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Abstract
Aimbots, which assist players to kill opponents in First-

Person Shooter (FPS) games, pose a significant threat to the
game industry. Although there has been significant research
effort to automatically detect aimbots, existing works suffer
from either high server-side overhead or low detection accu-
racy. In this paper, we present a novel aimbot detection design
and implementation that we refer to as BotScreen, which is a
client-side aimbot detection solution for a popular FPS game,
Counter-Strike: Global Offensive (CS:GO). BotScreen is the
first in detecting aimbots in a distributed fashion, thereby min-
imizing the server-side overhead. It also leverages a novel
deep learning model to precisely detect abnormal behaviors
caused by using aimbots. We demonstrate the effectiveness
of BotScreen in terms of both accuracy and performance on
CS:GO. We make our tool as well as our dataset publicly
available to support open science.

1 Introduction

Esports, which is a form of competitive video gaming, has
been growing rapidly in recent years. In 2019, the global
esports revenues reached $1 billion [18], and the number of
esports viewers has become over 540 million as of 2023 [54].

Cheating in online games poses significant threats to the
game industry, and it is indeed a major security threat to the
esports industry. Cheaters can directly impact the revenue of
the game publishers by annoying benign players and making
them quit the game [58]. Cheating also undermines the fair-
ness of games, and thus, damages the E-sports industry, which
is now a billion-dollar market [26]. Although game publish-
ers have been trying to prevent cheating, it is still difficult
to detect cheating users in online games, causing significant
damage to the game industry [34, 40, 44].

First-Person Shooter (FPS) games are no exception. In par-
ticular, “aimbot” is one of the most significant cheating threats
in online FPS games, which helps a user to automatically aim
towards an enemy. Aimbots enable less-skilled players to

kill their opponents without having to carefully aim at them.
Even experienced or professional game players can leverage
aimbots to enhance their gaming capabilities [53, 56, 60].

Hence, there has been substantial interest in devising an
anti-aimbot solution both from academia and industry. In
particular, there have been many machine learning techniques
that use statistical characteristics of aimbots [2, 19, 22, 36,
62–64]. For instance, Valve Corporation, the publisher of
“Counter-Strike: Global Offensive” (CS:GO for short), has
started to use deep learning to detect aimbot users [41].

However, current solutions suffer from one of the following
challenges: (C1)–(C4).
(C1) Most existing solutions operate at a server side [2, 19,
36], causing concentrated workloads. As an example, Valve
Corporation had to employ server machines with 3,456 cores
to process 600K matches per day [41]. Unfortunately, such
server-side detection mechanisms cannot scale with respect
to a large number of players as the server is responsible for
analyzing all the events.
(C2) Previous solutions are also troubled with low accuracy
as they do not monitor sophisticated movements of players in
order to lessen the burden on the servers. For example, Han
et al. [22] focus on recorded statistics about game plays, such
as playtime and winning rates. While the approach reduces
sever-side overhead, such statistics are not directly relevant to
the use of aimbots, thereby making the prediction less precise.
(C3) Existing client-side solutions [63, 64] suffer from mem-
ory tampering. That is, an attacker can manipulate the game
state by directly accessing the memory and changing or drop-
ping the network packets to the server as needed.
(C4) While it is imperative to have a high-quality game-play
dataset to evaluate aimbot detection techniques, there is no
publicly available large-scale dataset that contains both benign
and malicious game-play data of real FPS players. Oftentimes,
researchers populate aimbot data by playing a game by them-
selves [2,19,63,64], but mimicking realistic behaviors of real
cheaters remains challenging. Furthermore, gathering large-
scale game data from high-profile FPS games is inherently
difficult as it requires significant reverse engineering. Hence,



previous works often rely on a proof-of-concept game [2] or
an outdated game [36], where source code is available.

In this paper, we propose BotScreen, a novel aimbot detec-
tion system that tackles all the aforementioned problems. We
demonstrate our idea on CS:GO, a mainstream FPS game, by
a proof-of-concept aimbot detection system. BotScreen runs
on the client side. Hence it does not incur any server-side over-
head (C1). It also achieves high detection accuracy by leverag-
ing a deep-learning model that analyzes players’ aiming move-
ments (C2). BotScreen manages game data within a Trusted
Execution Environment (TEE), namely Intel SGX [12], so
that it is difficult even for a strong attacker to tamper game
data (C3). Finally, we hired game players, whose level of
expertise ranges from average to professional, to collect re-
alistic game-play datasets with or without using an aimbot
(C4). When collecting cheating data, we asked each player
to customize an aimbot setup to make it as human-like as
possible based on their own domain knowledge.

The key innovation of BotScreen lies in how we achieve
distributed detection of aimbots. Traditionally, client-side
game hack detection has been limited because strong attack-
ers can always manipulate the client-side game states. How-
ever, thanks to the recent advances in hardware-assisted TEE,
one can secure a detection engine from memory tampering.
This design choice allows each client to monitor complex
movements of each player without having to worry about
server-side overhead.

Moreover, our distributed design enables efficient detec-
tion of aimbots as each client only needs to monitor nearby
players. In FPS games, players typically do not receive every
game event in order to reduce the rendering cost. It is only
when an opponent is nearby that a player can observe the
opponent’s game-play data. Therefore, BotScreen naturally
ignores unnecessary game data while detecting an aimbot.

Our detection engine, inside a TEE, monitors every nearby
opponent’s aiming behaviors and decide whether its move-
ments are natural (like human) or not. To do so, we devise an
unsupervised deep-learning model to precisely detect aimbot
cheaters. Our model learns normal aiming behaviors from nor-
mal players, and detects abnormal aiming movements from
cheaters. Particularly, we use a Recurrent Neural Network
(RNN) to distinguish between human- and bot-like behaviors.
We note that RNN is specifically designed for handling se-
quential data, and game data are essentially a series of events
in time order.

We design and implement BotScreen, which is the first pub-
licly available aimbot detection system that runs on CS:GO,
a mainstream FPS game. We evaluate BotScreen on a large
dataset obtained from real game plays. Specially, we hired
14 players who are actively participated in a FPS game clan,
and collected their game-play data, which include 7,817,380
frames and 93,044 player actions. Our evaluation shows that
BotScreen can detect aimbots with 97.64% accuracy. When
compared with previous detection methods, BotScreen’s ac-

curacy is 9% higher than the second best performing method.
Moreover, we demonstrate that BotScreen incurs marginal
overhead on modern machines. The contributions of this pa-
per are as follows.

• We demonstrate BotScreen, a novel aimbot detection
system, enabling distributed aimbot detection.

• We present a novel aimbot detection model with RNN.
• We evaluate our system on a real-world dataset.
• We make our system as well as our dataset publicly avail-

able (link).

2 Background

There are mainly three cheating mechanisms in FPS games:
aimbot, Extra-Sensory Perception (ESP) hack, and wallhack.
Aimbots help players shoot more accurately by automatically
move the crosshair to an enemy in sight. ESP hacks display
extra information about game objects including their health,
name, and equipment. Wallhacks allow the user to see through
a wall and even move or shoot through a wall. Our focus in
this paper is on aimbot detection. With an aimbot, even a
novice player can absolutely destroy a skilled player.

2.1 Aimbot Detection
Theoretically, it is easy for servers to detect the use of a game
cheat because they can naturally control the exposure of sen-
sitive data and see every game action of clients. However,
server-based detection incurs significant costs and does not
scale well with the increasing number of users.

Client-side aimbot detection, although it is more scalable, is
also challenging. Modern commercial anti-cheat solutions [20,
24,59] try to monitor and block cheating processes by making
a blacklist of applications. But attackers can always bypass
such a solution with the use of higher-level security ring or
by changing their program signatures [29]. In this paper, we
propose a new client-side solution that is simple yet effective.

2.2 Sophisticated Modern Aimbots
Notably, modern aimbots provide various advanced features
that enable sophisticated aiming control. They often adap-
tively improve aiming and shooting performance [60], and
provide user-configurable options to let the users fine control
the level of assistance. For example, we summarize options of
aimbots used by Osiris [33], the most popular open-sourced
CS:GO aimbot, in Table 1. Other commercial aimbots, such
as WinX Private [16], Project Infinity [23], and aimware [67],
also employ similar options.

Highly motivated cheaters will set up those configuration
parameters in such a way that their behaviors look as natural as
possible. For example, aimbot users often enable O1 because
aiming an invisible player can raise suspicion. They also

https://github.com/SoftSec-KAIST/BotScreen


Table 1: User-configurable options used in Osiris, one of the
most popular CS:GO aimbots.

