our seed pool.

Code Brick Selection. CodeAlchemist currently selects
code bricks to be used next at random for every iteration.
However, we believe that devising an intelligent code brick
selection strategy can improve the fuzzing effectiveness. Al-
though our current design choice is to follow a complete black-
box approach as in LangFuzz [17], it is possible to employ a
grey-box approach where the code brick selection is directed
by code coverage or similar metrics. In addition, selecting
the next code brick with probabilistic language models as in
Skyfire [35] and TreeFuzz [24] can be effective in terms of
bug finding. We believe this is an interesting future work.

Supporting Other Targets. It is straightforward to apply
semantics-aware assembly to test other language interpreters
or compilers because the core idea of our approach in assem-
bling code bricks is indeed language agnostic. Furthermore,
semantics-aware assembly can be more effective if it is used
with statically-typed languages such as C and C++, because we
can easily infer types of a variable without instrumenting the
code. We leave it as future work to extend our algorithm to test
compilers of other programming languages. We also believe
we can apply our technique to find bugs in JS bindings [5],
which input is allowed to contain JS code snippets, such as
Node.js and PDF readers.
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VIII. RELATED WORK

A. Fuzzing

Fuzzing is a software testing technique for finding security
vulnerabilities. It has been used by many security practitioners
and researchers due to its significant practical impact. Fuzzing
is typically divided into two major categories: mutation-based
and generation-based fuzzing. Mutation-based fuzzers such as
AFL [40] typically take in a set of seeds, and output test
cases by mutating the seeds. There has been a surging interest
on improving the effectiveness of mutation-based fuzzers [6],
[25], [36]. On the other hand, generation-based fuzzers produce
test cases based on a model, e.g., a grammar [17], [38].
IMF [14], for instance, automatically infers a model between
system calls, and uses the model to produce a sequence of
system calls to fuzz kernel code. CodeAlchemist is also in the
category of generation-based fuzzing.

There are several previous generation-based fuzzers for
testing interpreters and compilers. Most of them focus on
generating syntactically valid programs based on a model to
traverse deep in the interpreter (compiler). Since the very first
thing that interpreters (compilers) do is to check whether a
given program is syntactically valid, generating syntactically
valid programs help traverse deep execution paths of the
interpreter (compiler) under test.

There are several existing JS engine fuzzers that gener-
ate test cases based on pre-defined generation rules rather
than relying on a complete language grammar. For example,
domato [11] generates HTML, CSS, JS code to test DOM
renderers of web browsers, and esfuzz [10] generates tests
for ECMAScrirpt parsers. In addition, jsfunfuzz [27], which
is a state-of-the-art JS engine fuzzer maintained by Mozilla,
contains a huge number of generation rules that are manually
built into the fuzzer.

Unfortunately, such fuzzers cannot create context-sensitive
test cases by its design. Recall from §III, jsfunfuzz mainly
focuses on syntactic, but not semantic validity of test cases it
generates. It tries to heuristically mitigate runtime errors by
variable renaming, but it still suffers from a high error rate
based on our study. As such, finding new security vulnerabil-
ities with jsfunfuzz is becoming difficult as our experimental
results show.

In addition, Dewey et al. [8] address the problem of
reducing runtime errors. Specifically, they propose a novel
generation-based fuzzing algorithm that leverages constraint
logic programming. The idea is to drive the test case gen-
eration towards specific language features with user-provided
constraints. However, their approach requires an analyst to
manually provide such constraints prior to fuzzing.

Several JS engine fuzzers try to generate test cases based
on a set of given seeds. They fragmentize the seeds and re-
assemble the fragments to generate test cases. LangFuzz [17],
the most successful JS engine fuzzer in this category, gen-
erates fragments by parsing down a given set of seeds into
code fragments. It then mutates the seeds by replacing AST
subtrees with the generated fragments. GramFuzz [13] and
BlendFuzz [37] use the same intuition as LangFuzz, but they
focus on other languages such as HTML, CSS, as well as JS.
IFuzzer [33] improves upon LangFuzz by employing genetic

programming to generate unseen JS test cases. TreeFuzz [24]
and Skyfire [35] construct probabilistic language models from
a given set of seeds in order to generate valid JS code snippets.
None of the seed-based JS engine fuzzers deal with runtime
errors while generating test cases.

B. JavaScript Analysis

JavaScript has become one of the most popular program-
ming languages because of its flexibility, which enables pro-
grammers to write simple code fast. In contrast, the flexibility
of the language raises the bar for traditional program analy-
ses [26]. For example, the dynamic type system and the use
of eval make analyzing JS painful as we discussed in §II-A.
Thus, there has been much research on JS program analysis.

Dynamic instrumentation forms a basis for dynamic anal-
yses, and there are several attempts that use dynamic instru-
mentation on JS code. Yu et al. [39] rewrite and instrument
JS code to detect security policy violation. Sen et al. [28]
present a dynamic analysis framework for JS, which provides a
general-purpose dynamic JS code instrumentation mechanism.
CodeAlchemist also employs the similar technique in order to
obtain types of variables in code bricks.

Many researchers have built static type systems for JS
starting from the seminal works by Anderson et al. [2]
and Thiemann et al. [32]. Their approaches support only
limited language features. Guha et al. [12] present λJS , a
core language that embodies essential JS features including
prototypes and first-class functions. Lerner et al. [18] propose
a general framework for building JS type systems based upon
λJS . Chandra et al. [7] handle a rich subset of JS, which
can compute types for uninvoked functions. Our approach
can benefit from the above approaches as we can make our
assembly constraints more precise. We refer to recent survey
papers [3], [29] for a more detailed overview of this area.

IX. CONCLUSION

We have presented CodeAlchemist, the first fuzzing system
that generates semantically valid test cases for JS engines.
CodeAlchemist learns the language semantics from a corpus
of JS seed files, and generates a pool of code bricks that
can be assembled later to construct semantically valid JS
code snippets. We leverage both static and dynamic analysis
technique to infer types of variables in each code brick, and
use the information to build assembly constraints for each code
brick, which help CodeAlchemist in judging which code bricks
can be put together in which order. This simple approach
significantly reduced runtime errors for JS engine fuzzing
while producing highly-constructed test cases. CodeAlchemist
found 19 bugs in the four major JS engines. We have reported
all our findings to the vendors.
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