
Lec 23: Symbolic Execution
CS492E: Introduction to Software Security

Sang Kil Cha

1

Motivation

if (input == 42) {

/* ... */

} else {

/* ... */

}

2

Program Execution

3

Simple Language (SLang)

• Simple assembly-like language

• Assume that there is only one type: 32-bit integer

• denotes a binary operator (+, -, x, /, etc.)

• denotes a unary operator (minus)

4

SLang (in BNF)

5

Example Program

6

Defining Semantics

7

Computations

<Current state>, stmt → <End state>, stmt’

(1)

(2)

(3)

Evaluation Rule

8

<state>

Expression Value

Execution Context (State)

• ∆ : variables

• ∑ : list of statements

• µ : current memory state

• pc : program counter

9

Operational Semantics

10

Operational Semantics (Cont’d)

11

Example

• Let µ = {}, ∆ = {x ↦ 3, y ↦ 5, z ↦ 7}

• Evaluate x + y, given µ and ∆

12

Example 2

• Let µ = {}, ∆ = {x ↦ 3, y ↦ 5, z ↦ 7}

• Evaluate x + y > z, given µ and ∆

13

Example Program (Revisited)

14

We can now evaluate this program formally based on the operational semantics

// returns 2

Symbolic Execution

15

Concrete vs. Symbolic Execution

• Concrete execution = runs a program with a concrete input

• Symbolic execution = runs a program with a symbolic input
− We mark user input as a symbol.

− A symbol represents any possible value.

− We cannot evaluate a symbol into a concrete value.

16

In terms of semantics, we can have two types of values:

Either integer or symbolic variable

Symbolic Execution Semantics

Value can be either an integer or a symbol

17

A user input = a fresh new symbol

Symbolic Execution Semantics

What if we encounter a conditional jump where the condition is
symbolic?

18

The condition is symbolic now …

Introducing a New Execution Context
(Π)
Path formula (a.k.a. path constraints, path predicate) Π

− Π is true at the beginning of the program

− For every symbolic branch, we update the path formula

19

Example Program (Revisited)

20

Can we symbolically evaluate this program now?

// symbolic input!

Example Program (Revisited)

21

// symbolic input!

Which branch to take?

Two Categories

• Static Symbolic Execution
− Considers all branches

− Symbolic Execution and Program Testing, CACM 1976

• Dynamic Symbolic Execution
− Considers a single branch at a time

− DART: Directed Automated Random Testing, PLDI 2005

− EXE: Automatically Generating Inputs of Death, CCS 2006

22

Static vs. Dynamic Symbolic Execution

Static Symbolic Execution

• No need to run the program

• Environment handling difficult

• Complete (in theory)

• Too complex formulas

• No need to select paths

Dynamic Symbolic Execution

• Runtime analysis

• Easy to handle environments

• Incomplete

• Simpler formulas

• Path selection problem

23

Soundness really matter in practice

Dynamic Symbolic Execution

• Concrete + Symbolic = Concolic

• CUTE: A Concolic Unit Testing Engine for C,
FSE 2005

• DART: Directed Automated Random Testing,
PLDI 2005

• EXE: Automatically Generating Inputs of Death,
CCS 2006

24

Example Program (Revisited)

25

// symbolic input!

How to generate a concrete test case from a path formula?

Constraint Solving

• Compute satisfying answers from a given formula

• SAT (Boolean Satisfiability Problem)
− Given a Boolean formula, find satisfying assignments

• SMT (Satisfiability Modulo Theory)
− SAT++ (SAT + first-order theories)

− Nonlinear constraints are problematic
(e.g., sin, cos, etc.)

26

Example Program (Revisited)

27

// symbolic input!

Π : x % 2 = 0

SMT solver
Test Case, e.g., x=42

Exploring Path with Symbolic
Execution
• (Dyamic) symbolic execution exercises each execution path

systematically

• But how do we detect that we found a bug?

28

Safety Property

Safety Property in Symbolic Execution

• Memory out of bounds

• Null dereference

• Integer overflow

• Etc.

29

Dyanmic Symbolic Execution
= White-box Fuzzing
• White-box fuzzing vs. grey-box fuzzing?

• White-box fuzzing vs. black-box fuzzing?

30

Key Challenges

• Path explosion

• SMT solving is hard

31

Conclusion

• White-box fuzzing (dynamic symbolic execution) is a systematic
way to explore program execution paths.

• There are several key challenges in symbolic execution, and it
is an active research area.

32

Questions?

33