Option Description

(O1) Visible Only Aim only on visible players.
(O2) Scoped Only Enable only when using a scope with a sniper rifle.
(O3) Ignore Flash Aim a target even if it is invisible due to flashbang.
(O4) Ignore Smoke Aim a target even if it is invisible due to smoke.
(O5) FoV Field of View (FoV) in which aimbot is enabled.
(O6) Bone Bones, e.g., head, stomach, pelvis, etc., to aim at.
(O7) Smooth Adjust auto-aiming movements to make it more

human-like.
(O8) Aim Tolerance Aiming tolerance against big moves, e.g., jumps.

adjust O7 to control how fast aiming changes to pretend to
be human, and change O8 to control aiming accuracy while a
player jumps or runs.

Nevertheless, aiming actions with or without an aimbot
will always differ. Hence, one should be able to distinguish
the use of aimbots by elaborating a model. Our evaluation
indeed includes detecting such a sophisticated aimbot user.
Specifically, we ask a player to adjust an aimbot with their
own expertise to make it like a human. We show that our
model is robust against such a sophisticated adversary as we
will discuss in §5.7.

2.3 Intel SGX

Intel Software Guard eXtension (SGX) [12] is an instruction
set that allows creation of an enclave, which is a private region
of memory that cannot be accessed by other processes. In this
paper, we use Intel SGX to construct a Trusted Execution En-
vironment (TEE) on each client machine to securely monitor
players’ actions. Note, we do not argue that SGX is foolproof
as we discuss further in §6, but is a practical solution for our
use case.

3 Overview

This section provides a high level overview of BotScreen.
We start by defining our threat model. We then describe the
overall architecture of BotScreen.

3.1 Threat Model

In this paper, we assume that an aimbot can change the input
of a target game process without being detected. This means
traditional client-side cheating detection, such as checking
the integrity of game binaries, will not help.

However, our aimbot can manage the input only in a way
that it does not break the game rule. For example, it cannot
kill the opponents without shooting them. That is, it cannot
directly alter the game state, because it is beyond the ability
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Figure 1: BotScreen architecture.

of aimbots. This is indeed a realistic assumption because such
a ground-breaking change is readily visible by other peers.

We also assume that our aimbot can arbitrarily manipulate
keyboard and mouse inputs according to the current game con-
text. Thus, it helps users to aim and shoot the opponents while
preventing a team kill. Sophisticated aimbots can also use the
game context to imitate human behaviors by manipulating
aiming movements. It is noteworthy that our deep learning
model is not accessible to attackers, as it is only temporarily
stored in an enclave by our design (§3.2).

3.2 BotScreen Overview
Figure 1 illustrates the overall architecture of BotScreen.
BotScreen achieves distributed aimbot detection by offload-
ing detection tasks onto each client, i.e., every player polices
each other, thereby resolving (C1). As each client can monitor
sophisticated actions of nearby players, our design naturally
addresses (C2). At a high level, BotScreen operates in the
following three steps during a game play.

0 As a preprocessing step, each client performs two tasks
before a game starts. First, each client establishes a
TLS session with the server (inside its TEE) in order
to securely deliver detection reports. Second, each client
downloads our deep learning model from the server and
temporarily stores the model in its enclave. This way,
attackers cannot access our model.

1 When a game starts, each game engine takes user inputs
and shares its action information through the network
with other clients. Specifically, DATAMANAGER (which
is located inside a TEE of each client) takes in a stream
of game events of all the nearby clients from the network
and converts it into a stream of vectorized data. It also
relays all the received game events to (1) the game engine
to render the game; and (2) DETECTOR to check who is
cheating. Due to the nature of FPS games, major actions
of other players are visible by each player, i.e., each



client, as long as they are within the sight. We further
detail the conversion process in §4.1.

2 DETECTOR (in a TEE) then reads in the vectorized data
and analyzes the shooting behaviors of other clients to
decide whether they use an aimbot or not. The detec-
tion result is transferred to the server on the fly using
the secure channel. Note that DETECTOR is essentially
our deep-learning model, which can recognize abnor-
mal shooting behaviors that deviate from normal human
behaviors. We discuss the details of our model in §4.2.

3 Our server collects streams of detection reports from
all the clients to detect cheater(s). If there is a cheating
report, then the server can take a necessary action, such
as disqualifying the cheater’s account. Since DATAMAN-
AGER and DETECTOR are within a TEE and all the re-
ports are transferred through a secure channel, our server
can trust reports from the clients, thereby addressing
(C3). Although every report is trustworthy, our model
can still produce a false alarm. Thus, our server will
make a delayed decision after collecting a sequence of
reports from each client. We detail this design in §4.3.

Consistency of Game Data. The design of BotScreen en-
sures that both game engine and DETECTOR view the same
game data. This means our detection is performed only on
the events that are used to render the game. While aimbots
can change the players’ actions, those changed behaviors are
readily visible by the others.

On the Infeasibility of Adversarial Attacks. Our TEE-
based client detection makes targetted adversarial attacks [7,
30, 43, 47, 57] extremely challenging under our threat model.
First, any white-box adversarial attacks [30,43,47,57], which
require access to the pre-trained weights of the victim model,
will fail as BotScreen stores pre-trained weights of RNN in a
secure enclave.

A more diligent adversary may conduct black-box attacks,
either by training a ‘substitute’ model to craft transferable
adversarial inputs [4, 7, 66], or by estimating the victim mod-
els’ decision boundary [8, 21]. However, both approaches
require the attacker to query the victim model to collect mul-
tiple input-output pairs, which is not easily achievable un-
der BotScreen—any outgoing detection report is sent via a
secured channel between each client’s TEE and the trusted
server. There is still a possibility that the adversary can collect
input-output pairs by potentially compromising SGX as we
will discuss in §6.

Unless the adversary can break the TEE’s security, it has
to either blindly train a substitute model without any query
access to the victim model, or inject random noises hoping to
alter the model’s result [48]. We note that adversary under this
limited setting is referred to as ‘no-box’ attacker [8], and only

a few studies exist [6, 35, 65]. To our knowledge, ‘no-box’
attacks on RNNs have not been extensively explored so far.

In addition to the difficulties in crafting adversarial inputs,
we argue that it is impractical for the attacker to continuously
inject adversarial inputs due to the real-time nature of FPS
games. In order for the attacker to keep up with the game,
it needs to craft adversarial inputs for every frame, meaning
that each input needs to be created in under 17ms (assuming
the game is run at 60 frames per second). While not directly
comparable, a state-of-the-art white-box technique against
RNN took at least 3.15 seconds to generate an input [38], for
instance. Thus, we argue that adversarial attacks aside from
injecting random noises are not practical.

4 Aimbot Detection

Our aimbot detection technique is inspired by a simple obser-
vation: aiming movements significantly vary with an aimbot.
Specifically, dishonest players using an aimbot tend to have
drastic and sudden angle changes until they obtain the target
aim, but aiming movements become stable once the target
aim is obtained. Although there have been various learning-
based aimbot detection approaches exploiting the same intu-
ition [14, 41, 63, 64], they all rely on a supervised learning
approach, which requires both benign data and cheating (with
an aimbot) data to train their models.

On the other hand, BotScreen uses unsupervised learning
approach to train RNN. Hence, we simply need to gather
benign data, which are far easier to obtain than cheating data—
cheaters inherently do not want to reveal their identity, thus
hiring them to collect real-world cheating data is not feasible.
Moreover, our model detects aimbots by monitoring every
event adjacent to a firing event, and hence, it allows a user to
pinpoint exact cheating moment. With this idea, we design
and implement a novel aimbot detector for CS:GO. Note that
our detection model focuses on CS:GO. But our model design
can be applied to other FPS games or can be tuned to detect
aimbots in other games.

In this section, we first describe how we process CS:GO
game events, to extract several key features that we use in our
model (§4.1). We then explain how we use a RNN model to
detect the use of aimbots (§4.2).

4.1 DATAMANAGER

BotScreen tracks every observable game event generated from
all the observable players in order to decide whether each of
them is using an aimbot or not. This is possible because every
FPS game client constantly propagates their action events to
others at real time through the network.

Note, however, that those game events give only partial in-
formation about the players’ actions. For example, not every
mouse movement, but only a subset of them, will be trans-
ferred through the network for efficiency. Plus, each user can
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tial target u1.

only observe actions of nearby players because the game en-
gine does not need to render invisible players at all. Such
restrictions equally apply to our aimbot detection scheme.

This design provides several benefits. First, we do not need
to modify the game engine for detecting aimbots because
our detection scheme relies solely on data that are readily
available for regular game clients. Second, each client can
handle only a subset of game events, making our detection
more focused and efficient.

To ease the explanation, let us denote observable events
(i.e., players’ actions) from a FPS game client as a series of
tuples (t,ui, p⃗, a⃗s,e), where:

• t: time of observation.
• ui: ID of the player being observed.
• p⃗: the player’s position (in Cartesian coordinates).
• a⃗s: the player’s aiming angle (in spherical coordinates).
• e: in-game event (for the player ui).

