
Address Space Layout Randomization (ASLR) Attacking ASLR Question?
1 / 42

Lec 9: ASLR
IS561: Binary Code Analysis and Secure Software Systems

Sang Kil Cha



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
2 / 42

Address Space Layout
Randomization (ASLR)



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
3 / 42

DEP vs. ASLR

Corrupted Memory

Shellcode

Hijacked control flow

DEP: Make this region non-executable

ASLR: Make it difficult to guess the address



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
3 / 42

DEP vs. ASLR

Corrupted Memory

Shellcode

Hijacked control flow

DEP: Make this region non-executable

ASLR: Make it difficult to guess the address



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
4 / 42

World without ASLR

Use the same address space over and over again.
(Previously, the only thing that matters was environment variables.)



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
5 / 42

Printing out RSP

#include <stdio.h>

int main(void)
{

int x = 42;
return printf("%p\n", &x);

}



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
6 / 42

Turning on ASLR

You can enable ASLR by:
$ echo 2 | sudo tee /proc/sys/kernel/randomize_va_space

But, why 2? What’s the meaning of it?
⇒ Read the manual: man proc1

1Always remember: manual is your best friend.



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
7 / 42

Manual Says ...

Value Description

0
Turn ASLR off. This is the default for architectures that don’t support
ASLR, and when the kernel is booted with the norandmaps parameter.

1

Make the addresses of mmap(2) allocations, the stack, and the VDSO
page randomized. Among other things, this means that shared libraries
will be loaded at randomized addresses. The text segment of PIE-linked
binaries will also be loaded at a randomized address.

2 Also support heap randomization.



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
8 / 42

ASLR randomizes VMAs

Stack

Heap

Code

ASLR randomizes base addresses



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
9 / 42

Randomness of Linux x86 ASLR

Stack

Heap

Code

24 bits of randomness

16 bits of randomness

16 bits of randomness

Q: Why not fully utilize 32 bits?



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
10 / 42

Previous Exploits Will Stop Working w/ ASLR

• ASLR will randomize the base addresses of the stack, heap, and code.
• We cannot know the address of our shellcode nor library functions.

- Thus, no return-to-stack nor return-to-LIBC.

Are we safe now?



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
10 / 42

Previous Exploits Will Stop Working w/ ASLR

• ASLR will randomize the base addresses of the stack, heap, and code.
• We cannot know the address of our shellcode nor library functions.

- Thus, no return-to-stack nor return-to-LIBC.

Are we safe now?



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
11 / 42

Attacking ASLR



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
12 / 42

Attack #1: Entropy is Small on x86

• Just 16 bits are used for heap and libraries on x86.
• Brute-forcing is possible when a server application uses forking2.

- A forked process has the same address space layout as its parent. Thus, every
time we connect to the server, we will see the same memory space layout for the
server process.

- Once we know the address of a single function in LIBC, we can deduce the
addresses of all functions in LIBC.

2On the Effectiveness of Address-Space Randomization, CCS 2004.



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
13 / 42

Attack Example

• Target: Apache web server
- Forks off children on requests.

• Vulnerability: Buffer overflow vulnerability.
• Method: Return-to-LIBC (usleep)

1. Try to brute-force the address of usleep with a fake parameter of 16,000,000
(waiting for 16 sec.).

2. Once we found the address, we can determine the address of exec or system,
assuming that we have the LIBC binary on the server3.

3If we know the OS distribution as well as the LIBC version, then we can get the same binary.



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
14 / 42

Randomization Frequency on Two Major OSes

• On Windows: every time the machine starts (like a forking server).
- Each module will get a random address once per boot.
- But, stack and heap will be randomized per execution.

• On Linux: every time a process loads.
- Each module will get a random address for every execution.

Which one is better?



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
14 / 42

Randomization Frequency on Two Major OSes

• On Windows: every time the machine starts (like a forking server).
- Each module will get a random address once per boot.
- But, stack and heap will be randomized per execution.

• On Linux: every time a process loads.
- Each module will get a random address for every execution.

Which one is better?



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
15 / 42

Windows is Faster Than Linux

No need to randomize the base address per execution.

But, Linux is safer than Windows!



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
16 / 42

How Much Safe against Brute-Forcing?

What is the expected number of trials to correctly guess the base address for each
case?

• Case 1: No randomization for each trial (Windows).
• Case 2: Re-randomization for each trial (Linux).



