
Binary Rewriting Reassembly Question?
1 / 37

Lec 13: Rewriting
IS561: Binary Code Analysis and Secure Software Systems

Sang Kil Cha

Binary Rewriting Reassembly Question?
2 / 37

Binary Rewriting

Binary Rewriting Reassembly Question?
3 / 37

Binary Rewriting

Binary Rewriting = Static Binary Instrumentation

Given a binary, statically instrument it in such a way that the rewritten binary will run
as is while the instrumentation code is executed.

Binary Rewriting Reassembly Question?
4 / 37

Why Binary Rewriting Matters?

Because it is extremely fast and efficient compared to other dynamic instrumentation
techniques.

Binary Rewriting Reassembly Question?
5 / 37

Why Binary Rewriting is Difficult?

/ / func1 :
0x1100 : push rbp
0x1103 : mov rbp , rsp
0x1107 : sub rsp , 0x50
. . .

/ / func2 :
0x1200 : push rbp
0x1203 : mov rbp , rsp
. . .

What happens when we add
instrumentation code here?

Binary Rewriting Reassembly Question?
6 / 37

Fixing Cross-References is Difficult

• Identifying dynamically computed references is difficult.
- e.g., call rax and jmp rax.

• Sometimes addresses (or their offsets) are stored as data.
- e.g., jump tables for switch-case statements.

• Correctly identifying code and data from a binary is difficult, which requires
precisely recovering CFGs.

Fixing all cross-references is at least as difficult as precise CFG recovery.

Binary Rewriting Reassembly Question?
6 / 37

Fixing Cross-References is Difficult

• Identifying dynamically computed references is difficult.
- e.g., call rax and jmp rax.

• Sometimes addresses (or their offsets) are stored as data.
- e.g., jump tables for switch-case statements.

• Correctly identifying code and data from a binary is difficult, which requires
precisely recovering CFGs.

Fixing all cross-references is at least as difficult as precise CFG recovery.

Binary Rewriting Reassembly Question?
7 / 37

Existing Binary Rewriting Methods

Bypass the challenge with various ideas.
1. Compiler-assisted rewriting.

- Rewrite binaries, but still rely on the source code.

2. Patch-based rewriting.
- Rewrite binaries in such a way that references are not changed.

3. Table-based rewriting.
- Rewrite binaries in such a way that references are not changed.

Binary Rewriting Reassembly Question?
8 / 37

Compiler-Assisted Rewriters

• Assume the existence of source code or debugging symbols.
• Using debugging symbols is like a cheat key for binary analysis.

- We know exactly the addresses of code and data.

• Tools: ATOM, Vulcan, Diablo, PEBIL, etc.

Binary Rewriting Reassembly Question?
9 / 37

Debugging Symbols

• You can use the -g option to produce a binary with full symbolic information.
- This is almost equivalent to having the source code.

• Even if you do not use the -g option, there still remain partial symbolic
information.

• To fully strip off such symbolic information, we use the strip command.

Binary analysis assumes no symbolic information. When we say
binary analysis, it really means binary analysis for stripped binaries.

Binary Rewriting Reassembly Question?
10 / 37

Patch-based Rewriters

• Key idea: fix the layout of the binary, so there’s no need to fix the references in
the binary!

• Tools: Detour1, DynInst, E9Patch2, etc.

But, how?

1Detours: Binary interception of win32 functions, USENIX 1999
2Binary Rewriting without Control Flow Recovery, PLDI 2020

Binary Rewriting Reassembly Question?
11 / 37

Example: Fixing the Layout

/ / func1 :
0x1100 : push rbp
0x1103 : mov rbp , rsp
0x1107 : sub rsp , 0x50

. . .

/ / func2 :
0x1200 : push rbp
0x1203 : mov rbp , rsp
. . .

jmp detour

detour :
/ / i ns t rumen ta t i on r o u t i n e s t a r t s here .
sub rsp , 0x50
jmp 0x110b

Several requirements:
• The detoured routines should not

touch the original layout.
• Injected trampolines should not

affect the fall-through code.

Binary Rewriting Reassembly Question?
11 / 37

Example: Fixing the Layout

/ / func1 :
0x1100 : push rbp
0x1103 : mov rbp , rsp
0x1107 : sub rsp , 0x50

. . .

/ / func2 :
0x1200 : push rbp
0x1203 : mov rbp , rsp
. . .

jmp detour

detour :
/ / i ns t rumen ta t i on r o u t i n e s t a r t s here .
sub rsp , 0x50
jmp 0x110b

Several requirements:
• The detoured routines should not

touch the original layout.
• Injected trampolines should not

affect the fall-through code.