Here, an in-game event e corresponds to any game event
generated by or sent to the player, such as when the player
(or another player) fires its weapon, gets hit, or is killed by
other player. We denote such events by fire, hit, and dead,
respectively. In timestamps where no such events occur, we
simply leave the field blank.

Note that there can be multiple events for the same t when
there are more than one observable players at the same time.
At a high level, DATAMANAGER takes in a stream of observ-
able events as input from the network, and sends a stream of
transformed feature vectors as output when in-game event that
triggers detection occurs. It includes three major steps: (1)
vector computation, (2) normalization, and (3) sanitization.

4.1.1 Vector Computation

DATAMANAGER in each client first transforms each
observable event (t,ui, p⃗, a⃗s,e) into a feature vector
(t,ui, p⃗, a⃗c,e,aim), where a⃗c is the aiming angle of the player
ui represented as a unit vector in a Cartesian coordinate, and
aim is a Boolean value indicating whether the player ui is
currently aiming at any opponent. We convert a vector in
a spherical coordinate (a⃗s) to one in a Cartesian coordinate
(a⃗c) because differences in angles do not always entail differ-
ent meanings—0◦ and 360◦ have two different values even
though they represent the same state.

In order to obtain aim, each client first computes da, which
represents the smallest angular distance between the player’s
current line of sight and any observable opponents. In Fig-
ure 2, enemy u2 is closer to the player in terms of Euclidean
distance, but u1 is closer to the player in terms of angular
distance. Thus, we consider u1 as the player’s current tar-
get, and calculate da based on it. When da is smaller than a
threshold (30◦ in our current implementation), we set aim to
true, otherwise false. Note that aim is an estimated value,
as there are cases where an observer can have a wrong value.
For example, when the player is aiming at an opponent that
the current observer cannot see. This problem does not affect
our detection results, because our model will make a decision
only if both a player and its target are visible by a client. Fur-
thermore, the value of aim does not affect the decision: only
the aiming angle will eventually affect the decision.

4.1.2 Normalization

In practice, each client collects an event at the exact time it
occurs. As a result, collected events have irregular timestamps,
producing a time series with uneven time intervals. Since
RNNs generally expect to handle regular sequences, collected
logs need to be normalized to a fixed time interval.

In our current implementation, we conduct linear interpo-
lation to fill in missing values by following the linear trend
among existing observations. Since most modern FPS games
run on 60 frames per second, we normalize the collected
events according to time interval of 16ms. Suppose a player
was at (1.0,1.0,1.0) when t = 0, at (1.1,0.9,0.1) when t = 8,
and at (1.5,0.6,0.8) when t = 34. After the normalization
step, we get three events at t = 0, 16, and 32. For example,
we have an interpolated event (1.235,0.811,0.376) at t = 16.
As the time interval (i.e., 16ms) is too small to have sudden
changes, we believe that linear interpolation is sufficient for
normalizing collected game-play logs.

4.1.3 Sanitization

The final step is to filter out unnecessary events before feeding
the transformed events into DETECTOR. In particular, we of-
ten observe a sudden change in position and aiming direction
when a player dies and respawns (i.e., when e = dead), in
which case our deep-learning model can incorrectly flag the
player as suspicious. This happens in a deathmatch where the
goal is to kill other players as many times as possible. In our
current implementation, we always remember the previous
event, and compare the current event with the previous one to
detect abrupt changes in players’ locations and aiming direc-
tions. When such a case is identified, DATAMANAGER will
simply not send the event to DETECTOR.
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4.2 DETECTOR

In BotScreen, each client detects aimbots, in a distributed
manner, by checking ‘abnormal’ aiming movements at firing
events using a model built from observing normal aiming
movements. To model normal aiming movements, we use a
Recurrent Neural Network (RNN) trained only on the observa-
tion logs of benign players. Specifically, DETECTOR takes a
stream of pre-processed events returned by DATAMANAGER,
and analyzes the events in the following three steps: (1) event
filtering, (2) anomaly scoring, and (3) reporting.

4.2.1 Event Filtering

In an attempt to bypass easy detection, modern aimbots de-
fault to the ‘between shots’ mode, where aimbot locks on to
a target only when the user has triggered (fired) the weapon.
When this mode is on, an aimbot user and a benign user are es-
sentially indistinguishable unless a weapon is fired. Therefore,
we do not track every event during the game play. Instead,
we only focus on each firing event (i.e., e = fire) as well as
relevant events adjacent to (before and after) the event. We
also filter out all targetless fire events (i.e., aim = false),
as aimbots may not be activated without a proper target.

In practice, we accumulate more events before than after
the exact event the weapon is fired as RNNs generally require
a set of previously observed data points to operate. For a given
RNN’s window size w and a predetermined duration d, we
accumulate a total of w+ 2d relevant events for each fire
event, which consist of w+d events before a fire and the rest
d events including the fire action.

We empirically select the parameters to be w = 20 and
d = 10 in our current implementation to optimize BotScreen’s
detection performance, as setting w and d too small or too
large can provide insufficient or excessive information to each
set of relevant events, respectively. §5.3 presents our experi-
mental results where we measure the detection performance
under different model parameters.

4.2.2 Anomaly Scoring

To effectively detect aimbots, we distribute a pre-trained
RNN, which encodes normal players’ aiming movements,
to each client. Using the RNN model, each client calculates
an anomaly score for each set of observed aiming movements
(before and after a fire event), where a higher score indicates
the likelihood of being an aimbot user.

Specifically, our RNN model takes in w− 1 consecutive
observations of aiming angles (a⃗c) as input, and predicts the
aiming direction for the wth event. The anomaly score is then
a prediction error, calculated by comparing the L1 distance
between the predicted value and the actual value for the wth
event. Since our RNN is trained only on the aiming move-
ments of benign players, aiming movements of an aimbot
will result in notably worse RNN predictions compared to
those of benign players. Consequently, we will observe higher
anomaly scores for aimbot users.

Figure 3 illustrates how our RNN-based anomaly scoring
works. By dividing firing-relevant events into multiple slid-
ing windows, we obtain 2d distinct RNN input sequences of
length w, hence resulting in a total of 2d anomaly scores for
each fire event1. Among all the anomaly scores, we select
the maximum as the resulting anomaly score of the event.

We note that our event-wise inspection approach has two
main advantages over previously suggested methods that use
aggregated statistics, such as mean changes in aiming accel-
eration [64]. First, it is possible to identify exact moment of
cheating. Second, it is significantly more difficult to develop
an aimbot that can avoid our detection mechanism, as it will
need to monitor and control event-level movements.

1While RNNs do not necessarily require a fixed input sequence length,
we fix the length of input sequences in an attempt to normalize resulting
prediction errors and enable more effective anomaly detection.



4.2.3 Reporting Results

After computing anomaly scores for each fire event, DE-
TECTOR compares those scores with a threshold in order to
determine the final label. The threshold is determined with a
small validation dataset.

In BotScreen, we propose and evaluate on two basic crite-
ria in determining thresholds: (1) best accuracy, and (2) best
precision. As the names suggest, best accuracy chooses a
threshold such that aimbot prediction accuracy is maximized
in a given validation data. Likewise, best precision chooses a
threshold such that no false positives exist in a given valida-
tion data. As a result, the former achieves the best prediction
accuracy by balancing FPs and FNs, while the latter prevents
any benign user to be falsely accused of cheating. We note
that the latter approach is more practical, as falsely punishing
benign users will harm the game’s usability.

Once the decision is made, each client sends the cheating re-
port to the server using a secure channel. Each cheating report
is simply a tuple (aimbot,ui, t), where aimbot is a Boolean
variable denoting the detection result (true if an aimbot is
used by the player ui), ui is the cheater being observed, and
t is the timestamp of the corresponding fire event. Note,
in our scheme, each client sends a report for every observed
fire event instead of sending a single aggregated result for
the entire duration of the game. The purpose of this design is
twofold: (1) to prevent attackers from guessing the decisions
made by each client, and (2) to provide more flexibility to the
server when aggregating the results.

4.3 Report Aggregation Policy
It is the server, or a game provider, who is responsible for
making a final decision based on the reports obtained from
the clients. One straightforward policy is to strictly disqualify
a player if there is at least one cheating report. This policy,
however, suffers from potential false alarms caused by the
inaccuracy of our model, although each report is trustworthy.

We address this challenge by delaying our decision. Since
cheating reports are submitted multiple times (11.83 times on
average in our experiments) during a single game, our server
can accumulate those reports, and make a more informed
decision later. Specifically, we can disqualify a player when
the number of consecutive cheating reports during a game
play is larger than a threshold θ. For example, suppose our
model has a false positive rate of 5%. Then, the probability
of falsely accusing a player as a cheater is only 0.00003%
when θ = 5. This way, game providers can easily offset the
inaccuracy of the model.

