
Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
1 / 55

Lec 3: Assembly
IS561: Binary Code Analysis and Secure Software Systems

Sang Kil Cha

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
2 / 55

Intel (x86) Architecture

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
3 / 55

x86 Instruction Set Architecture

1. Introduced by Intel in 1978.
2. CISC (Complex Instruction Set Computer) architecture.
3. The most popular ISA.

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
4 / 55

History of x86 ISA

• (8086) 16-bit address space (in 1978).
• (x86 or IA-32) 32-bit address space (in 1985).
• (x86-64 or x64 or AMD64) 64-bit address space (in 2003).

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
5 / 55

Memory Layout and CPU Registers

File System

Binary File

Segment

Segment

Library File

Segment

Segment

Virtual Memory
Low

High
Stack

Heap

VMA

VMA

VMA

VMA

VMA

CPU

PC (= Program Counter)

Stack Pointer

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
5 / 55

Memory Layout and CPU Registers

File System

Binary File

Segment

Segment

Library File

Segment

Segment

Virtual Memory
Low

High
Stack

Heap

VMA

VMA

VMA

VMA

VMA

Code and Data

CPU

PC (= Program Counter)

Stack Pointer

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
5 / 55

Memory Layout and CPU Registers

File System

Binary File

Segment

Segment

Library File

Segment

Segment

Virtual Memory
Low

High
Stack

Heap

VMA

VMA

VMA

VMA

VMA

CPU

PC (= Program Counter)

Stack Pointer

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
6 / 55

Registers in x86 (and x86-64)

• Stack pointers
- ESP (RSP) points to the top of the stack.
- EBP (RBP) points to the base of the current stack frame.

• Program counter (instruction pointer)
- EIP (RIP) points to the instruction to execute.

• Status register (FLAGS register)
- EFLAGS (RFLAGS) contains the current condition flags.

• Other registers
- EAX (RAX), EBX (RBX), ECX (RCX), EDX (RDX), ESI (RSI), EDI (RDI)
- x86-64 only registers: R8, R9, R10, R11, R12, R13, R14, R15

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
7 / 55

Size of Registers

• x86 registers are 32-bit. Intel says they a size of a double word.
• x86-64 registers are 64-bit. Intel says they have a size of a quad word.

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
8 / 55

Double/Quad Word?

• A word is the natural unit of data used by a processor.
• Typically, a word is 32 bits on a 32-bit machine, and 64 bits on a 64-bit machine.
• However, Intel says a word is 16 bits on both x86 and x86-64!

What’s wrong?

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
9 / 55

History of x86 Processors

1978: 8086
1982: 80286
1985: 80386
1989: 80486
...
2003: Opteron
2005: Prescott
2006: Core 2
...

16-bit processor, registers (SP, BP, IP, ...)

32-bit processor, registers (ESP, EBP, EIP, ...)

64-bit processor, registers (RSP, RBP, RIP, ...)

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
10 / 55

Intel x86 Convention

• Word = 16 bits.
• Double Word (DWORD) = 32 bits.
• Quad Word (QWORD) = 64 bits.

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
11 / 55

x86 (32-bit) Registers

EAX AH AL
EBX BH BL
ECX CH CL
EDX DH DL

Bit 31 16 0

AX
BX
CX
DX

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
12 / 55

x86-64 (64-bit) Registers

RAX AH AL
RBX BH BL
RCX CH CL
RDX DH DL

Bit 63 32 0

EAX
EBX
ECX
EDX

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
13 / 55

x86 Memory Access = Byte Addressing

We can access data at a byte granualrity.

How do we load/store a single bit then?

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
14 / 55

Assembly Basic

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
15 / 55

Basic Format 1: Instructions with 2 Operands

mov rax, rbx

Opcode Operand 1 Operand 2

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
16 / 55

Basic Format 2: Instructions with 1 Operand

inc rax

Opcode Operand 1

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
17 / 55

Basic Format 3: Instructions with 0 Operand

ret

Opcode

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
18 / 55

Two Kinds of x86 Assembly Syntax

• Intel Syntax: the original assembly syntax introduced by Intel.
• AT&T Syntax: used by UNIX and Linux.

We will use the Intel syntax.

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
19 / 55

Opcode Decides Semantics

• mov rax, rbx
• sub rsp, 0x8
• inc eax

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
20 / 55

Addressing Modes

An addressing mode defines how a memory operand is interpreted to derive an
effective address.