Binary Rewriting Reassembly Question?
11 / 37

Example: Fixing the Layout

/ / func1 :
0x1100 : push rbp
0x1103 : mov rbp , rsp
0x1107 : sub rsp , 0x50

. . .

/ / func2 :
0x1200 : push rbp
0x1203 : mov rbp , rsp
. . .

jmp detour

detour :
/ / i ns t rumen ta t i on r o u t i n e s t a r t s here .
sub rsp , 0x50
jmp 0x110b

Several requirements:
• The detoured routines should not

touch the original layout.
• Injected trampolines should not

affect the fall-through code.

Binary Rewriting Reassembly Question?
12 / 37

Challenges for Patch-based Rewriting

• Instruction-level instrumentation is not easy.
- e.g., instrumenting one-byte instructions

• If the detour code is far away, we need to use 5-byte jumps.
- “e9 10 20 30 40” means jmp +0x40302015.
- Hence, instrumentation target instructions are likely to be smaller than a jump

instruction.

Binary Rewriting Reassembly Question?
13 / 37

Table-based Rewriters

• Address the applicability challenge of patch-based rewriting methods.
• Create a duplicate copy of a binary, and use an address-translation table at

runtime.
- The table maps an original address to a new address of the copy.

• Tools: PSI, Multiverse3, etc.

3Superset disassembly: Statically rewriting x86 binaries without heuristics, NDSS 2018.

Binary Rewriting Reassembly Question?
14 / 37

Example: Table-based Rewriting

/ / func1 :
0x1100 : push rbp
0x1103 : mov rbp , rsp
0x1107 : c a l l rax ; func2
. . .

/ / func2 :
0x1200 : push rbp
0x1203 : mov rbp , rsp
. . .

/ / func1 :
0x11100 : push rbp
0x11103 : mov rbp , rsp
; i ns t rumen ta t i on code
. . .
0x11117 : c a l l tab le_ lookup_rax
0x11119 : c a l l rax ; 0x11300
. . .

/ / func2 :
0x11300 : push rbp
0x11303 : mov rbp , rsp
. . .

+

1200 7→ 11300

Why do we keep the original copy?

Binary Rewriting Reassembly Question?
14 / 37

Example: Table-based Rewriting

/ / func1 :
0x1100 : push rbp
0x1103 : mov rbp , rsp
0x1107 : c a l l rax ; func2
. . .

/ / func2 :
0x1200 : push rbp
0x1203 : mov rbp , rsp
. . .

/ / func1 :
0x11100 : push rbp
0x11103 : mov rbp , rsp
; i ns t rumen ta t i on code
. . .
0x11117 : c a l l tab le_ lookup_rax
0x11119 : c a l l rax ; 0x11300
. . .

/ / func2 :
0x11300 : push rbp
0x11303 : mov rbp , rsp
. . .

+

1200 7→ 11300

Why do we keep the original copy?

Binary Rewriting Reassembly Question?
15 / 37

Table-based Rewriting: Pros and Cons

• Instruction-level instrumentation is feasible.
• But, suffers from overhead issues:

- Time overhead.
- Space overhead.

Binary Rewriting Reassembly Question?
16 / 37

All Three Approaches Are Limited

1. Compiler-assisted rewriting.
2. Patch-based rewriting.
3. Table-based rewriting.

Can we do better?

Binary Rewriting Reassembly Question?
17 / 37

Reassembly

Binary Rewriting Reassembly Question?
18 / 37

New Approach: Reassembler/Recompiler

Try to address the binary rewriting problem:
• no source code nor debugging symbols (vs. compiler-assisted approaches)
• full support of any instrumentation requirements (vs. patch-based approaches)
• less overhead (vs. table-based approaches).

Binary Rewriting Reassembly Question?
19 / 37

Resassembly

Key idea: transform a binary into a relocatable form and then compile it back to
another binary.

But, this means we need to fully resolve dynamically computed references.

Binary Rewriting Reassembly Question?
20 / 37

Assembly vs. Disassembly

Assembly
. LFB0 :
. . .

cmp DWORD PTR [rbp −0x4] , 0x2a
j l e . L2

. . .
. L2 :

mov eax , DWORD PTR [rbp −0x4]
. . .

Disassembled binary

. . .
0x1134 : cmp DWORD PTR [rbp −0x4] , 0x2a
0x1138 : j l e +0x9

. . .
0x1141 : mov eax , DWORD PTR [rbp −0x4]
. . .

