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Memory Corruption
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Two Ways to Corrupt Memory

• Buffer overflow.
• Format string.

Integer overflows can lead to a memory corruption (but not always).
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Control-Flow Hijack

Memory corruption can lead to a control flow hijack. There are two things to consider:
• How to redirect the control?

- e.g., overwriting a control data

• Where to redirect the control?
- e.g., injected shellcode
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Food for Thought

Can we execute arbitrary commands by exploiting a memory
corruption bug, but without hijacking the control flow?



Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
6 / 51

Memory Defense
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Prevention vs. Mitigation

• Preventing buffer overflows.
- Buffer overflows will never happen.

• Mitigating buffer overflows.
- Buffer overflows will happen, but will be hard to exploit them.
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Can One Prevent Buffer Overflows?

Yes. Just do NOT use C/C++.
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Memory-Safe Langugages

F#, OCaml, Haskell, Python, etc.

>>> x = ar ray ( ’ l ’ , [ 1 , 2 , 3 ] )
>>> x [ 4 ]
Traceback ( most recent c a l l l a s t ) :

F i l e "< s td in >" , l i n e 1 , i n <module>
IndexEr ror : a r ray index out o f range
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Unfortunately though ...

• C/C++ is still very popular.
• Legacy code is written in C/C++.

Not so easy to prevent memory corruption.

Hence, we’d better mitigate it. 7
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DEP
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Buffer Overflow Mitigation #1: DEP

Data Execution Prevention1 = NX (No eXecute).

Stack stores data, but not code. Therefore, we make the stack memory area
non-executable.

1DEP prevents data execution, but it does not prevent buffer overflows.
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DEP Has Many Names



Memory Corruption Memory Defense DEP Code-Reuse Attacks ROP Question?
14 / 51

W ⊕ X (Write XOR eXecute) Policy

• Every page should be either writable or executable, but not both.
• Even though we can put a shellcode to a writable buffer, we cannot execute it if

this policy is enabled.
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Defeating Control Flow Hijack with DEP

Corrupted Memory

Shellcode

Hijacked control flow

Make this region non-executable
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DEP on Stack

There is a special segment called “PT_GNU_STACK” in ELF files, which controls
whether the stack should be executable or not. We use the execstack command to
change the ELF header to control whether the binary should have an executable
stack or not.

$ /usr/sbin/execstack –s <filename> ; clear NX flag
$ /usr/sbin/execstack –c <filename> ; set NX flag
$ /usr/sbin/execstack –q <filename> ; query NX flag

With NX set on the stack, return-to-stack exploits will fail.
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But,

DEP does not prevent buffer overflows. It prevents return-to-stack exploits, though.

Any other ways to exploit buffer overflows?
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Code-Reuse Attacks
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Bypassing DEP

• We can still hijack the control flow with buffer overflows.
• We can still jump to an arbitrary address of existing code.
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Code Reuse Attack #1: Return-to-LIBC

• LIBC is a standard library that is used by every C program.
- e.g., printf is a LIBC function.

• Many useful functions in LIBC to execute.
- exec family: execl, execlp, execle, ...
- system
- mprotect
- mmap
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Return-to-LIBC

ptr. to /bin/sh
Fake return addr.
Addr. of system

old ebp

line

/bin/sh

Fake argument to system

Return to system
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Question

Can we call multiple LIBC functions? For example, suppose we want
to call setuid first, and then call execve.
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Chaining Two Function Calls

ptr. to /bin/sh
id

Addr. of system
Addr. of setuid

old ebp

line

/bin/sh

Fake argument to system
Fake argument to setuid

Return to system
Return to setuid
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Question

Can we call multiple LIBC functions that require more than one parameter?
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ESP Lifting: open–read

Next func. to call
Addr. of read

0
Ptr. to file name
Addr. of p;p;r
Addr. of open

old ebp

line

/bin/sh

2nd arg. to open
1st arg. to open

Return to read

Return to open
Return to pop;pop;ret

How do we overwrite NULL here?
(Suppose the overflow is from
strcpy)
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Generalization of Idea

The idea of jumping into a code block that ends with “ret” instruction2 becomes the
primitive of ROP (Return-Oriented Programming).

pop <reg >
pop <reg >
ret

2Such a code block is often referred to as a ROP gadget.
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ROP
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Code Reuse Attack #2: ROP

Formally introduced by Hovav in CCS 2007 3

3The Geometry of Innocent Flesh on the Bone: Return-to-libc without Function Calls (on the x86)
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Motivation of ROP

Return-to-LIBC requires LIBC function calls, but can we spawn a shell without the
use of LIBC functions?