• register
- mov rax, [rax]

• register + register
- mov rax, [rax + rbx] (= mov rax, [rax + rbx * 1])

• displacement
- mov rax, [0x1000]

• register + register × scale + displacement
- mov rax, [rax + rbx * 4 + 0x1000]

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
21 / 55

Addressing Modes (cont’d)

[register + register × scale + displacement]

Base: any register except eip

Index: any register except stack pointers and pc

Scale ∈ {1, 2, 4, 8}
Displacement = 32-bit integer

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
22 / 55

Intel vs. AT&T Syntax

What’s the AT&T representation of
mov rax, [rax + rbx * 4 + 0x1000]?

Answer: mov 0x1000(%rax, %rbx, 4), %rax

So which syntax would you like to use?

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
22 / 55

Intel vs. AT&T Syntax

What’s the AT&T representation of
mov rax, [rax + rbx * 4 + 0x1000]?

Answer: mov 0x1000(%rax, %rbx, 4), %rax

So which syntax would you like to use?

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
23 / 55

Writing Assembly with GNU AS

GNU AS (GNU Assembler) uses the AT&T syntax by default. To use the Intel syntax,
you should use a special directive .intel_syntax noprefix.

Example

.intel_syntax noprefix
mov rax , [rbx]

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
24 / 55

Pointer Directives

mov [rsi], al ; ok (compiles)
mov [rsi], 1 ; error

Error: ambiguous operand size for ‘mov’

Because it could be any of the followings
• mov BYTE PTR [rsi], 1
• mov WORD PTR [rsi], 1
• mov DWORD PTR [rsi], 1
• mov QWORD PTR [rsi], 1

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
24 / 55

Pointer Directives

mov [rsi], al ; ok (compiles)
mov [rsi], 1 ; error

Error: ambiguous operand size for ‘mov’

Because it could be any of the followings
• mov BYTE PTR [rsi], 1
• mov WORD PTR [rsi], 1
• mov DWORD PTR [rsi], 1
• mov QWORD PTR [rsi], 1

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
25 / 55

Examples: Moving Data Around

• mov eax, ebx
• mov al, bl
• mov [rax], rbx
• mov rcx, [rbx]
• mov rcx, [rax + rbx * 4]
• mov al, BYTE PTR [rsi]
• mov rax, 42
• mov DWORD PTR [rax], 42

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
26 / 55

Storing a DWORD in Memory

mov DWORD PTR [rax], 0xdeadbeef
(assume that rax = 0x1000)

de
ad
be
ef0x1000

0x1007

vs. ef
be
ad
de0x1000

0x1007

✓

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
26 / 55

Storing a DWORD in Memory

mov DWORD PTR [rax], 0xdeadbeef
(assume that rax = 0x1000)

de
ad
be
ef0x1000

0x1007

vs. ef
be
ad
de0x1000

0x1007

✓

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
27 / 55

Endianness

The order in which a sequence of bytes are stored in memory.
• Big endian: The MSB goes to the lowest address.
• Little endian: The LSB goes to the lowest address.

x86 uses Little Endian

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
28 / 55

Load Effective Address

• lea rax, [rbx]
• lea rax, [rbp - 0x8]

Same as ‘&’ in C

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
29 / 55

What’s the Difference?

mov rax, [rbp + 0x10] vs. lea rax, [rbp + 0x10]

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
30 / 55

Stack Memory

Stack stores data in a LIFO (Last-In-First-Out) fashion. When a function is invoked, a
new stack frame is allocated at the top of the stack memory.

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
31 / 55

Stack Operations

Virtual Memory
Low

High
Stack

Heap

VMA

VMA

VMA

VMA

VMA

rsp points to the top of the stack

Stack grows backward (from high to low)

pop

rsp

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
31 / 55

Stack Operations

Virtual Memory
Low

High
Stack

push

rsp

pop

rsp

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
31 / 55

Stack Operations

Virtual Memory
Low

High
Stack

push

rsp

pop

rsp

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
31 / 55

Stack Operations

Virtual Memory
Low

High
Stack

rsp

pop

rsp

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
31 / 55

Stack Operations

Virtual Memory
Low

High
Stack

pop

rsp

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
32 / 55

Stack Push/Pop

• (On x86): push x = sub esp, 4; mov [esp], x
• (On x64): push x = sub rsp, 8; mov [rsp], x