We have to make “+0x9” relocatable.

Binary Rewriting Reassembly Question?
21 / 37

Symbolization

Symbolization is a the process of restoring symbolic labels, used to make a
cross-reference in the IR, from the numeric values in the target binary.

Binary Rewriting Reassembly Question?
22 / 37

Does Reassembly Really Work?

No. There are research attempts, but no complete solution yet.

Binary Rewriting Reassembly Question?
23 / 37

Uroboros (2015)4

• Coined the term “reasembly”.
• Focused on non-PIE binaries.

- Code section addresses are fixed.

• Assumed an ideal scenario where all numbers in the binary can be classified
either as a pointer or a constant based on their values.

- If a number falls into a section, then it is a pointer.
- False positives? False negatives?

4Reassembleable Disassembling, USENIX Security 2015

Binary Rewriting Reassembly Question?
24 / 37

Reassembly Tools

Year Tool PIE non-PIE x86 x86-64

2015 Uroboros ✗ ✓ ✓ ✓

2017 Ramblr ✗ ✓ ✓ ✓

2020 Ddisasm ✓ ✗ ✓ ✓

2020 RetroWrite ✓ ✗ ✗ ✓

2020 Egalito ✓ ✗ ✗ ✓

Tools are starting to focus more on x86-64, PIE binaries. Why?

Binary Rewriting Reassembly Question?
25 / 37

What Makes PIE Reassembly Easy?

• PIE binaries are position independent by definition.
• Thus, they only use relative addressing.
• Whenever a number is used as an absolute address, it should be marked in the

relocation table of the binary, so that the loader can correctly relocate the
pointer.

• x86-64 PIE binaries are even easier because they use RIP-relative addressing.

Binary Rewriting Reassembly Question?
26 / 37

Still Many Symbolization Errors

Source code
char buf [1 6] ;
i n t main ()
{ return f p r i n t f (s tdout , "%s (%p~%p) \ n " ,

buf , buf , buf+sizeof (buf)) ; }

Compiler-generated assembly
main :

lea r9 , [r i p + buf +16]
sub rsp , 8
mov rd i , QWORD PTR [r i p + s tdou t]
lea rdx , . [r i p + . LC0] ; s t r i n g
mov esi , 1 ; f l a g f o r _ _ f p r i n t f _ c h k
xor eax , eax
lea r8 , [r9 − 16] ; buf
mov rcx , r8 ; buf
c a l l __fprintf_chk@PLT

Disassembled assembly
00000000000005b0 <main >:
5b0 : lea r9 , [r i p +0x1a79] # 2030
5b7 : sub rsp ,0 x8
5bb : mov rd i ,QWORD PTR [r i p +0x1a6e] # 2030
5c2 : lea rdx , [r i p +0x1ab]
5c9 : mov esi ,0 x1
5ce : xor eax , eax
5d0 : lea r8 , [r9 −0x10]
5d4 : mov rcx , r8
5d7 : c a l l 5a0 <__ fp r in t f_chk@pl t >
. . .
2020: # buf
2030: # s tdou t

Binary Rewriting Reassembly Question?
26 / 37

Still Many Symbolization Errors

Source code
char buf [1 6] ;
i n t main ()
{ return f p r i n t f (s tdout , "%s (%p~%p) \ n " ,

buf , buf , buf+sizeof (buf)) ; }

Compiler-generated assembly
main :

lea r9 , [r i p + buf +16]
sub rsp , 8
mov rd i , QWORD PTR [r i p + s tdou t]
lea rdx , . [r i p + . LC0] ; s t r i n g
mov esi , 1 ; f l a g f o r _ _ f p r i n t f _ c h k
xor eax , eax
lea r8 , [r9 − 16] ; buf
mov rcx , r8 ; buf
c a l l __fprintf_chk@PLT

Disassembled assembly
00000000000005b0 <main >:
5b0 : lea r9 , [r i p +0x1a79] # 2030
5b7 : sub rsp ,0 x8
5bb : mov rd i ,QWORD PTR [r i p +0x1a6e] # 2030
5c2 : lea rdx , [r i p +0x1ab]
5c9 : mov esi ,0 x1
5ce : xor eax , eax
5d0 : lea r8 , [r9 −0x10]
5d4 : mov rcx , r8
5d7 : c a l l 5a0 <__ fp r in t f_chk@pl t >
. . .
2020: # buf
2030: # s tdou t

Binary Rewriting Reassembly Question?
27 / 37

Another Example

Compiler-generated assembly
. LFB0 :

. . .
lea rcx , [r i p + time_spec + 8]
lea rcx , [r i p + t ime_spec_s t r ing + 16]

. . .
t ime_spec_s t r ing :

. quad . LC19

. quad . LC20
. . .