• Different versions of LIBC.
• LIBC may not be used at all.
• Some functions in LIBC can be excluded.
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Return (ret) Chaining

Overflowed Stack

42
Return to C
Return to B
Return to A

A
add eax, ebx
ret

B
mov ecx, eax
ret

C
inc ecx
pop edx
ret

add eax, ebx
mov ecx, eax
inc ecx
mov edx, 42

Return chaining allows arbitrary computation!
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ROP Example

Goal: Modify ptr to be 0x42424242 with ROP.

mov [ptr], 0x42424242
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ROP Example (cont’d)

It is very unlikely to find a gadget: mov [ptr], 0x42424242; ret. So, we have to
connect several gadgets to construct the logic.

pop eax
ret Assign the ptr to eax

pop ebx
ret Assign 0x42424242 to ebx

mov [eax], ebx
ret Modify the ptr
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Question

Can we encode a conditional branch with ROP? Suppose we want to encode the
following logic:

if (eax < 42) then (ecx ← 0) else (ecx ← 1)
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Conditional Jumps in ROP (3 Steps)

1. Modify (set/clear) flags of interest.
2. Transfer the flag from EFLAGS to a general-purpose register.
3. Use the flag of interest to perturb the stack pointer conditionally4.

Several useful tricks:
• pushf instruction pushes EFLAGS to the stack.
• sub eax, 42 should result in CF = 1 when eax < 42.
• The result of adc cl, cl when ecx = 0 is the same as CF.

4Stack pointer is a PC in ROP.
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ROP Conditional Jump Example

1. neg eax; ret
2. pop ecx; pop edx; ret
3. adc cl, cl; ret
4. mov [edx], ecx; ret
5. pop ebx; ret
6. neg dword [ebx+0x5e]; pop edi; pop ebp; mov esi, esi; ret
7. pop esi; ret
8. pop ecx; pop ebx; ret
9. and [ecx], esi; rol byte ptr [ebx+0x5e5b6cc4],0x5d; ret

10. add esp, [ecx]; add byte ptr [eax],al; add byte ptr[eax], cl; ret
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ROP Workflow

1. Disassemble binary.
2. Identify useful gadgets.

- e.g., an instruction sequence that ends with ret is useful.
- e.g., an instruction sequence that ends with jmp reg is also useful.

3. Assemble gadgets to perform some computation.
- e.g., spawning a shell

⋆ Challenge: Gathering as many gadgets as possible
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Many Gadgets in Regular Binaries?

x86 instructions have their lengths ranging from 1 byte to 18 bytes, i.e., it uses
variable-length encoding.

Therefore, there can be both intended and unintended gadgets in x86 binaries.
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Disassembling x86

8d 4c 24 04 83 e4 f0

lea ecx, [esp+0x4]
and esp, 0xfffffff0

What if we disassemble the code from the second byte (4c)?
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Disassembling x86

8d 4c 24 04 83 e4 f0

dec esp
and al, 0x4
and esp, 0xfffffff0

Totally different, but still valid instructions!
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Unintended Instructions

• One can disassemble from any address in a memory page.
• We can indeed find lots of unintended ROP gadgets using this idea.
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Example: Unintended ret Instruction

Compiler-intended instructions:
e8 05 ff ff ff call 0x8048330
81 c3 59 12 00 00 add ebx, 0x1259

If we disassemble the same binary starting from the second byte:
05 ff ff ff 81 add eax, 0x81ffffffii
c3 ret
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Galileo Algorithm: Finding ROP Gadgets

Algorithm Galileo:
create a node, root, representing the ret instruction;
place root in the trie;
for pos from 1 to textseg_len do:

if the byte at pos is c3, i.e., a ret instruction, then:
call BuildFrom(pos, root);

Procedure BuildFrom(index pos, instruction parent_insn):
for step from 1 to max_insn_len do:

if bytes[(pos - step) ... (pos - 1)] decode as a valid instruction insn then:
ensure insn is in the trie as a child of parent_insn;
if insn isn’t boring then:

call BuildFrom(pos - step, insn);

1. The insn is a leave instruction.
2. The insn is pop ebp.
3. The insn is a unconditional jump.
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Program Size May Matter

Larger code→ More chance to get useful gadgets.

Schwartz et al.5 show that 100KB was enough to successfully create exploits for
80% of the binaries in /usr/bin.

5Q: Exploit Hardening Made Easy, USENIX Security 2011.
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ROP without ret?

Return-oriented Programming without Returns, CCS 2010.

pop eax; jmp [eax]
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Question

How can we mitigate code reuse attacks (ROP)?
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Detecting ROP

Basic idea: If ret instructions are frequently used within a short amount of time, then
it is likelly to be a ROP attack.

• Transparent ROP Exploit Mitigation Using Indirect Branch Tracing, USENIX
Security 2013.

• ROPecker: A Generic and Practical Approach for Defending Against ROP
Attacks, NDSS 2014.

But such a simple idea suffers from both false negatives and false positives:
• Size Does Matter: Why Using Gadget-Chain Length to Prevent Code-Reuse

Attacks is Hard, USENIX Security 2014.
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Other Defenses?

We will discuss further throughout this course.
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DEP and Code Reuse Attacks Timeline
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Summary

• NX (or DEP) is one way to mitigate control flow hijacks.
• Code reuse attacks allow an attacker to bypass DEP.
• Many mitigation techniques are proposed for code reuse attacks, too, which will

be covered next.
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Question?
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Exercise

Find a syscall ROP gadget from binaries on your machine. Can you easily spot it?
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