• (On x86): pop x = mov x, [esp]; add esp, 4
• (On x64): pop x = mov x, [rsp]; add rsp, 8

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
33 / 55

Stack Enter/Leave (x64)

enter x, 0 =
push rbp
mov rbp, rsp
sub rsp, x

leave =
mov rsp, rbp
pop ebp

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
34 / 55

Function Call

.intel_syntax noprefix
call foo
nextret :
nop
nop
nop
nop
foo:
nop
nop
nop
nop

=

.intel_syntax noprefix
push nextret
jmp foo
nextret :
nop
nop
nop
nop
foo:
nop
nop
nop
nop

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
35 / 55

Function Return

ret = pop rip

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
36 / 55

Arithmetic and Logical Operations

• add rax, [rbx]
• sub rsp, 0x40
• inc rcx
• dec rcx
• and [rax + rcx], rbx
• or rdx, rbx
• xor rdx, rbx
• shl rax, 1
• ...

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
37 / 55

Control Flows

C has a high-level control structures, such as:

if (x) { /* A */ }
else { /* B */ }

while (x) { }

for (i = 0; i < n; i++) { }

Can we represent these in assembly?

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
38 / 55

Control Flows in Assembly (1)

There are only “if” and “goto” (no “else”).

if (x) { /* A */ }
else { /* B */ }

→

if (!x) goto F;
/* A */
goto E;
F:
/* B */
E:

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
39 / 55

Control Flows in Assembly (2)

There are only “if” and “goto” (no “else”).

while (x) { /* body */ } →

WHILE:
if (!x) goto DONE;
/* body */
goto WHILE;
DONE:

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
40 / 55

Control Flows in Assembly (3)

There are only “if” and “goto” (no “else”).

for (i = 0; i < n; i++) {
/* body */

}
→

i = 0;
LOOP:
if (i >= n) goto DONE;
/* body */
i++;
goto LOOP;
DONE:

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
41 / 55

Control Flows in Assembly (Example)

if (!x) goto F;
/* A */
goto E;
F:
/* B */
E:

→

cmp x, 0
jne F
; A
jmp E
F:
; B
E:

Where do we store the result of comparison (cmp)?

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
41 / 55

Control Flows in Assembly (Example)

if (!x) goto F;
/* A */
goto E;
F:
/* B */
E:

→

cmp x, 0
jne F
; A
jmp E
F:
; B
E:

Where do we store the result of comparison (cmp)?

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
42 / 55

EFLAGS: Storing the Processor State

• EFLAGS is a status register used in x86, which is essentially a collection of
status flag bits.

• There are approximately 20 different flag bits used in x86, but we are mainly
interested in 6 condition flags:

- OF: Overflow flag
- SF: Sign flag
- ZF: Zero flag
- AF: Auxiliary carry flag
- PF: Parity flag
- CF: Carry flag

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
43 / 55

Almost Every x86 Instruction Affects EFLAGS

add rax, rbx

rax 1
rbx -2 (0xfffffffffffffffe)
SF 0

→
rax -1 (0xffffffffffffffff)
rbx -2 (0xfffffffffffffffe)
SF 1

and rbx, 0

rax -1 (0xffffffffffffffff)
rbx -2 (0xfffffffffffffffe)
SF 1
ZF 0

→

rax -1 (0xffffffffffffffff)
rbx 0
SF 0
ZF 1

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
44 / 55

cmp Only Affects EFLAGS

cmp is the same as sub, except that it only affects EFLAGS, but not the destination
operand. For example, cmp rax, rbx will not change the rax register.

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
45 / 55

Conditional Branch Instructions

Instruction1 Condition Description

ja CF = 0 and ZF = 0 Jump if above
jb CF = 1 Jump if below
je ZF = 1 Jump if equal
jl SF ̸= OF Jump if less
jle ZF = 1 or SF ̸= OF Jump if less or equal
jz ZF = 1 Jump if zero (- same as je)
... (many more)

1Assume that a comparison instruction precedes the branch instruction.

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
46 / 55

Examining the ja Case

Example code.

cmp rax , rbx
ja label ; jump to label if rax > rbx

• cmp is the same as sub except that it only updates EFLAGS.
• CF = 0 implies that rax - rbx did not produce any carry.
• ZF = 0 implies that the result of subtraction is not zero. Hence, rax ̸= rbx.
• From both the conditions, we can say that rax > rbx.

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
47 / 55

Summary So Far

• We learned how to move around data.
- mov, lea, push, pop, etc.

