
Lec 22: Fuzzing
CS492E: Introduction to Software Security

Sang Kil Cha

1



Software Bugs

• Bugs are plentiful

• Some bugs are memory corruption, some bugs are not

• Bugs are bad: attackers exploit bugs

2



Build a System that Finds Bugs

3

SystemProgram Bugs

a.k.a. analyzer, fuzzer, etc.



Precision Matters

4

SystemProgram Bugs

How precise can we make our system?



Precision Matters

5

SystemProgram Bugs

Given an arbitrary program, can we build a system that 

decides whether the program is buggy or not?

Has 1 bug

Can our system 

find it?



Informal Proof

Define a function isBuggy that takes a program as input, and 
outputs true if the program has at least one bug, and false if 
otherwise. Let’s assume that this function exists:

def isBuggy(prog):

… # somehow test prog and returns true or false

6



Informal Proof

Define a function myProg:

def myProg(): # consider myProg as a program

if isBuggy(myProg):

return # do nothing (normal)

else:

corruptMemory()

showBuggyBehavior()

return

7

Self contradictory



Building a Perfect Analyzer is 
Impossible
But, we can try to find as many bugs as possible.

For example,

• Bounded model checking

• Static analysis

• Software testing

• Etc.

8



Defining Precision
(Soundness vs. Completeness)

9

If an analyzer is sound:

Truth

What I say



Defining Precision
(Soundness vs. Completeness)

10

If an analyzer is complete:

What I say

Truth



Defining Precision
(Soundness vs. Completeness)

11

If an analyzer is sound and complete (= perfect):

What I say = Truth



Precision, Recall, and Accuracy

12

FP

FNTP

What I say

Truth

• Precision

= TP / (TP + FP)

• Recall

= TP / (FN + TP)

• Accuracy

= (TP+TN)/(U)

TN

U



False-Positive Rate vs. False-Negative Rate

13

FP

FNTP

What I say

Truth

• FP Rate

= FP / (TP + FP)

• FN Rate

= FN / (FN + TN)
TN

U



Fuzzing?
A software testing technique for finding software bugs

14



History of Fuzzing

The original work was inspired by being logged on to a modem 
during a storm with lots of line noise. And the line noise was 
generating junk characters that seemingly were causing 
programs to crash. The noise suggested the term fuzz.

Image from http://ls.wisc.edu/wp-content/uploads/2016/01/Barton-Miller-200.jpg 15

The term was coined

by Barton Miller in 1990.



Fuzzing in 1990s

An Empirical Study of the Reliability of UNIX Utilities,
CACM 1990

16

Fuzzing Bug

Param1

Paramn
Param1

Param2

= Program

Fuzz 

Conf.



Fuzzing in 1990s

An Empirical Study of the Reliability of UNIX Utilities,
CACM 1990

17

Bug

Program

Paramn
Param1

Param2

Fuzz 

Conf.



Fuzzing in 1990s

An Empirical Study of the Reliability of UNIX Utilities,
CACM 1990

18

Bug

Program

Paramn
Param1

Param2

Exec.
crash

ok

Fuzz Random char 

stream

• Only printable characters?

• Generate NULL character or not?

• Etc.



Fuzzing is …

• Simple, and popular way to find security bugs

• Used by security practitioners

• But, not studied systematically until recently (~2013)
− Why fuzzing works so well in practice?

− Are we maximizing the ability of fuzzing?

19

Can we answer these questions?



Rough History of Fuzzing

Sidewinder, Black Hat USA 2006

Woo et al., CCS 2013
20

* Visit https://fuzzing-survey.org/ to learn more

https://fuzzing-survey.org/


Fuzzing is an Overloaded Term

• White-box, black-box, grey-box fuzzing

• Directed fuzzing, Feedback-driven fuzzing

• Generational fuzzing

• Mutational fuzzing

• Grammar-based fuzzing

• Seed-based fuzzing

• Model-based, model-less fuzzing

• Etc.

21



Black-box vs. White-box Fuzzing

22

? vs.



Grey-Box Fuzzing

• White-box fuzzing (strictly speaking)

• Obtain some partial information about the program execution

23



Mutation- vs. Generation-based Fuzzing

• Seed: an input to a program

• Mutation: mutate a given seed to generate test cases

• Generation: generate test cases from a model

24



Why Mutation?

Random inputs are likely to be rejected

25



Many Questions Remain

• Given a seed, how do we mutate the seed?

• How much portion do we mutate from the seed?

• How do we obtain seeds?

26



Why Generation?

Empty model = Random fuzzing

Random inputs are likely to be rejected!

27



Grammar-based Fuzzing

• Fuzzing compiler/interpreter

• Fuzzing VMs (Virtual Machines)

28



Fuzzing Algorithm

29



Key Properties of Fuzzing

• Generate test cases

• Run the program under test with the test cases

• Check if the program crashes

30



Definitions

• Fuzzing is the execution of the program using input(s) sampled 
from an input space that protrudes the expected input space of 
the PUT.

• Fuzz testing is the use of fuzzing to test if a program violates a 
correctness policy (e.g., security policy).

31



Definitions

• A fuzz configuration of a fuzz algorithm comprises the 
parameter value(s) that control(s) the fuzz algorithm.

• A bug oracle (Obug) is a program, perhaps as part of a fuzzer, 
that determines whether a given execution of the program 
violates a specific security policy.

32



Fuzzing Algorithm

33

Preprocess

Schedule

InputGen InputEval

ConfUpdate

Conf1Conf1Conf1

Conf1Conf1Conf1

Test Case

Bug Oracle

Exec Info.

crash

ok

Conf



Fuzzing Algorithm



Fuzzing is AI!

Finding paths in a maze

1. Move the agent based on the knowledge

2. Observe the environment (walls, passages, etc.)

3. Update the learnt knowledge

4. Goto 1

35



Research Challenges?

36

Preprocess

Schedule

InputGen InputEval

ConfUpdate

Conf1Conf1Conf1

Conf1Conf1Conf1

Test Case

Bug Oracle

Exec Info.

crash

ok

Conf



Questions?

37