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
17 / 42

2N − 1 Blue Balls and 1 Red Ball in a Jar

Let N be the number of randomized bits; so there are a total of 2N possible base
addresses. There is only one red ball in a jar, which corresponds to the expected
base address. Then, what is the probability of selecting the red ball?

• Case 1: Select balls without replacement (Windows).
• Case 2: Select balls with replacement (Linux).



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
18 / 42

Case 1: Selecting Balls w/o Replacement

Pr[success on 1st trial] =
1

2N

.

Pr[success only on 2nd trial] =
(
1− 1

2N

)(
1

2N − 1

)
=

(
2N − 1

2N

)(
1

2N − 1

)
=

1

2N



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
18 / 42

Case 1: Selecting Balls w/o Replacement

Pr[success on 1st trial] =
1

2N

.

Pr[success only on 2nd trial] =
(
1− 1

2N

)(
1

2N − 1

)
=

(
2N − 1

2N

)(
1

2N − 1

)
=

1

2N



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
19 / 42

Case 1: Selecting Balls w/o Replacement

Pr[success only on 3rd trial] =
(
2N − 1

2N

)(
2N − 2

2N − 1

)(
1

2N − 2

)
=

1

2N

Pr[success only on kth trial] =
(
2N − 1

2N

)
× · · · ×

(
2N − k + 1

2N − k

)(
1

2N − k + 1

)
=

1

2N



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
20 / 42

Case 1: Selecting Balls w/o Replacement

Expected number of trials before success:

2N∑
k=1

k.Pr[success only on kth trial] =
2N∑
k=1

k

2N

=
1

2N

2N∑
k=1

k

=
1

2N
2N(2N + 1)

2

=
2N + 1

2



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
21 / 42

Case 2: Selecting Balls w/ Replacement

Pr[success on 1st trial] =
1

2N

Pr[success on 2nd trial] =
(
1− 1

2N

)
1

2N

Pr[success on kth trial] =
(
1− 1

2N

)k−1
1

2N

The classic geometric distribution where p = 1
2N

.



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
22 / 42

Case 2: Selecting Balls w/ Replacement

Expected number of trials before success:

E[x] =
1

p
(for geometric distribution)

= 2N



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
23 / 42

Comparison: Windows vs. Linux

Brute-force attack will succeed in
• 2N+1

2
≈ 2N−1 trials on Windows.

• 2N trials on Linux.

Hence, Linux is ≈ 2× safer than Windows against a brute-force attack.



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
24 / 42

Security vs. Performance?

Windows’s ASLR is faster, but less secure than it of Linux.



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
25 / 42

Attack #2: Exploiting Fixed Addresses

Most binaries (before 2016) had non-randomized segments (VMAs).

Before 2016, compilers created non-PIE4 executables by default.

4Non Position-Independent Executable.



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
26 / 42

Position-Independent Executable (PIE)

Position-Independent Code (PIC) or PIE is code that runs regardless of its location
(e.g., shellcode).

• “gcc” will produce a PIE by default.
• “gcc -fno-pic -no-pie” will produce a non-PIE.



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
27 / 42

PIE vs. non-PIE

...
lea RAX , qword ptr [RIP - 0x25]
mov qword ptr [RBP -0 x8], RAX
mov RAX , qword ptr [RBP -0 x8]
mov EDI , 0x2a
call RAX
...

...
mov qword ptr [RBP -0 x8], 0 x401106
mov RAX , qword ptr [RBP -0 x8]
mov EDI , 0x2a
call RAX
...



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
28 / 42

Any Libraries Must Be Position-Independent

Any shared objects (.so), such as LIBC, are position-independent.

Why?



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
29 / 42

Legacy Binaries Are Not a PIE

• 93% of Linux binaries were not a PIE (in 2009).
• Thus, the code sections were not randomized.
• Thus, code reuse attacks (e.g., ROP) are still possible on legacy binaries.

But, why?



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
30 / 42

Security vs. Performance

• Relative-addressing instructions are slower than absolute-addressing
instructions.

• Performance overhead of PIE on x86 is 10% on average5.
• Most applications on current x86 are still not PIEs.

5Too much PIE is bad for performance, ETH Techreport, 2012.



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
31 / 42

ROP-based Attack on Legacy Binaries

• Code sections are not randomized, hence we can use ROP.
• But, LIBC address is randomized! Cannot directly return to LIBC functions.