• We learned how to perform arithmetic and logical operations.
- add, sub, and, or, etc.

• We also learned how to control program flows.
- cmp, jmp, ja, jz, etc.

Already Turing complete!

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
48 / 55

x86 Execution Model

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
49 / 55

Our Example

int purple (int a1 , int a2)
{

return 2 + a1 - a2;
}
int blue(int a1)
{

return 1 + purple (a1 , b);
}
int red(int a1)
{

return blue(a1 - 42);
}

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
50 / 55

Questions

blue(a1 - 42)

red

1 + purple(a1, b)

blue purple

• How do we pass function parameters?
• When a function returns, how do we restore the register values of the caller.
• Where do we store local variables?

We can easily get the answer by compiling the example program and
disassembling the resulting binary.

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
50 / 55

Questions

blue(a1 - 42)

red

1 + purple(a1, b)

blue purple

• How do we pass function parameters?
• When a function returns, how do we restore the register values of the caller.
• Where do we store local variables?

We can easily get the answer by compiling the example program and
disassembling the resulting binary.

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
51 / 55

Disassembled Code (x86)
<red >:

0: push ebp
1: mov ebp ,esp
3: sub esp ,0 x28
6: mov DWORD PTR [ebp -0 xc],0x0
d: mov eax , DWORD PTR [ebp +0 x8]

10: sub eax ,0 x2a
13: mov DWORD PTR [esp],eax
16: call blue
1b: mov edx , DWORD PTR [ebp -0 xc]
1e: add eax ,edx
20: leave
21: ret

<blue >:
22: push ebp
23: mov ebp ,esp
25: sub esp ,0 x28
28: mov DWORD PTR [ebp -0 xc],0x1
2f: mov eax , DWORD PTR [ebp -0 xc]

32: mov DWORD PTR [esp +0 x4],eax
36: mov eax , DWORD PTR [ebp +0 x8]
39: mov DWORD PTR [esp],eax
3c: call purple
41: mov edx , DWORD PTR [ebp -0 xc]
44: add eax ,edx
46: leave
47: ret

<purple >:
48: push ebp
49: mov ebp ,esp
4b: sub esp ,0 x10
4e: mov DWORD PTR [ebp -0 x4],0x2
55: mov eax , DWORD PTR [ebp +0 x8]
58: mov edx , DWORD PTR [ebp -0 x4]
5b: add eax ,edx
5d: sub eax , DWORD PTR [ebp +0 xc]
60: leave
61: ret

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
52 / 55

Stack Frames

Frame for
red

Frame for
blue

Frame for
purple

Low

High

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
53 / 55

Execution Example

Virtual Memory

<red >:
0: push ebp
1: mov ebp ,esp
3: sub esp ,0 x28
6: mov DWORD PTR [ebp -0 xc],0x0
d: mov eax , DWORD PTR [ebp +0 x8]

10: sub eax ,0 x2a
13: mov DWORD PTR [esp],eax
16: call blue
1b: mov edx , DWORD PTR [ebp -0 xc]
1e: add eax ,edx
20: leave
21: ret

<blue >:
22: push ebp
23: mov ebp ,esp
...
46: leave
47: ret

0x100
return address

Execution Context

0xbfff0020

0xbfff0000

eip: 0x0
ebp: 0xbfff0020
esp: 0xbfff0000

0xbfff0020

...0x0

0xd6

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
53 / 55

Execution Example

Virtual Memory

<red >:
0: push ebp
1: mov ebp ,esp
3: sub esp ,0 x28
6: mov DWORD PTR [ebp -0 xc],0x0
d: mov eax , DWORD PTR [ebp +0 x8]

10: sub eax ,0 x2a
13: mov DWORD PTR [esp],eax
16: call blue
1b: mov edx , DWORD PTR [ebp -0 xc]
1e: add eax ,edx
20: leave
21: ret

<blue >:
22: push ebp
23: mov ebp ,esp
...
46: leave
47: ret

0x100
return address

Execution Context

0xbfff0020

0xbfff0020 0xbffefffc

eip: 0x1
ebp: 0xbfff0020
esp: 0xbffefffc

...0x0

0xd6

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
53 / 55

Execution Example

Virtual Memory

<red >:
0: push ebp
1: mov ebp ,esp
3: sub esp ,0 x28
6: mov DWORD PTR [ebp -0 xc],0x0
d: mov eax , DWORD PTR [ebp +0 x8]