5 Evaluation

In this section, we evaluate the effectiveness of BotScreen on
real-world game-play data of CS:GO.

5.1 Experimental Setup
5.1.1 Ethical Assessment

We discuss the ethics of this research based on the guideline
of the Menlo Report [31]. This research has received IRB
approval as human subject research. We considered the par-
ticipants in terms of rights, risk, and equality while planning
and executing the experiment.

We also carefully followed the Steam Subscriber Agree-
ment [10]. In this agreement, we are allowed to deploy a dedi-
cated server with supported options. We only used a dedicated
(private) server with VAC disabled option, which prevents the
harm to official or third-party servers. Also, CS:GO provides
"Insecure Mode" which allows to inject any code into CS:GO
client [11]. We ordered participants to run CS:GO with inse-
cure mode and inject the Osiris with a DLL injection method
which is the suggested method by Valve.

Finally, we did not create Osiris nor support cheat devel-
opers. We only used it for our research purpose and made
participants to remove the provided materials to prevent sub-
sequent harm to other players.

5.1.2 Data Collection

Hired Players. Recall that there is no high-quality public
dataset for evaluating aimbot detectors (C4). To address this
challenge, we collected real-world CS:GO game-play data by
recruiting players from a FPS game clan. We hired 14 players
in total, whose skill levels are summarized in Table 8 (Ap-
pendix B). We note that the hired players were experienced
individuals of various skill levels from average to expert, but
not novices. This is primarily in effort to better reflect the real-
world FPS game scenarios. Aimbots are known to “resemble
excellent honest players” [36], so that they share several traits
such as high aiming accuracies and fast reaction times. This
naturally means that distinguishing aimbots from experts is
more challenging than from novices.

Game Setup. In order to collect real-world game-play data,
we set up a private CS:GO server, and collected data from
a total of 28 classic deathmatch games, where each game
ran for 10 minutes as summarized in Table 9 (Appendix B).
For each game, we randomly chose a map among the follow-
ing six: de_dust2, de_inferno, de_nuke, de_mirage,
de_vertigo, and de_train. We also designated a varying
subset of the participants as ‘cheaters’ while ensuring each
player evenly takes the role of benign player and cheater
in order to represent a variety of aimbot usages. Specifi-
cally, we collected game-play logs under three scenarios:
no-cheater, one-cheater-per-team, and all-cheaters game. A
detailed benign-cheater player assignments as well as aggre-
gated statistics from each game can be found in Table 9.

We asked each player in the ‘cheater group’ to fine-tune the
aimbot configurations (Table 1) based on their own expertise



Table 2: Architecture of SGRU used for anomaly scoring. L
is the length of input sequence.

Layer Type Output Shape # of Parameters

1 Input (3,L) 0
2 GRU (bidirectional) (128,L) 26,496
3 Dropout 10% (128,L) 0
4 GRU (bidirectional) (128,L) 74,496
5 Dropout 10% (128,L) 0
6 GRU (bidirectional) (128,1) 74,496
7 Fully connected (3,1) 387

to make their movements as natural as possible. This is due to
two reasons: (1) to simulate advanced cheaters who attempt
to avoid being detected by mimicking real players, and (2) to
collect aimbot data under a variety of configurations.

Event Logging. During a game, each player used our event
logger implemented on top of Osiris [33] to collect every
game event. Note that our event logger records every observ-
able players’ positions as well as their aiming angles in each
frame, recorded in perspective of the player. It also moni-
tors when each player triggers a weapon (fire), gets hit by
another player (hit), and gets killed (dead).

To support open science, we publicize this dataset at https:
//zenodo.org/record/8003842. To our knowledge, this is
the first public dataset for aimbot detection obtained from a
high-end FPS game.

5.1.3 RNN Model and Training

We selected Stacked Gated Recurrent Unit (SGRU for short)
as our choice of RNN for anomaly detection. GRU is a well-
studied variant of RNN, known to be efficient in training while
showing similar performance to LSTM [9]. We construct
SGRU by stacking 3 layers of bidirectional GRU with 64
hidden states, followed by a fully connected layer (Table 2).

To construct a training dataset, we randomly selected a
portion of games among the collected dataset. Under an ideal
scenario, game-play logs of a player observed by two different
observers should be identical. However, in practice, this may
not be the case because of the network delays and random
packet losses. Therefore, we only use self-observed logs for
training our model. Since our scheme is based on unsuper-
vised learning, logs from the benign users are sufficient to
train the model. In particular, we trained a SGRU model us-
ing AdamW optimizer [37] with standard parameters (0.001
learning rate and 0.01 weight decay), minimizing the MSE
loss, for 64 epochs on a batched dataset of size 64. We present
the training losses of our model in Appendix A.

5.1.4 Environment

To train our model, we used a server machine running Ubuntu
20.04 LTS equipped with four Intel Xeon Silver 4214 CPUs

(2.2GHz/12 cores) and four NVIDIA RTX 2080 Ti GPU cards.
We used Python 3 and PyTorch [50] to implement and train
SGRU. Roughly, it took less than 10 hours to train each RNN.
To evaluate the performance overhead of our system, we ran
CS:GO on the following three different configurations.

• High-performance: Windows 11 (Build 22000.613)
with Intel i7-10700K (8 cores), 32GB of RAM, and
NVIDIA GeForce RTX 3080.

• Mid-performance: Windows 10 (Build 19044.1706)
with Intel i7-7700 (4 cores), 16GB of RAM, and
NVIDIA Geforce GTX 1050.

• Low-performance: Windows 10 (Build 19044.1706)
with Intel i7-7700 (1 core only, limited the clock speed
to 2.4GHz), 4GB of RAM, and CPU-integrated graphics
to imitate the minimal requirement of CS:GO.

5.2 Aimbot Detection Performance
Can our SGRU model accurately detect the use of aimbots?
To answer this question, we simulated each game using our
dataset and applied BotScreen to detect the use of aimbots.
While our experiments are performed by simulating games,
this does not mean that BotScreen can only run in a simu-
lated environment. We have implemented a system that can
detect aimbots at runtime, which incurs only marginal per-
formance overhead as shown in the later part of this section.
Simulation is necessary for fair comparison to evaluate and
compare different detection algorithms on the exactly the
same dataset. We evaluated our SGRU model by dividing our
dataset based on two different criteria. One is by dividing the
dataset by game (§5.2.1), and the other is by dividing it by
player (§5.2.2).

5.2.1 Game-based Split

To test the effectiveness of our model on logs collected at a
game level, we first randomly divided the collected game logs
into k different splits, where each split contains one or more
per-game logs. We then performed k-fold cross-validation on
the splits; we used each split to validate the model trained on
the remaining k−1 splits. We chose k = 7 as it allows each
split to have identical number of games while following the
usual practice of setting k between 5 and 10.

Table 3 presents the detection accuracy of BotScreen mea-
sured on each split. Recall from §4.2 that our DETECTOR de-
termines labels by thresholding on anomaly scores, where the
thresholds can be decided based on two baseline policies: (1)
best accuracy, or (2) best precision. We denoted the accuracies
measured by each threshold as best_acc and best_prec, re-
spectively in Table 3. Note that we also recorded the number
of players in each split as games in our dataset can have differ-
ent numbers of participants. We calculated a weighted average
of the accuracies using the number of players (i.e., the number
of predictions) as a weight of each split.

https://zenodo.org/record/8003842
https://zenodo.org/record/8003842
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Figure 4: ROC curves for aimbot detection. ROC curves are
drawn for each split randomly divided for cross-validation
(k = 7), represented in thin colored lines. Weighted average
of all splits are represented as a thick blue line (Mean ROC).

While the prediction accuracy provides a good first-hand
indication on the predictor’s performance, it can be mislead-
ing when datasets have unbalanced labels. In order to assess
how well the anomalies (aimbot users) can be separated from
the normal instances (benign users), we plot Receiver Oper-
ating Characteristic (ROC) curves for each split in Figure 4
(AUC-ROC values are shown in Table 3).

From both Table 3 and Figure 4, BotScreen consistently
shows high prediction accuracies across different splits
(min 97.06%, max 100%). Even in the case of best_prec,
BotScreen maintains a close-to-optimal prediction accura-
cies. These results clearly indicate that our methodology can
precisely detect aimbots in real-world FPS games.

In the repeated experiments on differently sliced datasets,
we observed that our method consistently shows high per-
formance. Specifically, when we repeated our evaluations 5
times on each differently sliced dataset, our method accurately
predicted aimbots on average of 96.14% and at worst 95.67%,
under best_prec policy.

