
Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
1 / 51

Lec 8: DEP
IS561: Binary Code Analysis and Secure Software Systems

Sang Kil Cha

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
2 / 51

Memory Corruption

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
3 / 51

Two Ways to Corrupt Memory

• Buffer overflow.
• Format string.

Integer overflows can lead to a memory corruption (but not always).

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
4 / 51

Control-Flow Hijack

Memory corruption can lead to a control flow hijack. There are two things to consider:
• How to redirect the control?

- e.g., overwriting a control data

• Where to redirect the control?
- e.g., injected shellcode

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
5 / 51

Food for Thought

Can we execute arbitrary commands by exploiting a memory
corruption bug, but without hijacking the control flow?

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
6 / 51

Memory Defense

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
7 / 51

Prevention vs. Mitigation

• Preventing buffer overflows.
- Buffer overflows will never happen.

• Mitigating buffer overflows.
- Buffer overflows will happen, but will be hard to exploit them.

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
7 / 51

Prevention vs. Mitigation

• Preventing buffer overflows.
- Buffer overflows will never happen.

• Mitigating buffer overflows.
- Buffer overflows will happen, but will be hard to exploit them.

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
8 / 51

Can One Prevent Buffer Overflows?

Yes. Just do NOT use C/C++.

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
9 / 51

Memory-Safe Langugages

F#, OCaml, Haskell, Python, etc.

>>> x = ar ray (’ l ’ , [1 , 2 , 3])
>>> x [4]
Traceback (most recent c a l l l a s t) :

F i l e "< s td in >" , l i n e 1 , i n <module>
IndexEr ror : a r ray index out o f range

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
10 / 51

Unfortunately though ...

• C/C++ is still very popular.
• Legacy code is written in C/C++.

Not so easy to prevent memory corruption.

Hence, we’d better mitigate it. 7

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
10 / 51

Unfortunately though ...

• C/C++ is still very popular.
• Legacy code is written in C/C++.

Not so easy to prevent memory corruption. Hence, we’d better mitigate it. 7

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
11 / 51

DEP

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
12 / 51

Buffer Overflow Mitigation #1: DEP

Data Execution Prevention1 = NX (No eXecute).

Stack stores data, but not code. Therefore, we make the stack memory area
non-executable.

1DEP prevents data execution, but it does not prevent buffer overflows.

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
13 / 51

DEP Has Many Names

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
14 / 51

W ⊕ X (Write XOR eXecute) Policy

• Every page should be either writable or executable, but not both.
• Even though we can put a shellcode to a writable buffer, we cannot execute it if

this policy is enabled.

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
15 / 51

Defeating Control Flow Hijack with DEP

Corrupted Memory

Shellcode

Hijacked control flow

Make this region non-executable

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
16 / 51

DEP on Stack

There is a special segment called “PT_GNU_STACK” in ELF files, which controls
whether the stack should be executable or not. We use the execstack command to
change the ELF header to control whether the binary should have an executable
stack or not.

$ /usr/sbin/execstack –s <filename> ; clear NX flag
$ /usr/sbin/execstack –c <filename> ; set NX flag
$ /usr/sbin/execstack –q <filename> ; query NX flag

With NX set on the stack, return-to-stack exploits will fail.

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
17 / 51

But,

DEP does not prevent buffer overflows. It prevents return-to-stack exploits, though.

Any other ways to exploit buffer overflows?

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
18 / 51

Code-Reuse Attacks

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
19 / 51

Bypassing DEP

• We can still hijack the control flow with buffer overflows.
• We can still jump to an arbitrary address of existing code.

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
20 / 51

Code Reuse Attack #1: Return-to-LIBC

• LIBC is a standard library that is used by every C program.
- e.g., printf is a LIBC function.

• Many useful functions in LIBC to execute.
- exec family: execl, execlp, execle, ...
- system
- mprotect
- mmap

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
21 / 51

Return-to-LIBC

ptr. to /bin/sh
Fake return addr.
Addr. of system

old ebp

line

/bin/sh

Fake argument to system

Return to system

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
22 / 51

Question

Can we call multiple LIBC functions? For example, suppose we want
to call setuid first, and then call execve.

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
23 / 51

Chaining Two Function Calls

ptr. to /bin/sh
id

Addr. of system
Addr. of setuid

old ebp

line

/bin/sh

Fake argument to system
Fake argument to setuid

Return to system
Return to setuid

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
24 / 51

Question

Can we call multiple LIBC functions that require more than one parameter?

