
Heap Hardening Question?
1 / 25

Lec 17: Heap Hardening
IS561: Binary Code Analysis and Secure Software Systems

Sang Kil Cha



Heap Hardening Question?
2 / 25

Heap Hardening



Heap Hardening Question?
3 / 25

Recall: Heap Safety

A heap manager (a.k.a. heap allocator) helps organize memory objects, but
memory corruption causes many troubles.

• Heap metadata corruption.
• Use-after-free vulnerabilities.



Heap Hardening Question?
4 / 25

Question

How about designing a safe heap manager?



Heap Hardening Question?
5 / 25

An Ideal World with Infinite Memory

• Every memory allocation returns a fresh new object.
• Every memory object is infinitely large, and objects do not overlap.
• No need to free objects.

No heap metadata corruption, no UAF, no dangling pointers.



Heap Hardening Question?
6 / 25

Secure Heap Allocators in Real World?

• DieHard: Probabilistic Memory Safety for Unsafe Programming Languages,
PLDI 2006

• DieHarder: Securing the Heap, CCS 2010



Heap Hardening Question?
7 / 25

DieHard Design

Metadata

Size

00000001

23

1010

24

10

25

...

Heap metadata is separated from data. A bit in a bitmap represents one object: 0
means a freed slot, and 1 means an allocated object.



Heap Hardening Question?
8 / 25

Randomized Allocation: malloc(sz)

Metadata

Size

00000001

23

1010

24

10

25

...

1. Compute size class: ceil(log sz) - 3.
2. Randomly select a zero bit (which means a freed slot).



Heap Hardening Question?
8 / 25

Randomized Allocation: malloc(sz)

Metadata

Size

00100001

23

1010

24

10

25

...

1. Compute size class: ceil(log sz) - 3.
2. Randomly select a zero bit (which means a freed slot).



Heap Hardening Question?
9 / 25

DieHard Memory Allocation

• Allocation is fast: O(1).
• Heap overflow will not overwrite the metadata.
• Heap overflow is non-deterministic: every overflow attempt will overwrite

different memory objects1.

1This is good and bad. Why?



Heap Hardening Question?
10 / 25

Deallocation: free(ptr)

Metadata

Size

00000001

23

1010

24

10

25

...

1. Check the bitmap to detect a double-free.
2. Modify the corresponding bit in the bitmap to zero.



Heap Hardening Question?
11 / 25

Reflection on the Design of DieHard

• Security vs. performance trade-off.

- Cache misses!

• Still have a problem with uninitialized reads.
- Allocate a new object without initializing it.
- Try to read previously written data from the object.



Heap Hardening Question?
11 / 25

Reflection on the Design of DieHard

• Security vs. performance trade-off.
- Cache misses!

• Still have a problem with uninitialized reads.
- Allocate a new object without initializing it.
- Try to read previously written data from the object.



Heap Hardening Question?
11 / 25

Reflection on the Design of DieHard

• Security vs. performance trade-off.
- Cache misses!

• Still have a problem with uninitialized reads.
- Allocate a new object without initializing it.
- Try to read previously written data from the object.



Heap Hardening Question?
12 / 25

DieHarder Design

More secure than DieHard.
• Heap overflows can still corrupt memory objects. Can we make memory

corruption less likely?
• Uninitialized reads are problematic, can we prevent those attempts?



Heap Hardening Question?
13 / 25

Problem #1: Memory Corruption

Metadata

Size

00000001

23

1010

24

10

25

...

Corrupting adjacent objects.



Heap Hardening Question?
14 / 25

Sparse Page Mapping

2

2Image from DieHarder: Securing the Heap, CCS 2010.



Heap Hardening Question?
15 / 25

Trade-Off: Security vs. Performance

Sparse page mapping increases the size of the page table.



Heap Hardening Question?
16 / 25

Problem #2: Uninitialized Reads

• Freed objects keep original values.
• Old values can spray over the entire memory space.

Solution: destroy on free (= fill with random values)



Heap Hardening Question?
16 / 25

Problem #2: Uninitialized Reads

• Freed objects keep original values.
• Old values can spray over the entire memory space.

Solution: destroy on free (= fill with random values)



Heap Hardening Question?
17 / 25

Performance Overhead of DieHarder

• 0× ∼ 2× overhead on SPEC CPU benchmark.
• Near zero performance overhead on Firefox

- A sweet-spot of the security-performance trade-off.

Problem solved?



Heap Hardening Question?
18 / 25

False Sharing Problem

Suppose o1 and o2 are used by two different threads T1 and T2, respectively. If o1
and o2 share the same cache line, writing to one object from a thread can cause
cache misses in the other thread.

Most secure heap allocators do not consider this problem – every thread shares the
same heap.

FreeGuard3 addresses this problem by having a per-thread subheap design.

3FreeGuard: A Faster Secure Heap Allocator, CCS 2017



Heap Hardening Question?
18 / 25

False Sharing Problem

Suppose o1 and o2 are used by two different threads T1 and T2, respectively. If o1
and o2 share the same cache line, writing to one object from a thread can cause
cache misses in the other thread.

Most secure heap allocators do not consider this problem – every thread shares the
same heap.

FreeGuard3 addresses this problem by having a per-thread subheap design.

3FreeGuard: A Faster Secure Heap Allocator, CCS 2017



Heap Hardening Question?
19 / 25

An Extreme Case of Sparse Page Mapping

• Windows: PageHeap
• Linux: Electric Fence

Normal Page

Unmapped

Guard Page



Heap Hardening Question?
20 / 25

Implication of PageHeap

Suppose we do not (or at least rarely) reuse memory while using PageHeap. This is
also known as OTA (One Time Allocation) scheme.

We can detect UAF bugs as well as heap memory corruption.



Heap Hardening Question?
20 / 25

Implication of PageHeap

Suppose we do not (or at least rarely) reuse memory while using PageHeap. This is
also known as OTA (One Time Allocation) scheme.

We can detect UAF bugs as well as heap memory corruption.



Heap Hardening Question?
21 / 25

PageHeap Revisited

Prober: Practically Defending Overflows with Page Protection, ASE 2020
• Can we apply the idea of PageHeap on a reduced scope?
• Key intuition: overflowing objects are typically related to arrays.
• Put array-related objects to a separate space with the PageHeap protection!



Heap Hardening Question?
22 / 25

PageHeap Revisited (Again)

Preventing Use-After-Free Attacks with Fast Forward Allocation, USENIX Security
2021.

• Discuss several practical issues, such as VMA exhaustion.
• But still inefficient for many real-world applications especially with many

short-lived objects (frequent malloc/free calls). Fragmentation is a big issue.
• More recent advances with kernel support4

• Can only handle UAF bugs.

4BUDAlloc: Defeating Use-After-Free Bugs by Decoupling Virtual Address Management from
Kernel, USENIX Security 2024



Heap Hardening Question?
23 / 25

Key Takeaway

Performance vs. Security.



Heap Hardening Question?
24 / 25

Question?



Heap Hardening Question?
25 / 25

Exercise: Try DieHard

Download DieHard from https://github.com/emeryberger/DieHard, and use it.
Create a toy program that calls mallocs and frees, and attach GDB to its process to
see how the allocator behaves.

https://github.com/emeryberger/DieHard

	Heap Hardening
	Question?