5.2.2 Player-based Split

While game-based training and testing (as performed in
§5.2.1) is natural for detecting aimbots, game-based splits
may contain the same players’ data in both training and test-
ing splits. To test if BotScreen is able to correctly classify
previously unseen players, we train-test-split the collected
logs in player-wise manner, where the training split contains
logs from six-seventh of all players (i.e., 12 players), and
the test split has logs of the remaining two players. We note
that even though the test split only contains the logs of two
players, it is obtained from multiple different games where

Table 3: Aimbot detection performance of BotScreen, where
each split represents a subset of game-based logs.

Split # Players best_acc best_prec AUC-ROC

0 36 0.9722 0.9167 0.9903
1 36 0.9722 0.9722 0.9870
2 40 0.9750 0.9750 0.9451
3 38 0.9737 0.9737 0.9750
4 34 0.9706 0.9706 0.9821
5 36 0.9722 0.9722 0.9241
6 34 1.0000 1.0000 1.0000

Weighted Avg. 0.9764 0.9685 0.9712

Table 4: Aimbot detection performance of BotScreen evalu-
ated on a player basis.

best_acc best_prec AUC-ROC

Top 3 players 0.9790 0.9790 0.9782
Bottom 3 players 0.9856 0.9856 0.9834
Best accuracy 1.000 1.000 1.000
Worst accuracy 0.9567 0.9567 0.9694

Average 0.9823 0.9800 0.9792

each player may have acted as either a benign player or a
cheater. In our evaluation, we considered all 91 (= 14 choose
2) possible train-test combinations to measure the average
aimbot detection accuracy.

Table 4 shows the results. Similar to Table 3, we mea-
sure the prediction accuracies based on best_acc and
best_prec policies, alongside with AUC-ROC. Addition-
ally, we recorded the accuracies at the best and the worst
performing combinations, as well as the average accuracies
in predicting three best skilled players (A, B, C in Table 8)
and three least skilled players (L, M, N).

The results clearly indicate that BotScreen is capable of
accurately detecting aimbots, even if the model has not pre-
viously seen the player. BotScreen showed above 98% (min
95.67%, max 100%) detection accuracy on average, which is
impressive considering that this was an average from all 91
combinations. We also note that BotScreen shows a consis-
tent performance regardless of the players’ skill levels—the
average difference in detection accuracies was less than 0.6%
between groups of three most skilled and three least skilled
players, respectively.

5.3 Parameter Selection

Are the parameters selected in BotScreen optimal for the
aimbot detection? To justify the choice, we evaluated the
performance of BotScreen using different parameter values.
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Figure 5: Aimbot detection accuracies of BotScreen with
varying w and d. The star (⋆) marks indicate the parameters
used by BotScreen.
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Figure 6: Aimbot detection accuracies of BotScreen with
varying hidden units and stacked layers. The star (⋆) marks
indicate the parameters used by BotScreen.

5.3.1 Different Event Sizes

Recall from §4.2 that BotScreen collects a few adjacent rel-
evant events for each observed fire event based on the two
parameters w and d. Here, we show the impact of using dif-
ferent w and d, and empirically justify our choice.

Figure 5 shows the effect of varying w and d on aimbot
detection performance. The differences observed from the
plots are not so significant, but we can clearly see that the
values marked with a star (⋆) show the best performance.
Setting a too small w value, for instance, negatively impacts
the accuracy due to limited amount of information gathered.
Therefore, we selected w = 20 and d = 10 for our evaluation
as noted in §4.2.

5.3.2 Different RNN Hyperparameters

Next, we test how different RNN model hyperparameters im-
pact aimbot prediction accuracies. Specifically, we recorded
accuracies with varying numbers of hidden units in each GRU
unit, and with varying numbers of stacked layers in SGRU.

Figure 6 shows the effect of hyperparameter changes for
our SGRU model, evaluated on each of the 7-fold validation
splits. While all variants show high performance (> 95% on
average), parameters used in BotScreen (marked with ⋆) show
the best prediction performance both in terms of accuracy,
and their stability.

Table 5: Performance comparison of aimbot detection meth-
ods. Each recorded value is a weighted average from 7-fold
cross validation. The best results are highlighted in boldface.

Method Accuracy FPR FNR

th_VarA 0.7323 (186/254) 0.0000 (0/186) 1.0000 (68/68)
th_AccA 0.7323 (186/254) 0.0000 (0/186) 1.0000 (68/68)
th_Kill 0.8858 (225/254) 0.0054 (1/186) 0.4118 (28/68)
ks_AccA [64] 0.4803 (122/254) 0.5430 (101/186) 0.4559 (31/68)

os_CAC [15] 0.6969 (177/254) 0.0484 (9/186) 1.000 (68/68)
os_LAC [27] 0.7480 (190/254) 0.2097 (39/186) 0.3676 (25/68)
os_SMAC [55] 0.7244 (184/254) 0.2634 (49/186) 0.3088 (21/68)
BotScreen 0.9764 (248/254) 0.0054 (1/186) 0.0735 (5/68)

5.4 Comparative Study
We now compare BotScreen against seven different detection
schemes including four implemented methods and three ex-
isting open-source tools. We consider two different scenarios:
(1) per-game detection, where a decision is made for each
game, and (2) history-based detection, where a decision is
made for each player based on the player’s behavior over
several matches.

Comparison Targets We design and implement four aim-
bot detection methods based on simple statistical features
used in prior literature as there is a lack of available solutions.
They are similar to our anomaly-based scoring approach, but
use different ways to decide labels. The following list sum-
marizes each method:

• th_VarA: blames a player when the variation of aiming
exceeds a threshold [2, 19].

• th_AccA: blames a player when the acceleration of aim-
ing exceeds a threshold [19].

• th_Kill: blames a player when the overall kill count
exceeds a threshold [36].

• ks_AccA: blames a player when the acceleration of aim-
ing is dissimilar from ones observed from benign users
based on a statistical test [64].

We picked the thresholds for the first three methods by
selecting the one that maximizes the accuracy of each method
in a validation dataset (one out of 7 splits). The fourth method
(ks_AccA) is a reimplementation of [64], where it uses the
two-sample Kolmogorov-Smirnov test [39] in order to rec-
ognize the dissimilarities between observed statistics from
a benign user and an aimbot user. In addition to the reim-
plemented methods, we evaluated BotScreen against three
existing open-source tools listed below. Note, we ran all these
tools in our simulation environment for fair comparison.

• COW Anti-Cheat [15] denoted as os_CAC.
• Little Anti-Cheat [27] denoted as os_LAC.
• SMAC [55] denoted as os_SMAC.
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Figure 7: Histogram of standard deviations in anomaly scores.

Per-Game Detection Results. We first compared the accu-
racies of each detector in a scenario where a decision is made
per each game. Table 5 summarizes the results. The num-
bers in the parentheses represent success/failure counts. For
BotScreen, we measured the weighted average from 7-fold
cross validation as in §5.2. For the reimplemented methods,
we recorded prediction accuracy evaluated on the threshold
selected by best accuracy policy, indicating the maximum
accuracy obtainable using the detection method. For the open-
source tools, we used their default settings.

The overall results show that BotScreen significantly out-
performs all the other methods. We observed more than 9%
improvement over th_Kill, which is the second best method.
We note that ks_AccA shows poor performance compared to
other methods. This result indeed coincides with the results
reported from their paper [64], which shows a poor recall rate
(46.83%, to be exact). We also note that th_Kill is effective
in terms of detecting aimbots. However, simply using kill
counts as an evidence of cheating would be discouraging for
benign players who rightfully achieved a high skill level.

History-based Detection Results. We also compared the
detection accuracies in a scenario where a decision is made
per each player based on accumulated logs over a number
of games. Specifically, we say a player is a cheater if the
player is detected as an aimbot in at least one of the games in
the history. To this end, we first extracted the game logs for
each player based on their participation in the games, e.g., if
a player participated 10 games, then we extracted logs from
only those 10 games. We then simulated the detection process
in chronological order using the extracted game logs for each
player, and analyzed when the use of an aimbot was detected.

Table 10 in Appendix C summarizes the results. There are
two notable points. First, BotScreen consistently outperforms
the other methods in terms of detection accuracy. Although
there are two cases where BotScreen suffered, those were
the cases where there are only a few data points with only
a single false negative as described in Appendix C. Second,
open-source tools show relatively better performance com-
pared to the game-based detection scenario. This is mainly
because existing tools are mainly concerned with reducing
false positives, and history-based accumulation will offset
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Target player
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Figure 8: Prediction accuracies and observation rates for the
allies and the enemies.

their imprecision. Overall, BotScreen showed the best perfor-
mance for detecting a physical aimbot user.

5.5 Effect of Client-side Detection
Since BotScreen is a client-side aimbot detector, its detection
performance can be impacted by differences in observations
made by each client. Thus, we conduct a number of experi-
ments in order to evaluate how client-side detection affects
the performance of our system.