Disassembled assembly

. . .
0x373c : lea rcx , [r i p + 0x10f05]
0x3743 : lea rcx , [r i p + 0x17ae6]
. . .

variable recovery

Binary Rewriting Reassembly Question?
27 / 37

Another Example

Compiler-generated assembly
. LFB0 :

. . .
lea rcx , [r i p + time_spec + 8]
lea rcx , [r i p + t ime_spec_s t r ing + 16]

. . .
t ime_spec_s t r ing :

. quad . LC19

. quad . LC20
. . .

Disassembled assembly

. . .
0x373c : lea rcx , [r i p + 0x10f05]
0x3743 : lea rcx , [r i p + 0x17ae6]
. . .

variable recovery

Binary Rewriting Reassembly Question?
28 / 37

Research Question

Can we test existing reassemblers and find symbolization errors?5

5Reassembly is Hard: A Reflection on Challenges and Strategies, USENIX Security 2023

Binary Rewriting Reassembly Question?
29 / 37

Symbolization Error and Runtime Behavior

Symbolization errors do not always produce crashes (or any visible evidences) when
running reassembled binaries. Why?

Binary Rewriting Reassembly Question?
30 / 37

Key Idea: Differential Testing

D
Source
Code

A
Assembly

Code

@
Binary

A
Assembly

Code

Compile Assemble Reassemble

8

Binary Rewriting Reassembly Question?
31 / 37

Challenges

• Matching two assembly files are not easy.
- Two or more distinct functions of the same name can present in a binary.

• Not every expression has a debugging symbol in its binary.

. . .
. Lswi tch . t ab l e . convert_move :

. long l i b f u n c _ t a b l e

. long l i b f u n c _ t a b l e +4

Compiler-generated Assembly

. . .
. byte 0x08 , 0x7e , 0x29 , 0x08
. byte 0x0c , 0x7e , 0x29 , 0x08

Disassembly

Binary Rewriting Reassembly Question?
31 / 37

Challenges

• Matching two assembly files are not easy.
- Two or more distinct functions of the same name can present in a binary.

• Not every expression has a debugging symbol in its binary.

. . .
. Lswi tch . t ab l e . convert_move :

. long l i b f u n c _ t a b l e

. long l i b f u n c _ t a b l e +4

Compiler-generated Assembly

. . .
. byte 0x08 , 0x7e , 0x29 , 0x08
. byte 0x0c , 0x7e , 0x29 , 0x08

Disassembly

Binary Rewriting Reassembly Question?
32 / 37

REASSESSOR Design

Employ a light-weight static analysis to overcome the challenges: normalize
expressions and find matching assembly lines.

Binary Rewriting Reassembly Question?
33 / 37

REASSESSOR Evaluation

• Ran three major reassemblers (Ddisasm, Ramblr, and RetroWrite) with 14,688
binaries compiled with various compilers and compiler options.

• Found more than a billion reassembly errors from those binaries.

Binary Rewriting Reassembly Question?
34 / 37

The Lesson

Reassembly problem is as difficult as the variable recovery problem (or the
decompilation problem), which is not solved yet.

What about the recent paper?
Verifiably Correct Lifting of Position-Independent x86-64 Binaries to Symbolized Assembly, CCS 2024

Binary Rewriting Reassembly Question?
34 / 37

The Lesson

Reassembly problem is as difficult as the variable recovery problem (or the
decompilation problem), which is not solved yet.

What about the recent paper?
Verifiably Correct Lifting of Position-Independent x86-64 Binaries to Symbolized Assembly, CCS 2024

Binary Rewriting Reassembly Question?
35 / 37

Question?

Binary Rewriting Reassembly Question?
36 / 37

Further Readings

• Ramblr: Making reassembly great again, NDSS 2017.
• Datalog Disassembly, USENIX Security 2020.
• Egalito: Layout-agnostic binary recompilation, ASPLOS 2020.

Binary Rewriting Reassembly Question?
37 / 37

Exercise

Let’s write a simple program in C as below, and try to patch the binary (without
modifying the source code) in such a way that it prints out the value (x) read from the
user.

#include < s t d i o . h>
#include < un i s td . h>
i n t main (void)
{

i n t x ;
return read (0 , &x , sizeof (x)) ;

}

	Binary Rewriting
	Reassembly
	Question?