10: sub eax ,0 x2a
13: mov DWORD PTR [esp],eax
16: call blue
1b: mov edx , DWORD PTR [ebp -0 xc]
1e: add eax ,edx
20: leave
21: ret

<blue >:
22: push ebp
23: mov ebp ,esp
...
46: leave
47: ret

0x100
return address

Execution Context

0xbfff0020

0xbfff0020 0xbffefffc

eip: 0x3
ebp: 0xbffefffc
esp: 0xbffefffc

...0x0

0xd6

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
53 / 55

Execution Example

Virtual Memory

<red >:
0: push ebp
1: mov ebp ,esp
3: sub esp ,0 x28
6: mov DWORD PTR [ebp -0 xc],0x0
d: mov eax , DWORD PTR [ebp +0 x8]

10: sub eax ,0 x2a
13: mov DWORD PTR [esp],eax
16: call blue
1b: mov edx , DWORD PTR [ebp -0 xc]
1e: add eax ,edx
20: leave
21: ret

<blue >:
22: push ebp
23: mov ebp ,esp
...
46: leave
47: ret

0x100
return address

Execution Context

0xbfff0020

0xbfff0020

...

eip: 0x6
ebp: 0xbffefffc
esp: 0xbffeffd4

0x0

0xd6

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
53 / 55

Execution Example

Virtual Memory

<red >:
0: push ebp
1: mov ebp ,esp
3: sub esp ,0 x28
6: mov DWORD PTR [ebp -0 xc],0x0
d: mov eax , DWORD PTR [ebp +0 x8]

10: sub eax ,0 x2a
13: mov DWORD PTR [esp],eax
16: call blue
1b: mov edx , DWORD PTR [ebp -0 xc]
1e: add eax ,edx
20: leave
21: ret

<blue >:
22: push ebp
23: mov ebp ,esp
...
46: leave
47: ret

0x100
return address

Execution Context

0xbfff0020

0xbfff0020

...0x0
0xc

eip: 0xd
ebp: 0xbffefffc
esp: 0xbffeffd4

0xd6

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
53 / 55

Execution Example

Virtual Memory

<red >:
0: push ebp
1: mov ebp ,esp
3: sub esp ,0 x28
6: mov DWORD PTR [ebp -0 xc],0x0
d: mov eax , DWORD PTR [ebp +0 x8]

10: sub eax ,0 x2a
13: mov DWORD PTR [esp],eax
16: call blue
1b: mov edx , DWORD PTR [ebp -0 xc]
1e: add eax ,edx
20: leave
21: ret

<blue >:
22: push ebp
23: mov ebp ,esp
...
46: leave
47: ret

0x100
return address

Execution Context

0xbfff0020

0xbfff0020

...0x0

eip: 0x10
ebp: 0xbffefffc
esp: 0xbffeffd4
eax: 0x100

0xd6

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
53 / 55

Execution Example

Virtual Memory

<red >:
0: push ebp
1: mov ebp ,esp
3: sub esp ,0 x28
6: mov DWORD PTR [ebp -0 xc],0x0
d: mov eax , DWORD PTR [ebp +0 x8]

10: sub eax ,0 x2a
13: mov DWORD PTR [esp],eax
16: call blue
1b: mov edx , DWORD PTR [ebp -0 xc]
1e: add eax ,edx
20: leave
21: ret

<blue >:
22: push ebp
23: mov ebp ,esp
...
46: leave
47: ret

0x100
return address

Execution Context

0xbfff0020

0xbfff0020

...0x0

eip: 0x13
ebp: 0xbffefffc
esp: 0xbffeffd4
eax: 0xd6

0xd6

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
53 / 55

Execution Example

Virtual Memory

<red >:
0: push ebp
1: mov ebp ,esp
3: sub esp ,0 x28
6: mov DWORD PTR [ebp -0 xc],0x0
d: mov eax , DWORD PTR [ebp +0 x8]

10: sub eax ,0 x2a
13: mov DWORD PTR [esp],eax
16: call blue
1b: mov edx , DWORD PTR [ebp -0 xc]
1e: add eax ,edx
20: leave
21: ret

