
Execution Monitoring Implementing EM Question?
1 / 40

Lec 12: Execution
Monitoring

IS561: Binary Code Analysis and Secure Software Systems

Sang Kil Cha

Execution Monitoring Implementing EM Question?
2 / 40

Execution Monitoring

Execution Monitoring Implementing EM Question?
3 / 40

Detection vs. Prevention

• Detection: detects a symptom.
• Prevention: Prevents a problem.

Execution Monitoring Implementing EM Question?
4 / 40

Detection or Prevention?

• Firewall.
• Encryption.
• Access controls.
• Antivirus.
• Canary.
• DEP.

Execution Monitoring Implementing EM Question?
5 / 40

Both Are Meaningful

• Prevention is not always feasible. So detection is needed.
• Detection of every possible symptom is not feasible, hence prevention

(potentially in a limited scope) will help.

Execution Monitoring Implementing EM Question?
6 / 40

Execution Monitoring

We want to monitor executions, and detect unsafe symptoms at runtime.

What’s the scope and limitation of execution monitoring? What
kind of security policy is enforceable and at what cost?1

1Enforceable Security Policies, ACM TISSEC 2000.

Execution Monitoring Implementing EM Question?
7 / 40

Security Automata

Input
(Action seq.)

Automaton

Output
(Action seq.)

Program
generates
actions

Machine
executes
actions

• σ: an execution (a sequence of actions).
• Ψ: universe of all possible sequences.
• ΣS: subset of Ψ corresponding to the executions of target S.

Execution Monitoring Implementing EM Question?
7 / 40

Security Automata

Input
(Action seq.)

Automaton

Output
(Action seq.)

• σ: an execution (a sequence of actions).
• Ψ: universe of all possible sequences.
• ΣS: subset of Ψ corresponding to the executions of target S.

Execution Monitoring Implementing EM Question?
8 / 40

Security Policy

A security policy is specified by giving a predicate on sets of executions. A target S
satisfies security policy P if and only if P (ΣS) equals true.2

Security policies rule out target executions that are deemed unacceptable.

However,

Given sets of two executions A ⊂ ΣS and B ⊂ ΣS, and a security policy P ,
P (A) = true ∧B ⊂ A ≠⇒ P (B) = true.

One such example is information flow !

2Enforceable Security Policies, ACM TISSEC 2000.

Execution Monitoring Implementing EM Question?
8 / 40

Security Policy

A security policy is specified by giving a predicate on sets of executions. A target S
satisfies security policy P if and only if P (ΣS) equals true.2

However,

Given sets of two executions A ⊂ ΣS and B ⊂ ΣS, and a security policy P ,
P (A) = true ∧B ⊂ A ≠⇒ P (B) = true.

One such example is information flow !

2Enforceable Security Policies, ACM TISSEC 2000.

Execution Monitoring Implementing EM Question?
9 / 40

Example: Information Flow

x = somefn () ;
i f (. . .) {

. . .
}
return y ;

• Execution 1: x = 1, y = 1
• Execution 2: x = 2, y = 2

• Execution 3: x = 3, y = 1

Execution Monitoring Implementing EM Question?
9 / 40

Example: Information Flow

x = somefn () ;
i f (. . .) {

. . .
}
return y ;

• Execution 1: x = 1, y = 1
• Execution 2: x = 2, y = 2
• Execution 3: x = 3, y = 1

Execution Monitoring Implementing EM Question?
10 / 40

Policy vs. Property

• Policy: P (Σ).
• Property: P (Σ) : (∀σ ∈ Σ : P̂ (σ)),

where P̂ is a predicate on individual executions.
• A policy is a property if it can be defined by a predicate that holds on individual

executions.

Not every security policy is a property!

Execution Monitoring Implementing EM Question?
11 / 40

EM-Enforceability (1)

A policy must be a property in order for that policy to be EM-enforceable.

Execution Monitoring Implementing EM Question?
12 / 40

EM-Enforceability (2)

Suppose σ′ is the prefix of σ, where

P̂ (σ) = true and P̂ (σ′) = false.