5.5.1 Differences in Anomaly Scores

In our detection scheme, each client uses an RNN to assign
anomaly scores for each observed fire event. Under ideal
conditions, anomaly scores for a given event will be identical
(or similar) across different observers. In practice, we can
quantify the amount of inconsistency between observers by
measuring standard deviation of anomaly scores obtained
from different observers for each event. It is, thus, desirable
to observe small standard deviations.

Figure 7 shows a histogram of standard deviations mea-
sured from different anomaly scores of each fire event,
which shows significantly small differences: more than 96%
are below 0.05. Furthermore, when our model makes final
predictions on the same data, only 1.26% of the observations
resulted in different prediction results.

5.5.2 Differences in Observation Rates

Next, we study how the observation rate impacts the predic-
tion accuracy. Due to the competitive nature of FPS games,
chances of observing—being nearby at the moment of—other
players firing a weapon depend heavily on whether or not the
player is in the same team as the observer. That is, a player is
more likely to observe events from allies than from enemies,
as more time is spent with them.

Intuitively, less observation rates can lead to worse aimbot
detection predictions, as chances in observing any suspicious
fire events will also decrease. In such a case, our scheme
will result in strong disagreements in predictions between
allies and enemies, leading to a potential dispute between



Table 6: Frame time with or without BotScreen (averaged
over 10 repeated experiments).

Frame Time (ms)

Time (s) #Frames Avg. Min Max Low
1%

Low
0.1%

Baseline1 6,000 1,454,686 4.125 0.786 172.772 9.499 13.832
BotScreen 1 6,000 1,428,974 4.199 0.899 156.411 9.830 14.804

Baseline2 6,000 1,040,482 5.758 1.262 189.083 12.446 16.973
BotScreen 2 6,000 913,818 6.566 1.380 136.746 14.957 20.441

Baseline3 6,000 185,285 32.379 4.717 1,167.064 91.055 285.298
BotScreen 3 6,000 145,530 41.224 7.127 1,508.617 112.963 325.929

1 Evaluated on the high-performance setup (see §5.1.4).
2 Evaluated on the mid-performance setup (see §5.1.4).
3 Evaluated on the low-performance setup (see §5.1.4).

teams. Thus, a consistent prediction performance even under
low observation rate is desirable.

Figure 8 is a box plot of prediction accuracies and obser-
vation rates for the allies and the enemies. Note that while
the chances of observing allies are noticeably higher than
observing enemies, the prediction accuracies are similar. In
fact, the Pearson Correlation Coefficient between observation
rate and prediction accuracy is R =−0.035, meaning almost
no correlation. Thus, we conclude that BotScreen can enable
accurate aimbot detection even under low observation rates.

5.6 Performance Overhead

We now measure the performance overhead imposed by
BotScreen. Our implementation is based on Osiris [33], and
is written in 850 lines of C code. Note that in our current
implementation of BotScreen, DATAMANAGER is outside
of a TEE because we cannot change the data transferring
module of CS:GO (see §6). However, it is straightforward
for game providers to modify a game engine to completely
realize the BotScreen architecture. Furthermore, such a small
difference would only incur a negligible performance differ-
ence. To measure the performance overhead, we played a
classic deathmatch for 10 minutes with MSI Afterburner [45],
a GPU benchmark program, on three different setups shown
in §5.1.4. We repeated the experiment 10 times for each setup
and reported the averages.

Table 6 summarizes the results with or without BotScreen
on the three setups; see Appendix D for detailed results for
each experiment. In each setup, BotScreen increased the av-
erage frame time by 0.074 ms (1.7%), 0.807 ms (14%), and
8.844 ms (27%), respectively.

Note, however, that the overhead caused by BotScreen is
indistinguishable from the frame time errors of CS:GO ob-
served over repeated runs for the high-performance and the
mid-performance setup (see Appendix D). Although we can
observe noticeable overhead on the low-performance setup,

Table 7: Real-world demonstration of BotScreen on CS:GO,
under various aimbot configurations.

FoV Smooth # Detected # Games

No aimbot - - 0 3

Default setting 9.0 10.0 3 3

FoV control 255.0 10.0 3 3

Smooth control 9.0 1.0 3 3

it is not surprising because CS:GO already fully utilizes the
resources of the machine, hence it does not have any room to
absorb the overhead caused by BotScreen. Therefore we con-
clude that BotScreen incurs negligible performance overhead
on modern machines equipped with SGX.

5.7 Real-World Demonstration

Can BotScreen detect aimbots in a real game play? We answer
this question by running our implementation of BotScreen
during a live game play. Specifically, we prepared two CS:GO
clients: (1) player A who uses Osiris, i.e., an aimbot, and (2)
player B who uses BotScreen with the model showing best
performance from above to detect the use of an aimbot. Player
A uses Osiris with varying O5 (FoV) and O7 (Smooth). We
set the other options to use a default value for simplicity.

We played 5 versus 5 deathmatch games, where 8 of the
players are controlled by a computer, and two other players (A
and B) are controlled by human players. With four different
aimbot configurations, we ran three 10-minute games per each
configuration, and reported the detection results in Table 7.
As a result, BotScreen was able to successfully detect all
aimbots without any false alarm. This evaluation confirms the
effectiveness of BotScreen in a live game scenario.

6 Discussion

Limitation of SGX. While Intel SGX provides a TEE, it
has several limitations that make it vulnerable to side-channel
attacks [13, 17]. This means a highly motivated attacker can
potentially extract the model parameters of BotScreen located
in the enclave or sniff the detection reports.

We also notice that Intel SGX had been deprecated in re-
cent CPUs [52]. However, other TEEs such as ARM Trust-
Zone [51] and AMD SEV [1] are still available, and it is
straightforward to port our scheme to them. Furthermore, Intel
announced a new trusted computing technology, named TDX
(Trusted Domain eXtension), which will replace SGX [25].
Therefore, the core idea of BotScreen is still valid and will
be effective as long as CPU vendors continue to provide
trusted computing features. We leave it as future work to ex-
tend BotScreen to work with other TEEs, such as TDX and



TrustZone.

Applicability to other FPS games. Although BotScreen is
primarily implemented and evaluated on CS:GO, we believe
our distributed detection scheme is applicable to most modern
FPS games for two reasons. First, our detection scheme only
uses general features that are essential to any FPS game—
player position, aiming direction, and in-game events such as
fire, hit, or dead. By definition, any FPS game will require
the client to send and receive such events in order to properly
run the game. Second, our unsupervised training of the RNN
model enables re-calibration for other FPS games. Unlike
any other supervised learning based approaches, our scheme
does not require data from functioning aimbots in order to be
trained. As a result, our method can even be applied to games
without publicly known aimbots.

DATAMANAGER implementation. Our current implemen-
tation does not put DATAMANAGER inside SGX as it requires
patching the game engine. There are mainly two problems.
First, we need to reverse-engineer the game binary, which is
not a trivial task [32,42]. More importantly, patching the exist-
ing game binary is against the EULA of CS:GO. Nonetheless,
we believe our design can be easily adopted by game compa-
nies as they can patch the game engine directly.

7 Related Work

Statistical Aimbot Detection. Han et al. [22] detect aim-
bots by measuring statistical differences of various features,
such as game playtime, experience points earned, and winning
rates. Those features are not directly relevant to the use of
an aimbot, hence making its prediction fundamentally less
precise. Yu et al. [63, 64] detect aimbots with two statistical
features: cursor acceleration and duration of locking aim on
a target. Specifically they compare statistical differences of
those features obtained from benign players and dishonest
players with the KS test [39]. However, cursor acceleration is
not visible from other clients or from the server. Therefore,
this approach only works at a client side, which is funda-
mentally limited by memory tampering. Yeung et al. [62]
employ five simplified features based on play patterns, such
as Boolean variables representing whether a player moves or
not, and whether a player changes its aim or not, etc. Unfor-
tunately, those simplified features cannot accurately capture
sophisticated usage patterns of aimbots.

Performance-skllfulness Inconsistency-based Detection.
AimDetect [36] exploits the fact that aimbot users often show
less-skillful behaviors as opposed to their performance, e.g.,
the number of kills. However, the proposed approach does not
work well for highly motivated experts, such as a professional
gamer, who wants to win a competition. On the other hand,

our RNN-based model can detect the use of aimbots from
skillful users as our evaluation shows.

ML-based Detection. Galli et al. [19] and Alayed et al. [2]
propose supervised learning methods. They extract features
including aiming angles as in BotScreen. However, they rely
on many complex features unlike BotScreen. Plus, their tech-
nique requires a labeled dataset obtained from both benign
and malicious players, which is inherently difficult to obtain.
On the other hand, BotScreen relies solely on a benign dataset,
which is far easier to obtain. Meanwhile, if one can manage
to make such detection model for their games, they can apply
the BotScreen’s architecture with their detection model for
target game.