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
25 / 51

ESP Lifting: open–read

Next func. to call
Addr. of read

0
Ptr. to file name
Addr. of p;p;r
Addr. of open

old ebp

line

/bin/sh

2nd arg. to open
1st arg. to open

Return to read

Return to open
Return to pop;pop;ret

How do we overwrite NULL here?
(Suppose the overflow is from
strcpy)

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
25 / 51

ESP Lifting: open–read

Next func. to call
Addr. of read

0
Ptr. to file name
Addr. of p;p;r
Addr. of open

old ebp

line

/bin/sh

2nd arg. to open
1st arg. to open

Return to read

Return to open
Return to pop;pop;ret

How do we overwrite NULL here?
(Suppose the overflow is from
strcpy)

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
26 / 51

Generalization of Idea

The idea of jumping into a code block that ends with “ret” instruction2 becomes the
primitive of ROP (Return-Oriented Programming).

pop <reg >
pop <reg >
ret

2Such a code block is often referred to as a ROP gadget.

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
27 / 51

ROP

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
28 / 51

Code Reuse Attack #2: ROP

Formally introduced by Hovav in CCS 2007 3

3The Geometry of Innocent Flesh on the Bone: Return-to-libc without Function Calls (on the x86)

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
29 / 51

Motivation of ROP

Return-to-LIBC requires LIBC function calls, but can we spawn a shell without the
use of LIBC functions?

• Different versions of LIBC.
• LIBC may not be used at all.
• Some functions in LIBC can be excluded.

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
30 / 51

Return (ret) Chaining

Overflowed Stack

42
Return to C
Return to B
Return to A

A
add eax, ebx
ret

B
mov ecx, eax
ret

C
inc ecx
pop edx
ret

add eax, ebx
mov ecx, eax
inc ecx
mov edx, 42

Return chaining allows arbitrary computation!

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
30 / 51

Return (ret) Chaining

A
add eax, ebx
ret

B
mov ecx, eax
ret

C
inc ecx
pop edx
ret

add eax, ebx
mov ecx, eax
inc ecx
mov edx, 42

Return chaining allows arbitrary computation!

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
31 / 51

ROP Example

Goal: Modify ptr to be 0x42424242 with ROP.

mov [ptr], 0x42424242

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
32 / 51

ROP Example (cont’d)

It is very unlikely to find a gadget: mov [ptr], 0x42424242; ret. So, we have to
connect several gadgets to construct the logic.

pop eax
ret Assign the ptr to eax

pop ebx
ret Assign 0x42424242 to ebx

mov [eax], ebx
ret Modify the ptr

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
33 / 51

Question

Can we encode a conditional branch with ROP? Suppose we want to encode the
following logic:

if (eax < 42) then (ecx ← 0) else (ecx ← 1)

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
34 / 51

Conditional Jumps in ROP (3 Steps)

1. Modify (set/clear) flags of interest.
2. Transfer the flag from EFLAGS to a general-purpose register.
3. Use the flag of interest to perturb the stack pointer conditionally4.

Several useful tricks:
• pushf instruction pushes EFLAGS to the stack.
• sub eax, 42 should result in CF = 1 when eax < 42.
• The result of adc cl, cl when ecx = 0 is the same as CF.

4Stack pointer is a PC in ROP.

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
35 / 51

ROP Conditional Jump Example

1. neg eax; ret
2. pop ecx; pop edx; ret
3. adc cl, cl; ret
4. mov [edx], ecx; ret
5. pop ebx; ret
6. neg dword [ebx+0x5e]; pop edi; pop ebp; mov esi, esi; ret
7. pop esi; ret
8. pop ecx; pop ebx; ret
9. and [ecx], esi; rol byte ptr [ebx+0x5e5b6cc4],0x5d; ret

10. add esp, [ecx]; add byte ptr [eax],al; add byte ptr[eax], cl; ret

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
36 / 51

ROP Workflow

1. Disassemble binary.
2. Identify useful gadgets.

- e.g., an instruction sequence that ends with ret is useful.
- e.g., an instruction sequence that ends with jmp reg is also useful.

3. Assemble gadgets to perform some computation.
- e.g., spawning a shell

⋆ Challenge: Gathering as many gadgets as possible

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
37 / 51

Many Gadgets in Regular Binaries?

x86 instructions have their lengths ranging from 1 byte to 18 bytes, i.e., it uses
variable-length encoding.

Therefore, there can be both intended and unintended gadgets in x86 binaries.

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
38 / 51

Disassembling x86

8d 4c 24 04 83 e4 f0

lea ecx, [esp+0x4]
and esp, 0xfffffff0

What if we disassemble the code from the second byte (4c)?

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
39 / 51

Disassembling x86

8d 4c 24 04 83 e4 f0

dec esp
and al, 0x4
and esp, 0xfffffff0

Totally different, but still valid instructions!

