
CFI Beyond CFI Question?
1 / 40

Lec 14: CFI
IS561: Binary Code Analysis and Secure Software Systems

Sang Kil Cha

CFI Beyond CFI Question?
2 / 40

Attack and Defense So Far ...

Code injection

NX/DEP

Code-reuse attacks

ASLR

ROP on Fixed Code

ASLR w/ PIE

Canary

Memory Disclosure
(JIT ROP) Advanced Defenses

There’s yet another advanced defense,
which is partly adopted in practice!

CFI Beyond CFI Question?
3 / 40

CFI

CFI Beyond CFI Question?
4 / 40

Control Flow Hijack Exploit

q Attacker’s own code/logic

CFI Beyond CFI Question?
5 / 40

CFI: The Motivation

Can we Enforce the Integrity of Control Flows?

CFI Beyond CFI Question?
6 / 40

CFI Policy

The CFI security policy dictates that software execution must follow a path of a
Control-Flow Graph (CFG) determined ahead of time1.

1Quote from Control Flow Integrity, CCS 2005

CFI Beyond CFI Question?
7 / 40

CFG

A CFG is a graph that represents all paths that might be traversed through a program
execution.

CFI Beyond CFI Question?
8 / 40

Basic Block

Each node in a CFG represents a basic block.

Basic block: A sequence of statements that is always entered at the beginning and
exited at the end2.

2Quote from Modern Compiler Implementation.

CFI Beyond CFI Question?
9 / 40

Exercise: CFG
0: 55 push ebp
1: 89 e5 mov ebp , esp
3: 83 ec 10 sub esp ,0 x10
6: c7 45 f8 00 00 00 00 mov DWORD PTR [ebp−0x8] , 0 x0
d : c7 45 f c 0a 00 00 00 mov DWORD PTR [ebp−0x4] , 0 xa

14: eb 08 jmp 1e <v+0x1e>
16: 83 45 f8 01 add DWORD PTR [ebp−0x8] , 0 x1
1a : 83 6d f c 01 sub DWORD PTR [ebp−0x4] , 0 x1
1e : 83 7d f c 00 cmp DWORD PTR [ebp−0x4] , 0 x0
22: 7 f f2 j g 16 <v+0x16>
24: 8b 45 f8 mov eax ,DWORD PTR [ebp−0x8]
27: c9 leave
28: c3 r e t

0

1e
16

24

CFI Beyond CFI Question?
9 / 40

Exercise: CFG
0: 55 push ebp
1: 89 e5 mov ebp , esp
3: 83 ec 10 sub esp ,0 x10
6: c7 45 f8 00 00 00 00 mov DWORD PTR [ebp−0x8] , 0 x0
d : c7 45 f c 0a 00 00 00 mov DWORD PTR [ebp−0x4] , 0 xa

14: eb 08 jmp 1e <v+0x1e>
16: 83 45 f8 01 add DWORD PTR [ebp−0x8] , 0 x1
1a : 83 6d f c 01 sub DWORD PTR [ebp−0x4] , 0 x1
1e : 83 7d f c 00 cmp DWORD PTR [ebp−0x4] , 0 x0
22: 7 f f2 j g 16 <v+0x16>
24: 8b 45 f8 mov eax ,DWORD PTR [ebp−0x8]
27: c9 leave
28: c3 r e t

0

1e
16

24

CFI Beyond CFI Question?
10 / 40

Key Idea of CFI

Any execution should follow control paths of the CFG.

If not, it is a control-flow hijack!

CFI Beyond CFI Question?
11 / 40

CFI Assumptions

• Attackers cannot execute data (i.e., DEP is enabled).
• Programs cannot change themselves (i.e., no self-modifying code).

Why?

CFI Beyond CFI Question?
12 / 40

Enforcing CFI

• Give a unique ID for each destination.
• For all branch instructions, check destination IDs before taking the branch.

CFI Beyond CFI Question?
13 / 40

CFI Instrumentation
Source Destination

Original FF E1 jmp ecx 8B 44 24 04 mov eax, [esp+4]

Version 1

81 39 78 56 34 12 cmp [ecx], 12345678h
75 13 jne error_label
8D 49 04 lea ecx, [ecx + 4]
FF E1 jmp ecx

78 56 34 12 .data 12345678h
8B 44 24 04 mov eax, [esp+4]

Version 2

B8 77 56 34 12 mov eax, 12345677h
40 inc eax
39 41 04 cmp [ecx + 4], eax
75 13 jne error_label
FF E1 jmp ecx

3F 0F 18 05 prefetchnta
78 56 34 12 [12345678h]
8B 44 24 04 mov eax, [esp+4]

Why version 2 is more secure than version 1?

CFI Beyond CFI Question?
14 / 40

CFI Challenge

Indirect branches can have more than one jump target. In the previous example, jmp
ecx can have multiple jump targets!