Then, the execution might terminate before the execution is extended into σ.

EM cannot base decisions on possible future execution.

Let σ[..i] be the prefix of σ involving its first i steps, and let τ ′σ be execution τ ′

followed by execution σ. Then,

∀τ ′ ∈ Ψ− : ¬P̂ (τ ′) =⇒ (∀σ ∈ Ψ : ¬P̂ (τ ′σ)).

Policy violation cannot be undone.

Execution Monitoring Implementing EM Question?
12 / 40

EM-Enforceability (2)

Suppose σ′ is the prefix of σ, where

P̂ (σ) = true and P̂ (σ′) = false.

Then, the execution might terminate before the execution is extended into σ.

Let σ[..i] be the prefix of σ involving its first i steps, and let τ ′σ be execution τ ′

followed by execution σ. Then,

∀τ ′ ∈ Ψ− : ¬P̂ (τ ′) =⇒ (∀σ ∈ Ψ : ¬P̂ (τ ′σ)).

Policy violation cannot be undone.

Execution Monitoring Implementing EM Question?
13 / 40

EM-Enforceability (3)

∀σ ∈ Ψ : ¬P̂ (σ) =⇒ (∃i : ¬P̂ (σ[..i])).

Any execution rejected by an EM must be rejected after a finite period.

Execution Monitoring Implementing EM Question?
14 / 40

EM-Enforceable Security Policies

Should satisfy the following conditions:
1. P (Σ) : (∀σ ∈ Σ : P̂ (σ))

2. ∀τ ′ ∈ Ψ− : ¬P̂ (τ ′) =⇒ (∀σ ∈ Ψ : ¬P̂ (τ ′σ)).

3. ∀σ ∈ Ψ : ¬P̂ (σ) =⇒ (∃i : ¬P̂ (σ[..i])).

Execution Monitoring Implementing EM Question?
15 / 40

EM-Enforceable or Not?

1. Access control.
2. Information flow.
3. Availability.

- If the availability is defined with a maximum limit?
- If there’s no limit?

Execution Monitoring Implementing EM Question?
15 / 40

EM-Enforceable or Not?

1. Access control.
2. Information flow.
3. Availability.

- If the availability is defined with a maximum limit?
- If there’s no limit?

Execution Monitoring Implementing EM Question?
16 / 40

Example

Prohibits execution of Send after FileRead.

qnfr qfr
FileRead

not FileRead not Send

Execution Monitoring Implementing EM Question?
17 / 40

Example

Runtime monitoring of Buffer Overflows.
• Goal: detect buffer overflows.
• Security policy: program should not access beyond the size of buffers.

What’s the problem here?

Execution Monitoring Implementing EM Question?
18 / 40

Question

Is memory corruption EM-enforceable? Is there any counterexample?

Execution Monitoring Implementing EM Question?
19 / 40

Implementing EM

Execution Monitoring Implementing EM Question?
20 / 40

How to Monitor Program Execution?

• Attaching a debugger to a running process
- GDB, LLDB, WinDbg, etc.
- Single stepping: context switching for every single execution.

• Instrumentation
- Modify code and inject code for monitoring!

Execution Monitoring Implementing EM Question?
21 / 40

Instrumentation

void somefn ()
{

char ar ray [4 2] ;

for (i n t i = 0 ; i < 42; i ++) {

ar ray [i] = i ;
}

}

p r i n t f (" before loop \ n ") ;

p r i n t f (" i nne r loop \ n ") ;

Execution Monitoring Implementing EM Question?
21 / 40

Instrumentation

void somefn ()
{

char ar ray [4 2] ;

for (i n t i = 0 ; i < 42; i ++) {

ar ray [i] = i ;
}

}

p r i n t f (" before loop \ n ") ;

p r i n t f (" i nne r loop \ n ") ;

Execution Monitoring Implementing EM Question?
22 / 40

Instrumentation Tools Comparison

Source-based Binary-based

Dynamic -
Pin (PLDI 2005)
DynamoRIO (CGO 2003)
Valgrind (PLDI 2007)

Static LLVM (CGO 2004)
PEBIL (ISPASS 2010)
DynInst (HPCA 2000)
Diablo (ISSPIT 2005)

Execution Monitoring Implementing EM Question?
23 / 40

Binary Instrumentation

• Dynamic: emulate binary instructions and modify code at runtime.
• Static: rewrite binary prior to execution.