Open-Source Anti-Cheats. We also survey three open-
source anti-cheat solutions, specifically designed to detect
aimbots in CS:GO. We note that each solution uses a prede-
fined heuristic to detect suspicious aim changes. COW Anti-
Cheat [15] checks if the difference between aiming angles
before and after hitting a target is greater than 15 degrees.
When there are more than five suspicious such movements, it
flags the player as a cheater. Little Anti-Cheat [27] accuses
a player as a cheater if its aiming angle is changed by more
than 80% in 0.5 seconds before killing a player. Similarly,
SMAC [55] marks a player as a cheater if its aiming direction
was changed by more than 45 degrees in 0.5 seconds before
killing a player. While BotScreen and open-source anti-cheats
operate under the same intuition that aimbots tend to generate
sudden aiming movements, open-source solutions are easier
to evade and lack flexibility as they operate on a set of codified
rules.

Cheating Prevention. There are many general cheating
prevention techniques, although they are not directly applica-
ble to aimbot detection. For example, Watchmen [61] detects
cheating attempts by employing a network proxy, which moni-
tors network packets from clients. Although this approach can
lessen the burden of the server, it still does not scale well with
popular games with substantially busy network traffic. Kalra
et al. [28] propose a blockchain-based cheating detection tech-
nique, where every game states are shared through a smart
contract. However, it also suffers from the scalability issue.
Bethea et al. [3] leverage symbolic execution to validate client
states, but it also bounds to the server-side detection problems.
OpenConflict [5] designs the Oblivious Set Intersection Pro-
tocol that can prevent the use of maphacks. BlackMirror [49]
utilizes Intel SGX to prevent the use of wallhacks by storing
the sensitive information inside an SGX enclave. However,
they assume that the server includes a game engine, and every
action is computed from the server, which is not applicable in
large-scale FPS games, such as CS:GO.



8 Conclusion

Cheating in online games, particularly aimbots, pose a signifi-
cant threat to the game industry, and existing aimbot detection
solutions suffer from either high server-side overhead or poor
detection performances. This paper presented BotScreen, a
novel client-side distributed aimbot detection scheme, which
enables distributed aimbot detection. Our design utilizes an
RNN-based model to enable high detection accuracy while
only using features available to distributed clients. Our imple-
mentation and evaluation with CS:GO shows that BotScreen
can detect aimbots with high precision, and its runtime over-
head is marginal on a modern gaming PC.
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A Training Loss for RNN Model

We present the training loss of the proposed SGRU model
as a function of training epochs in Figure 9. The solid line
represents the average loss, and the shaded areas represent
confidence intervals. It can be easily seen that the training is
effectively done, where the loss converges to close zero.
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Figure 9: Training loss of SGRU models over epochs.

Table 8: Summary on the skill levels of the players partici-
apted in our study. All numbers are retrieved from Tracker
Network [46], or official matchmaking records of each game.

ID Playtime Skill summary

A > 6,200 hrs
Apex Legend - BR Diamond 3 (Top 2%)
CS:GO - Global Elite-level (Top 1.4%)
Overwatch - Grand Master (Top 1%)

B > 5,700 hrs
Apex Legend - BR Diamond 2 (Top 1%)
CS:GO - Distinguished Master Guardian (Top 12%)
Destiny 2 - 1.19 K/D (Top 16%)

C > 1,300 hrs
Apex Legend - BR Diamond 4 (Top 7%)
Rainbow Six Seige - Platinum 3 (Top 32%)

D > 4,000 hrs
Destiny 2 - 1.54 K/D (Top 8%)
Overwatch - Diamond (Top 20%)
PUBG - Platinum IV (Top 14%)

E > 3,000 hrs Destiny 2 - 1.17 K/D (Top 18%)

F > 3,500 hrs Sudden Attack - 1.5 K/D

G > 920 hrs
Destiny 2 - 1.14 K/D (Top 20%)
Sudden Attack - 1.4 K/D

H > 4,000 hrs
Overwatch - Diamond (Top 20%)
Rainbow Six Seige - Platinum 3 (Top 32%)

I > 1,200 hrs Rainbow Six Seige - Platinum 3 (Top 32%)

J > 1,450 hrs Destiny 2 - 1.03 K/D (Top 33%)

K > 7,500 hrs Destiny 2 - 1.02 K/D (Top 34%),

L > 3,500 hrs CS:GO - Master Guardian 1 (Top 35%)

M > 1,350 hrs Rainbow Six Seige - Gold 1 (Top 43%)

N > 2,600 hrs
Destiny 2 - 0.71 K/D (Bottom 23%)
Fortnite - 1.11 K/D (Top 29%)

Table 9: Configurations and aggregated statistics of each
game. Duration includes the preparation time before begin-
ning of each game.

Game Configuration # of Events

Day
Format

(Players)
# of Cheaters

(Cheaters)
Duration

(s) fire hit dead

1
4 vs 4

(A, B, D, E,
I, K, L, N)

0 (∅) 616.048 3,657 850 186
2 (I, L) 615.345 2,532 534 182
2 (A, B) 627.684 3,308 746 159
2 (K, N) 614.707 3,516 702 214
2 (D, E) 624.560 2,595 600 203
8 (all) 469.043* 2,600 499 190
2 (A, E) 619.000 2,981 626 200

2
5 vs 5

(A, C, D, E, F,
G, H, I, J, N)

0 (∅) 626.224 4,999 986 228
2 (D, J) 623.171 4,327 983 249
2 (C, H) 636.606 3,566 981 260
2 (G, I) 623.332 4,473 1,100 287
2 (F, N) 635.831 4,322 933 290
2 (A, E) 636.056 3,719 888 278
10 (all) 618.554 4,495 787 271
2 (D, J) 628.690 3,841 785 231
2 (E, G) 619.498 3,484 743 245
2 (A, H) 627.427 2,813 1,281 258

3
4 vs 4

(A, D, E, F,
G, I, M, N)

0 (∅) 629.466 2,621 1,031 189
2 (D, I) 609.438 2,775 691 203
2 (F, N) 624.307 2,579 522 188
2 (A, G) 621.398 2,414 555 176
2 (E, M) 627.289 2,524 556 178
8 (all) 614.902 7,103 851 211

4
5 vs 5

(A, D, E, F, G,
H, I, L, M, N)

0 (∅) 633.453 3,916 1,008 240
2 (M, N) 631.405 3,718 940 296
2 (G, I) 627.982 3,234 860 277
2 (E, L) 617.924 3,229 822 230
2 (A, F) 611.621 3,448 832 239

* Due to a server glitch, we were able to record a part of the game only.

B Collected Game Information

We present the detailed setups and statistics for the dataset
described in §5.1.2. We hired 14 participants from a FPS
game clan, and summarized their in-game ranks as well as
their accumulated playtime in Table 8. The table lists all the
participants in the order of their skill levels and playtime. The
least skilled players, Player M and N, can be considered as
an average-level player given their standings.

Table 9 shows the detailed configuration of each game we
ran for four days. Since not all the players were able to partic-
ipate in all the games, we have different sets of participants
in each day. Each game was set to run for 10 minutes (=
600 seconds). However, the “Duration” column in the table
shows slightly more than 10 minutes as our recording includes
preparation session before each game starts. Every participant
played either as a cheater or a non-cheater in each game and
we distributed the roles uniformly among the participants.



Table 10: History-based detection accuracies for each detection technique, measured over 28 games played for four days.
Numbers in parentheses are respectively the number of falsely accused players (FP), the number of undetected cheaters (FN),
and the total number of players considered. A player is considered to be a cheater there has been at least one detection report.