1. How about checking multiple IDs in a single branch?
2. How about assigning the same ID to different targets?

CFI Beyond CFI Question?
15 / 40

Checking Multiple IDs in a Single Branch

• How do we know which ID is correct in which context?
• We could consider it safe if one of the IDs matches, but then it is no different

from using a single ID.

So, practical solution would be to use a single ID for multiple targets.

CFI Beyond CFI Question?
16 / 40

Single ID Multiple Targets

bool l t (i n t x , i n t y) { return x < y ; }
bool g t (i n t x , i n t y) { return x > y ; }
void sor t2 (i n t a [] , i n t b [] , i n t len)
{

s o r t (a , len , l t) ;
s o r t (b , len , g t) ;

}

. . .
c a l l s o r t

sort2()

l a b e l 55:
. . .

c a l l s o r t

l a b e l 55:
. . .

r e t

. . .

c a l l rax

sort()

l a b e l 23:
. . .

r e t (to 55)

l a b e l 17:
. . .

r e t (to 23)

lt()

l a b e l 17:
. . .

r e t (to 23)

gt()

CFI Beyond CFI Question?
17 / 40

Problem: False Negatives

A

B

C

D

return
1. When D returns to A?
2. When C returns to A, even if it should

return to B in the current context?
- Context-insensitivity.

Will using multiple IDs help here?

CFI Beyond CFI Question?
17 / 40

Problem: False Negatives

A

B

C

D

return
1. When D returns to A?
2. When C returns to A, even if it should

return to B in the current context?
- Context-insensitivity.

Will using multiple IDs help here?

CFI Beyond CFI Question?
18 / 40

Partial Solution: Shadow Call Stack3

• In each function prologue, store the return address in a separate memory area
(shadow stack).

• In each function epilogue, check if we are returning to the proper address.

This is a context-sensitive solution only for backward (return) edges.

3A Binary Rewriting Defense against Stack based Buffer Overflow Attacks, USENIX ATC 2003

CFI Beyond CFI Question?
19 / 40

CFI with Shadow Call Stack
Source Destination

Original call eax ; call function ptr ...
ret return

CFI

add gs:[0h], 4 ; inc stack by 4
mov ecx, gs:[0h] ; get top offset
mov gs:[ecx], LRET ; push ret dest
cmp [eax+4], ID ; comp fptr w/ID
jne error_label ; if != fail
call eax ; call

mov ecx, gs:[0h] ; get top offset
mov ecx, gs:[ecx] ; pop return dst
sub gs:[0h], 4h ; dec stack by 4
add esp, 4h ; skip extra ret
jmp ecx ; return

Why not just use a ret instruction?

CFI Beyond CFI Question?
19 / 40

CFI with Shadow Call Stack
Source Destination

Original call eax ; call function ptr ...
ret return

CFI

add gs:[0h], 4 ; inc stack by 4
mov ecx, gs:[0h] ; get top offset
mov gs:[ecx], LRET ; push ret dest
cmp [eax+4], ID ; comp fptr w/ID
jne error_label ; if != fail
call eax ; call

mov ecx, gs:[0h] ; get top offset
mov ecx, gs:[ecx] ; pop return dst
sub gs:[0h], 4h ; dec stack by 4
add esp, 4h ; skip extra ret
jmp ecx ; return

Why not just use a ret instruction?

CFI Beyond CFI Question?
20 / 40

Time of Check to Time of Use Problem

Example

if (access("file", W_OK) != 0) {
exit (1); // exit if not writabl
e

}

fd = open("file", O_WRONLY);
write(fd , buffer , sizeof(buffer));

TOC

TOU

CFI Beyond CFI Question?
20 / 40

Time of Check to Time of Use Problem

Example

if (access("file", W_OK) != 0) {
exit (1); // exit if not writabl
e

}

fd = open("file", O_WRONLY);
write(fd , buffer , sizeof(buffer));

TOC

TOU

CFI Beyond CFI Question?
21 / 40

TOCTOU
Source Destination

Original call eax ; call function ptr ...
ret return

CFI

add gs:[0h], 4 ; inc stack by 4
mov ecx, gs:[0h] ; get top offset
mov gs:[ecx], LRET ; push ret dest
cmp [eax+4], ID ; comp fptr w/ID
jne error_label ; if != fail
call eax ; call

mov ecx, gs:[0h] ; get top offset
mov ecx, gs:[ecx] ; pop return dst
sub gs:[0h], 4h ; dec stack by 4
add esp, 4h ; skip extra ret
jmp ecx ; return

TOCTOU can happen here if ret is used.

CFI Beyond CFI Question?
22 / 40

CFI Runtime Overhead

CFI + shadow stack overhead ≈ 20% on average4.