Execution Monitoring Implementing EM Question?
24 / 40

Dynamic vs. Static Instrumentation

• Dynamic
- High overhead
- Easy to instrument external libs.
- Handles dynamically-generated code.

• Static
- Fast
- Difficult to instrument external libs.
- Cannot handle dynamically-generated code.

Execution Monitoring Implementing EM Question?
25 / 40

Dynamic Binary Instrumentation: Valgrind

• Developed in 2003 by Nicholas Nethercote.
- Valgrind: A Framework for Heavyweight Dynamic Binary Instrumentation, PLDI

2007
- How to Shadow Every Byte of Memory Used by a Program, VEE 2007

• Memcheck tool (implemented atop Valgrind) detects memory errors (only for
dynamically allocated memory objects).

Execution Monitoring Implementing EM Question?
26 / 40

Memcheck

Memcheck uses shadow memory to store metadata for each memory cell.
• A bits: every memory byte is shadowed with a single A bit, which indicates if the

memory byte is accessible or not. (e.g., freed memory region is not accessible)
• V bits: every register and memory byte is shadowed with eight V bits, which

indicate if the value bits are initialized.

Execution Monitoring Implementing EM Question?
27 / 40

Detecting Dangling Pointers with Memcheck

• When accessing memory object whose V bits contain a zero.
• Delayed memory reuse specified by the argument --freelist-vol.

--freelist-vol=<number> [default: 1000000]

When the client program releases memory using free (in C) or delete (C++), that
memory is not immediately made available for re-allocation. Instead it is marked
inaccessible and placed in a queue of freed blocks. The purpose is to delay the
point at which freed-up memory comes back into circulation. This increases the
chance that Memcheck will be able to detect invalid accesses to blocks for some
significant period of time after they have been freed.

This flag specifies the maximum total size, in bytes, of the blocks in the
queue. The default value is one million bytes. Increasing this increases the
total amount of memory used by Memcheck but may detect invalid uses of freed
blocks which would otherwise go undetected.

3
3Excerpt from the manual.

Execution Monitoring Implementing EM Question?
28 / 40

Address Sanitizer (ASan)

• Static source-level instrumentation using LLVM.
• Static instrumentation version of Memcheck.
• AddressSanitizer: A Fast Address Sanity Checker, USENIX ATC 2012.

Execution Monitoring Implementing EM Question?
29 / 40

ASan’s Compact Shadow Memory

• Memcheck: byte-to-byte mapping.
• ASan: 8-byte-to-byte mapping.
• Key insight: heap memory is always 8-byte aligned.

Execution Monitoring Implementing EM Question?
30 / 40

9 States for 8-byte Aligned Memory

0

7

6

5

4

3

2

1

-1

Addressable

Unaddressable

Execution Monitoring Implementing EM Question?
31 / 40

Mapping from Real to Shadow Memory

• Memcheck: address translation table.
• ASan: no table lookup

- Reserve 1
23

memory space
- Shadow = (Addr » 3) + Offset

Memory

Shadow
Bad

Shadow

Memory

Memory

Shadow
Bad

Shadow

Memory

Execution Monitoring Implementing EM Question?
32 / 40

Instrumentation: 8-byte Access

* Addr = 42; / / O r i g i n a l i n s t r u c t i o n

/ / I ns t rumen ta t i on begins
ShadowAddr = (Addr >> 3) + Of f se t ;
i f (* ShadowAddr != 0) ReportAndCrash (Addr) ;
/ / I ns t rumen ta t i on ends

Execution Monitoring Implementing EM Question?
32 / 40

Instrumentation: 8-byte Access

* Addr = 42; / / O r i g i n a l i n s t r u c t i o n

/ / I ns t rumen ta t i on begins
ShadowAddr = (Addr >> 3) + Of f se t ;
i f (* ShadowAddr != 0) ReportAndCrash (Addr) ;
/ / I ns t rumen ta t i on ends