But, still, relative offsets between LIBC functions are the
same regardless of ASLR.



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
32 / 42

Exploitation Idea

• If a LIBC function has been invoked at least once, GOT should contain a
concrete address of the function in LIBC.

• Therefore, we will read the GOT entry using ROP and compute the address of
system by using the relative offset between the LIBC function and system.

(addr of system) = (addr of open)
+ (offset from open to system in LIBC) (1)



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
33 / 42

Example ROP

Return to A
x

Return to B
deadbeaf

Return to C
y - 0x5dc4
Return to D

deadbeaf
Return to E

A pop edi
ret

B
mov eax, edi
pop esi
ret

C pop ebx
ret

D
add eax, [ebx+0x5cd4]
pop edi
ret

E jmp [eax]

x = (addr of open),
y = (offset from open to system in LIBC)



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
34 / 42

Possible Defenses?

• Use PIEs.
• Use 64-bit CPU: lots of entropy.
• Detect brute-forcing attacks (as there should be many crashes in a short

amount of time).
• Use non-forking servers.



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
35 / 42

Better ASLR?

Single pointer leakage can reveal the entire memory layout of a VMA.

Can we make it harder?



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
36 / 42

Fine-grained ASLR

Randomize code within a VMA boundary.
• Function-level randomization.
• Block-level randomization.
• Instruction-level randomization.



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
37 / 42

Fine-grained ASLR: Design Challenges

• Can we apply fine-grained ASLR without debugging information?
• How often should we apply fine-grained ASLR? Performance impact?



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
38 / 42

Example: In-Place Code Randomization

Smashing the Gadgets: Hindering Return-Oriented Programming Using In-Place
Code Randomization, Oakland 2012.

• Instruction reordering. mov ebx, 42
mov eax, [ecx]

mov eax, [ecx]
mov ebx, 42

• Instruction substitution. mov rax, 0 xor rax, rax

• Register re-allocation. mov rax, [rcx]
call [rax]

mov rbx, [rcx]
call [rbx]

Does this technique mitigate return-to-LIBC attacks?



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
38 / 42

Example: In-Place Code Randomization

Smashing the Gadgets: Hindering Return-Oriented Programming Using In-Place
Code Randomization, Oakland 2012.

• Instruction reordering. mov ebx, 42
mov eax, [ecx]

mov eax, [ecx]
mov ebx, 42

• Instruction substitution. mov rax, 0 xor rax, rax

• Register re-allocation. mov rax, [rcx]
call [rax]

mov rbx, [rcx]
call [rbx]

Does this technique mitigate return-to-LIBC attacks?



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
39 / 42

Example: Instruction Location Randomization

ILR: Where’d My Gadgets Go?, Oakland 2012.

mov rbx, 42
mov rax, [rcx]
add rax, rcx
ret

add rax, rcxA

mov rbx, 42B

retC

mov rax, [rcx]D
Fall-through map:
A 7→ C
B 7→ D
D 7→ A



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
40 / 42

New Challenge

Fine-grained ASLR disallows code sharing between processes! For example,
sharing LIBC is not possible anymore!

Reading: Can we apply fine-grained ASLR while still allowing code sharing?6

6Oxymoron: Making Fine-Grained Memory Randomization Practical by Allowing Code Sharing,
USENIX Security 2014



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
40 / 42

New Challenge

Fine-grained ASLR disallows code sharing between processes! For example,
sharing LIBC is not possible anymore!

Reading: Can we apply fine-grained ASLR while still allowing code sharing?6

6Oxymoron: Making Fine-Grained Memory Randomization Practical by Allowing Code Sharing,
USENIX Security 2014



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
41 / 42

ASLR Attack and Defense Timeline

2001 Today

Firs
t A

SLR
de

sig
n (L

inu
x PaX

)

2004

Bru
te-

for
ce

on
x8

6 PaX
(C

CS’04
)

2009

ROP
on

Fixe
d Cod

e Sec
tio

n

(A
CSAC’09

)

2012

Fine
-g

ra
ine

d ASLR
on

Bina
rie

s

2016

PIE
is

us
ed

by
de

fau
lt o

n Lin
ux



Address Space Layout Randomization (ASLR) Attacking ASLR Question?
42 / 42

Question?


	Address Space Layout Randomization (ASLR)
	Attacking ASLR
	Question?