4Control Flow Integrity, CCS 2005

CFI Beyond CFI Question?
23 / 40

CFI Practical Implication

• Achieving CFI is infeasible in practice.
• There is a practical (but unsafe) solution with shadow call stack, but it incurs

significant overhead still.
• CFI is a source-level solution, and achieving CFI on binary code is even more

difficult.

CFI Beyond CFI Question?
24 / 40

CFI Limitation

• Hard to apply for legacy binary code.
• Cannot apply for JIT-compiled code.

CFI Beyond CFI Question?
25 / 40

CFI Research

• Coarse-grained CFI: make it more scalable and adoptable by making it less
secure.

- Practical Control Flow Integrity and Randomization for Binary Executables,
Oakland 2013.

- Control Flow Integrity for COTS binaries, USENIX Security 2013
- ROPecker: A Generic and Practical Approach for Defending against ROP attacks,

NDSS 2014
- Microsoft EMET (ROPGuard).

• H/W support: make it more scalable with H/W support.

CFI Beyond CFI Question?
26 / 40

(Source-Level) CFI is Now in Major Compilers

Enforcing Forward-Edge Control-Flow Integrity in GCC & LLVM, USENIX Security
2014

• VTV (VTable Verification): checks the VTABLE hierarchy to check whether
virtual function call is valid or not.

• IFCC (Indirect Function Call Checker) and FSAN (indirect Function call
Sanitizer) dynamically check the types of each function to see if it has the same
type as declared in the function pointer.

CFI Beyond CFI Question?
27 / 40

Coarse-grained CFI Example

Suppose we want to make CFI more scalable by removing the back edge protection
(i.e., shadow call stack). What would be the security implication of this approach?

CFI Beyond CFI Question?
28 / 40

CFI without Shadow Call Stack

• ROP may be possible at a very limited way.
• However, return-to-LIBC is extremely easy! Why?5

- system internally calls memcpy.
- If a vulnerable function calls memcpy, we can return to system under the

coarse-grained CFI by modifying its own stack.

5Control-Flow Bending: On the Effectiveness of Control-Flow Integrity, USENIX Security 2015

CFI Beyond CFI Question?
28 / 40

CFI without Shadow Call Stack

• ROP may be possible at a very limited way.
• However, return-to-LIBC is extremely easy! Why?5

- system internally calls memcpy.
- If a vulnerable function calls memcpy, we can return to system under the

coarse-grained CFI by modifying its own stack.

5Control-Flow Bending: On the Effectiveness of Control-Flow Integrity, USENIX Security 2015

CFI Beyond CFI Question?
29 / 40

Idea: Dispatcher Function

• A function that can overwrite its own return address when given arguments
supplied by an attacker.

• Any function that has a “write-what-where” primitive could be a dispatcher
function. For example, memcpy, printf, etc.

• memcpy (if the user can supply arbitrary input) can modify its own stack and
return to any address.

Coarse-grained CFI could be extremely vulnerable!

CFI Beyond CFI Question?
30 / 40

Beyond CFI

CFI Beyond CFI Question?
31 / 40

CFI Recap

The idea is straightforward, but realizing it is not at all easy.

CFI Beyond CFI Question?
32 / 40

Fully Precise CFI?

Let’s assume that we can realize fully precise CFI. Can we say that we are safe
against memory corruption? What else can attackers do?

CFI Beyond CFI Question?
33 / 40

A New Exploitation

A new exploitation technique named printf-oriented programming can bypass fully
precise CFI.

• A single call to printf allows an attacker to perform Turing-complete
computation.

• Assuming that we can fully control the arguments to printf.

CFI Beyond CFI Question?
34 / 40

Printf-Oriented Programming

• Memory read: %s.
• Memory write: %n.
• Conditional?

CFI Beyond CFI Question?
35 / 40

Conditionals in POP
Can we represent the conditional statement below in POP?

i f (* c) {

* t = x ;
}

("%s%hhnQ%*d%n", c, s, x-2, 0, t)

Single-byte write that overwrites Q.
When a NULL byte is written to it,
printf terminates.

Width specifier

Address of Q

CFI Beyond CFI Question?
36 / 40

POP is Turing-Complete!

6

6Ripple carry adder implementation in POP. Image taken from the slides of Control-Flow Bending:
On the Effectiveness of Control-Flow Integrity, USENIX Security 2015

CFI Beyond CFI Question?
37 / 40

POP

• Single call to printf is enough to run any arbitrary code.
• No need to violate CFI.

CFI Beyond CFI Question?
38 / 40

Q: Do POP-based exploits hijack control flows?

CFI Beyond CFI Question?
39 / 40

Question?

CFI Beyond CFI Question?
40 / 40

Exercise

Read Clang’s manual for CFI7 and discuss how each different option implements
different CFI policies.

7https://clang.llvm.org/docs/ControlFlowIntegrity.html

https://clang.llvm.org/docs/ControlFlowIntegrity.html

	CFI
	Beyond CFI
	Question?