Reimplemented Methods Open Source

Player th_VarA th_AccA th_Kill ks_AccA os_CAC os_LAC os_SMAC BotScreen

A 0.071 (0/26/28) 0.071 (0/26/28) 1.000 (0/0/28) 0.964 (0/1/28) 0.071 (0/26/28) 1.000 (0/0/28) 1.000 (0/0/28) 1.000 (0/0/28)
B 0.286 (0/5/7) 0.286 (0/5/7) 1.000 (0/0/7) 0.714 (2/0/7) 0.286 (0/5/7) 0.571 (0/3/7) 0.571 (0/3/7) 0.571 (0/3/7)
C 0.200 (0/8/10) 0.200 (0/8/10) 0.900 (0/1/10) 0.900 (1/0/10) 0.200 (0/8/10) 1.000 (0/0/10) 0.900 (1/0/10) 0.600 (0/4/10)
D 0.143 (0/24/28) 0.143 (0/24/28) 1.000 (0/0/28) 0.964 (1/0/28) 0.321 (0/19/28) 1.000 (0/0/28) 0.964 (1/0/28) 1.000 (0/0/28)
E 0.143 (0/24/28) 0.143 (0/24/28) 1.000 (0/0/28) 0.857 (4/0/28) 0.143 (0/24/28) 1.000 (0/0/28) 0.964 (1/0/28) 1.000 (0/0/28)
F 0.190 (0/17/21) 0.190 (0/17/21) 0.952 (0/1/21) 0.857 (3/0/21) 0.190 (0/17/21) 1.000 (0/0/21) 1.000 (0/0/21) 1.000 (0/0/21)
G 0.143 (0/18/21) 0.143 (0/18/21) 0.952 (0/1/21) 0.905 (2/0/21) 0.381 (0/13/21) 0.857 (3/0/21) 1.000 (0/0/21) 1.000 (0/0/21)
H 0.133 (0/13/15) 0.133 (0/13/15) 0.933 (1/0/15) 0.933 (1/0/15) 0.400 (0/9/15) 1.000 (0/0/15) 1.000 (0/0/15) 1.000 (0/0/15)
I 0.036 (0/27/28) 0.036 (0/27/28) 1.000 (0/0/28) 0.857 (0/4/28) 0.179 (0/23/28) 0.857 (0/4/28) 0.964 (1/0/28) 1.000 (0/0/28)
J 0.100 (0/9/10) 0.100 (0/9/10) 0.100 (0/9/10) 0.800 (2/0/10) 0.100 (0/9/10) 0.100 (0/9/10) 0.100 (0/9/10) 1.000 (0/0/10)
K 0.429 (0/4/7) 0.429 (0/4/7) 1.000 (0/0/7) 1.000 (0/0/7) 0.429 (0/4/7) 0.714 (0/2/7) 0.571 (3/0/7) 1.000 (0/0/7)
L 0.083 (0/11/12) 0.083 (0/11/12) 0.250 (0/9/12) 1.000 (0/0/12) 0.500 (0/6/12) 1.000 (0/0/12) 1.000 (0/0/12) 1.000 (0/0/12)
M 0.364 (0/7/11) 0.364 (0/7/11) 0.727 (0/3/11) 0.636 (4/0/11) 0.364 (0/7/11) 0.636 (4/0/11) 0.636 (4/0/11) 1.000 (0/0/11)
N 0.107 (0/25/28) 0.107 (0/25/28) 1.000 (0/0/28) 0.929 (0/2/28) 0.107 (0/25/28) 0.929 (0/2/28) 0.929 (0/2/28) 1.000 (0/0/28)

C History-based Detection Comparison

Recall from §5.4 that we compared BotScreen against seven
previous detection methods in a history-based detection set-
ting, where a player is considered as a cheater if there has
been at least one detection report in the history. From the
game data we have in Table 9, we extracted games that each
player participated, and simulated the detection process for
each player.

Table 10 summarizes the results. Each cell in the table rep-
resents a detection accuracy of a detection method in a player
basis, and numbers in parentheses represent the number of
false reports (FP), the number of missed reports (FN), and the
total number of reports. It is clear that BotScreen significantly
outperforms all the other methods in terms of detection accu-
racy. There are two notable cases where BotScreen suffered
(Player B and C). Those are the players who participated only
for a small number of games. Even if there was a false neg-
ative case for a single game, BotScreen could not detect the
player as an aimbot user for the rest of the games because
there is no further evidence to accuse the player. Nonethe-
less, the other detection methods also suffered from the same
problem for these players, and BotScreen showed consistently
better performance compared to the others.

D Detailed Performance Benchmark Results

Recall from §5.6, we measured performance overhead of
BotScreen on three different setups: high-performance, mid-
performance, and low-performance machines (§5.1.4). For
each setup, we ran MSI Afterburner for 10 minutes and
repeated the experiment 10 times. The experimental re-
sults for the high-performance, mid-performance, and low-
performance setup are tabulated in Table 11, Table 12 and

Table 11: Measured frame times on high-performance setup.

Frame Time (ms)

#Frames Avg. Min Max Low
1%

Low
0.1%

Baseline 1 153,371 3.912 0.901 82.946 8.764 12.612
2 147,699 4.062 0.973 92.483 9.322 13.370
3 141,295 4.246 0.786 98.557 9.512 14.143
4 143,211 4.190 0.909 35.039 8.963 12.162
5 146,382 4.099 0.893 113.429 8.622 13.819
6 150,862 3.977 0.901 87.403 9.056 14.287
7 126,971 4.725 0.882 75.936 11.017 16.820
8 146,598 4.093 0.832 172.772 9.426 14.314
9 151,556 3.959 0.853 35.786 9.243 12.342

10 146,761 4.088 0.922 54.022 9.046 12.839

BotScreen 1 146,659 4.091 1.039 69.957 9.525 14.358
2 132,267 4.536 0.988 99.646 10.047 14.701
3 137,735 4.356 1.057 153.207 10.016 15.156
4 149,137 4.023 1.093 103.817 9.723 15.525
5 131,332 4.569 1.101 156.411 10.357 14.880
6 166,246 3.609 0.904 93.441 8.657 14.233
7 144,860 4.142 0.899 146.000 9.645 17.715
8 136,527 4.395 1.040 35.293 10.015 14.113
9 130,683 4.591 1.005 28.304 10.114 13.932

10 153,548 3.908 0.923 39.580 9.055 12.634

Table 13, respectively.
Each table presents the performance benchmark results

with and without BotScreen. Note that the frame time signifi-
cantly varies from 3.9ms to 4.7ms in the high-performance
setup, and the fluctuation is much higher in the other se-
tups. Given that the performance overhead of BotScreen
is much smaller than the frame time variation in the high-
performance and the mid-performance setup, we can conclude
that BotScreen does not affect the performance significantly
for modern machines.



Table 12: Measured frame times on mid-performance setup.

Frame Time (ms)

#Frames Avg. Min Max Low
1%

Low
0.1%

Baseline 1 85,171 7.045 1.457 189.083 13.057 22.001
3 123,310 4.866 1.325 64.152 10.538 14.224
4 91,682 6.544 1.366 34.691 12.502 16.400
5 99,918 6.005 1.368 44.541 12.428 16.842
2 127,766 4.696 1.297 39.900 10.266 13.763
6 96,033 6.248 1.373 92.231 12.660 19.106
7 89,820 6.680 1.407 76.699 12.310 17.497
8 126,398 4.747 1.262 44.809 10.881 14.206
9 117,066 5.125 1.310 71.483 11.158 15.217

10 84,770 7.078 1.404 46.267 14.326 17.872

BotScreen 1 86,000 6.977 1.408 136.746 15.688 24.188
2 81,591 7.354 1.392 103.724 16.688 24.821
3 84,267 7.120 1.525 50.944 15.894 20.556
4 85,654 7.005 1.439 95.644 15.100 22.190
5 87,116 6.887 1.475 59.744 14.749 19.433
6 110,912 5.410 1.380 41.637 12.982 16.620
7 98,251 6.107 1.490 44.563 13.688 17.472
8 84,145 7.130 1.537 47.840 15.567 20.370
9 103,330 5.807 1.421 56.707 12.793 17.479

10 92,572 6.481 1.481 45.653 13.601 17.974

Table 13: Measured frame times on low-performance setup.

Frame Time (ms)

#Frames Avg. Min Max Low
1%

Low
0.1%

Baseline 1 20,960 28.626 4.717 1,167.064 119.403 415.093
2 19,447 30.853 4.810 919.616 176.530 486.293
3 18,828 31.868 4.866 960.538 115.277 361.149
4 18,852 31.827 5.591 404.953 76.804 188.311
5 22,955 26.138 4.947 84.492 47.026 62.277
6 15,651 38.338 8.275 644.159 76.613 194.331
7 18,666 32.144 8.500 450.727 59.374 134.551
8 18,264 32.851 22.680 156.349 50.704 72.187
9 15,835 37.891 8.554 551.610 70.554 152.392

10 15,847 37.864 7.831 556.640 69.940 125.269

BotScreen 1 14,754 40.667 7.188 1,508.617 151.420 633.001
2 21,968 27.313 18.010 339.299 51.622 91.830
3 19,334 31.033 19.674 738.953 72.496 192.380
4 15,091 39.759 7.127 232.859 84.852 150.191
5 11,332 52.951 13.996 672.676 117.582 313.267
6 12,694 47.269 13.227 1,045.163 162.825 574.082
7 13,102 45.797 13.813 886.827 128.910 404.839
8 11,719 51.202 14.186 878.528 116.041 280.454
9 13,333 45.003 13.643 1,021.265 108.492 262.184

10 12,223 49.089 12.248 444.153 112.197 234.817
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