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
40 / 51

Unintended Instructions

• One can disassemble from any address in a memory page.
• We can indeed find lots of unintended ROP gadgets using this idea.

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
41 / 51

Example: Unintended ret Instruction

Compiler-intended instructions:
e8 05 ff ff ff call 0x8048330
81 c3 59 12 00 00 add ebx, 0x1259

If we disassemble the same binary starting from the second byte:
05 ff ff ff 81 add eax, 0x81ffffffii
c3 ret

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
42 / 51

Galileo Algorithm: Finding ROP Gadgets

Algorithm Galileo:
create a node, root, representing the ret instruction;
place root in the trie;
for pos from 1 to textseg_len do:

if the byte at pos is c3, i.e., a ret instruction, then:
call BuildFrom(pos, root);

Procedure BuildFrom(index pos, instruction parent_insn):
for step from 1 to max_insn_len do:

if bytes[(pos - step) ... (pos - 1)] decode as a valid instruction insn then:
ensure insn is in the trie as a child of parent_insn;
if insn isn’t boring then:

call BuildFrom(pos - step, insn);

1. The insn is a leave instruction.
2. The insn is pop ebp.
3. The insn is a unconditional jump.

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
42 / 51

Galileo Algorithm: Finding ROP Gadgets

Algorithm Galileo:
create a node, root, representing the ret instruction;
place root in the trie;
for pos from 1 to textseg_len do:

if the byte at pos is c3, i.e., a ret instruction, then:
call BuildFrom(pos, root);

Procedure BuildFrom(index pos, instruction parent_insn):
for step from 1 to max_insn_len do:

if bytes[(pos - step) ... (pos - 1)] decode as a valid instruction insn then:
ensure insn is in the trie as a child of parent_insn;
if insn isn’t boring then:

call BuildFrom(pos - step, insn);

1. The insn is a leave instruction.
2. The insn is pop ebp.
3. The insn is a unconditional jump.

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
43 / 51

Program Size May Matter

Larger code→ More chance to get useful gadgets.

Schwartz et al.5 show that 100KB was enough to successfully create exploits for
80% of the binaries in /usr/bin.

5Q: Exploit Hardening Made Easy, USENIX Security 2011.

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
44 / 51

ROP without ret?

Return-oriented Programming without Returns, CCS 2010.

pop eax; jmp [eax]

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
45 / 51

Question

How can we mitigate code reuse attacks (ROP)?

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
46 / 51

Detecting ROP

Basic idea: If ret instructions are frequently used within a short amount of time, then
it is likelly to be a ROP attack.

• Transparent ROP Exploit Mitigation Using Indirect Branch Tracing, USENIX
Security 2013.

• ROPecker: A Generic and Practical Approach for Defending Against ROP
Attacks, NDSS 2014.

But such a simple idea suffers from both false negatives and false positives:
• Size Does Matter: Why Using Gadget-Chain Length to Prevent Code-Reuse

Attacks is Hard, USENIX Security 2014.

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
46 / 51

Detecting ROP

Basic idea: If ret instructions are frequently used within a short amount of time, then
it is likelly to be a ROP attack.

• Transparent ROP Exploit Mitigation Using Indirect Branch Tracing, USENIX
Security 2013.

• ROPecker: A Generic and Practical Approach for Defending Against ROP
Attacks, NDSS 2014.

But such a simple idea suffers from both false negatives and false positives:
• Size Does Matter: Why Using Gadget-Chain Length to Prevent Code-Reuse

Attacks is Hard, USENIX Security 2014.

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
47 / 51

Other Defenses?

We will discuss further throughout this course.

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
48 / 51

DEP and Code Reuse Attacks Timeline

1997 Today

Firs
t d

oc
um

en
ted

re
tur

n-
to-

LIB
C

2000

Firs
t h

ar
dw

ar
e su

pp
or

t fo
r DEP

2004

Int
el

Pen
tiu

m
4 su

pp
or

ts
NX

2007

ROP
ca

me ou
t (

CCS’07
)

2010

ROP
with

ou
t r

etu
rn

(C
CS’10

)

2012

New
er

de
fen

se
s ...

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
49 / 51

Summary

• NX (or DEP) is one way to mitigate control flow hijacks.
• Code reuse attacks allow an attacker to bypass DEP.
• Many mitigation techniques are proposed for code reuse attacks, too, which will

be covered next.

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
50 / 51

Question?

Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
51 / 51

Exercise

Find a syscall ROP gadget from binaries on your machine. Can you easily spot it?

	Memory Corruption
	Memory Defense
	DEP
	Code-Reuse Attacks
	ROP
	Question?