Execution Monitoring Implementing EM Question?
33 / 40

Instrumentation: 1-, 2-, or 4-byte Access

* Addr = 42; / / O r i g i n a l i n s t r u c t i o n
/ / accessing (AccessSize) bytes

/ / I ns t rumen ta t i on begins
ShadowAddr = (Addr >> 3) + Of f se t ;
k = *ShadowAddr ;
i f (k != 0 && ((Addr & 7) + AccessSize > k))

ReportAndCrash (Addr) ;
/ / I ns t rumen ta t i on ends

Execution Monitoring Implementing EM Question?
33 / 40

Instrumentation: 1-, 2-, or 4-byte Access

* Addr = 42; / / O r i g i n a l i n s t r u c t i o n
/ / accessing (AccessSize) bytes

/ / I ns t rumen ta t i on begins
ShadowAddr = (Addr >> 3) + Of f se t ;
k = *ShadowAddr ;
i f (k != 0 && ((Addr & 7) + AccessSize > k))

ReportAndCrash (Addr) ;
/ / I ns t rumen ta t i on ends

Execution Monitoring Implementing EM Question?
34 / 40

Instrumenting Stack

void foo () {

char a r r [1 0] ;

< f u n c t i o n body>

}

char rz1 [3 2] ;

char rz2 [32 −10+32];
unsigned *shadow = (unsigned *) (((long) rz1 >>3)+ Of f se t) ;
/ / poison the redzones around a r r .
shadow [0] = 0 x f f f f f f f f ; / / rz1
shadow [1] = 0 x f f f f 0 2 0 0 ; / / a r r and rz2
shadow [2] = 0 x f f f f f f f f ; / / rz2

/ / un−poison a l l .
shadow [0] = shadow [1] = shadow [2] = 0 ;

Execution Monitoring Implementing EM Question?
34 / 40

Instrumenting Stack

void foo () {

char a r r [1 0] ;

< f u n c t i o n body>

}

char rz1 [3 2] ;

char rz2 [32 −10+32];
unsigned *shadow = (unsigned *) (((long) rz1 >>3)+ Of f se t) ;
/ / poison the redzones around a r r .
shadow [0] = 0 x f f f f f f f f ; / / rz1
shadow [1] = 0 x f f f f 0 2 0 0 ; / / a r r and rz2
shadow [2] = 0 x f f f f f f f f ; / / rz2

/ / un−poison a l l .
shadow [0] = shadow [1] = shadow [2] = 0 ;

Execution Monitoring Implementing EM Question?
35 / 40

Memory Alloc/Dealloc

• Insert red-zones around allocated memory objects.
• Freed page is set to be “red”.

Execution Monitoring Implementing EM Question?
36 / 40

ASan Has False Negatives

Example.

int *a = new int [2]; // 8-byte aligned
int *u = (int *)((char *) a + 6);
*u = 1; // access to range [6 -9]

Execution Monitoring Implementing EM Question?
37 / 40

ASan Performance

• 1.73× slowdown (RW).
• 1.26× slowdown (W).

Execution Monitoring Implementing EM Question?
38 / 40

Comparison

Valgrind ASan

Heap out-of-bounds Yes Yes
Stack out-of-bounds No Yes
Global out-of-bounds No Yes
Use-after-free (Yes) (Yes)
Use-after-return No (Yes)
Uninitialized reads Yes No
Overhead 10× - 30× 1.5× - 3×

Execution Monitoring Implementing EM Question?
39 / 40

Question?

Execution Monitoring Implementing EM Question?
40 / 40

Further Readings

• Body Armor for Binaries: Preventing Buffer Overflows Without Recompilation,
USENIX ATC 2012.

• StackArmor: Stopping Stack-based Memory Error exploits in Binaries, NDSS
2015.

• Enhancing Memory Error Detection for Large-Scale Applications and Fuzz
Testing, NDSS 2018.

	Execution Monitoring
	Implementing EM
	Question?