<blue >:
22: push ebp
23: mov ebp ,esp
...
46: leave
47: ret

0x100
return address

Execution Context

0xbfff0020

0xbfff0020

...0x0

0xd6
eip: 0x16
ebp: 0xbffefffc
esp: 0xbffeffd4
eax: 0xd6

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
53 / 55

Execution Example

Virtual Memory

<red >:
0: push ebp
1: mov ebp ,esp
3: sub esp ,0 x28
6: mov DWORD PTR [ebp -0 xc],0x0
d: mov eax , DWORD PTR [ebp +0 x8]

10: sub eax ,0 x2a
13: mov DWORD PTR [esp],eax
16: call blue
1b: mov edx , DWORD PTR [ebp -0 xc]
1e: add eax ,edx
20: leave
21: ret

<blue >:
22: push ebp
23: mov ebp ,esp
...
46: leave
47: ret

0x100
return address

Execution Context

0xbfff0020

0xbfff0020

...0x0

0xd6
0x1b

eip: 0x22
ebp: 0xbffefffc
esp: 0xbffeffd0
eax: 0xd6

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
53 / 55

Execution Example

Virtual Memory

<red >:
0: push ebp
1: mov ebp ,esp
3: sub esp ,0 x28
6: mov DWORD PTR [ebp -0 xc],0x0
d: mov eax , DWORD PTR [ebp +0 x8]

10: sub eax ,0 x2a
13: mov DWORD PTR [esp],eax
16: call blue
1b: mov edx , DWORD PTR [ebp -0 xc]
1e: add eax ,edx
20: leave
21: ret

<blue >:
22: push ebp
23: mov ebp ,esp
...
46: leave
47: ret

0x100
return address

Execution Context

0xbfff0020

0xbfff0020

...0x0

0xd6
0x1b

0xbffefffc

eip: 0x23
ebp: 0xbffefffc
esp: 0xbffeffcc
eax: 0xd6

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
53 / 55

Execution Example

Virtual Memory

<red >:
0: push ebp
1: mov ebp ,esp
3: sub esp ,0 x28
6: mov DWORD PTR [ebp -0 xc],0x0
d: mov eax , DWORD PTR [ebp +0 x8]

10: sub eax ,0 x2a
13: mov DWORD PTR [esp],eax
16: call blue
1b: mov edx , DWORD PTR [ebp -0 xc]
1e: add eax ,edx
20: leave
21: ret

<blue >:
22: push ebp
23: mov ebp ,esp
...
46: leave
47: ret

0x100
return address

Execution Context

0xbfff0020

0xbfff0020

...0x0

0xd6
0x1b

0xbffefffc
...

= mov esp, ebp
pop ebp

eip: 0x46
ebp: 0xbffeffcc
esp: 0xbffeffac

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
53 / 55

Execution Example

Virtual Memory

<red >:
0: push ebp
1: mov ebp ,esp
3: sub esp ,0 x28
6: mov DWORD PTR [ebp -0 xc],0x0
d: mov eax , DWORD PTR [ebp +0 x8]

10: sub eax ,0 x2a
13: mov DWORD PTR [esp],eax
16: call blue
1b: mov edx , DWORD PTR [ebp -0 xc]
1e: add eax ,edx
20: leave
21: ret

<blue >:
22: push ebp
23: mov ebp ,esp
...
46: leave
47: ret

0x100
return address

Execution Context

0xbfff0020

0xbfff0020

...0x0

0xd6
0x1b

eip: 0x47
ebp: 0xbffefffc
esp: 0xbffeffcc

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
53 / 55

Execution Example

Virtual Memory

<red >:
0: push ebp
1: mov ebp ,esp
3: sub esp ,0 x28
6: mov DWORD PTR [ebp -0 xc],0x0
d: mov eax , DWORD PTR [ebp +0 x8]

10: sub eax ,0 x2a
13: mov DWORD PTR [esp],eax
16: call blue
1b: mov edx , DWORD PTR [ebp -0 xc]
1e: add eax ,edx
20: leave
21: ret

<blue >:
22: push ebp
23: mov ebp ,esp
...
46: leave
47: ret

0x100
return address

Execution Context

0xbfff0020

0xbfff0020

...0x0

0xd6
eip: 0x1b
ebp: 0xbffefffc
esp: 0xbffeffd0

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
54 / 55

Question?

Intel (x86) Architecture Assembly Basic x86 Execution Model Question?
55 / 55

Exercise

1. Write any sort function in x86 (or x86-64) assembly, and create an object file.
2. Write a C function that tests the sort function. Link with the object file and run

your test.

	Intel (x86) Architecture
	Assembly Basic
	x86 Execution Model
	Question?

