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Software Bugs

• Bugs are plentiful

• Some bugs are memory corruption, some bugs are not

• Bugs are bad: attackers exploit bugs
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Build a System that Finds Bugs
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SystemProgram Bugs

a.k.a. analyzer, fuzzer, etc.



Precision Matters
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SystemProgram Bugs

How precise can we make our system?



Precision Matters
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SystemProgram Bugs

Given an arbitrary program, can we build a system that 

decides whether the program is buggy or not?

Has 1 bug

Can our system 

find it?



Informal Proof

Define a function isBuggy that takes a program as input, and 
outputs true if the program has at least one bug, and false if 
otherwise. Let’s assume that this function exists:

def isBuggy(prog):

… # somehow test prog and returns true or false
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Informal Proof

Define a function myProg:

def myProg(): # consider myProg as a program

if isBuggy(myProg):

return # do nothing (normal)

else:

corruptMemory()

showBuggyBehavior()

return
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Self contradictory



Building a Perfect Analyzer is 
Impossible
But, we can try to find as many bugs as possible.

For example,

• Bounded model checking

• Static analysis

• Software testing

• Etc.
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Defining Precision
(Soundness vs. Completeness)
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If an analyzer is sound:

Truth

What I say



Defining Precision
(Soundness vs. Completeness)
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If an analyzer is complete:

What I say

Truth



Defining Precision
(Soundness vs. Completeness)
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If an analyzer is sound and complete (= perfect):

What I say = Truth



Precision, Recall, and Accuracy
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FP

FNTP

What I say

Truth

• Precision

= TP / (TP + FP)

• Recall

= TP / (FN + TP)

• Accuracy

= (TP+TN)/(U)

TN

U



False-Positive Rate vs. False-Negative Rate
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FP

FNTP

What I say

Truth

• FP Rate

= FP / (TP + FP)

• FN Rate

= FN / (FN + TN)
TN

U



Fuzzing?
A software testing technique for finding software bugs

14



History of Fuzzing

The original work was inspired by being logged on to a modem 
during a storm with lots of line noise. And the line noise was 
generating junk characters that seemingly were causing 
programs to crash. The noise suggested the term fuzz.

Image from http://ls.wisc.edu/wp-content/uploads/2016/01/Barton-Miller-200.jpg 15

The term was coined

by Barton Miller in 1990.



Fuzzing in 1990s

An Empirical Study of the Reliability of UNIX Utilities,
CACM 1990
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Fuzzing Bug
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= Program
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Fuzzing in 1990s

An Empirical Study of the Reliability of UNIX Utilities,
CACM 1990
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Fuzzing in 1990s

An Empirical Study of the Reliability of UNIX Utilities,
CACM 1990
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Bug

Program

Paramn
Param1

Param2

Exec.
crash

ok

Fuzz Random char 

stream

• Only printable characters?

• Generate NULL character or not?

• Etc.



Fuzzing is …

• Simple, and popular way to find security bugs

• Used by security practitioners

• But, not studied systematically until recently (~2013)
− Why fuzzing works so well in practice?

− Are we maximizing the ability of fuzzing?
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Can we answer these questions?



Rough History of Fuzzing

Sidewinder, Black Hat USA 2006

Woo et al., CCS 2013
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* Visit https://fuzzing-survey.org/ to learn more

https://fuzzing-survey.org/


Fuzzing is an Overloaded Term

• White-box, black-box, grey-box fuzzing

• Directed fuzzing, Feedback-driven fuzzing

• Generational fuzzing

• Mutational fuzzing

• Grammar-based fuzzing

• Seed-based fuzzing

• Model-based, model-less fuzzing

• Etc.
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Black-box vs. White-box Fuzzing
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? vs.



Grey-Box Fuzzing

• White-box fuzzing (strictly speaking)

• Obtain some partial information about the program execution
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Mutation- vs. Generation-based Fuzzing

• Seed: an input to a program

• Mutation: mutate a given seed to generate test cases

• Generation: generate test cases from a model
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Why Mutation?

Random inputs are likely to be rejected
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Many Questions Remain

• Given a seed, how do we mutate the seed?

• How much portion do we mutate from the seed?

• How do we obtain seeds?
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Why Generation?

Empty model = Random fuzzing

Random inputs are likely to be rejected!
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Grammar-based Fuzzing

• Fuzzing compiler/interpreter

• Fuzzing VMs (Virtual Machines)
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Fuzzing Algorithm
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Key Properties of Fuzzing

• Generate test cases

• Run the program under test with the test cases

• Check if the program crashes
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Definitions

• Fuzzing is the execution of the program using input(s) sampled 
from an input space that protrudes the expected input space of 
the PUT.

• Fuzz testing is the use of fuzzing to test if a program violates a 
correctness policy (e.g., security policy).
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Definitions

• A fuzz configuration of a fuzz algorithm comprises the 
parameter value(s) that control(s) the fuzz algorithm.

• A bug oracle (Obug) is a program, perhaps as part of a fuzzer, 
that determines whether a given execution of the program 
violates a specific security policy.
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Fuzzing Algorithm
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Fuzzing Algorithm



Fuzzing is AI!

Finding paths in a maze

1. Move the agent based on the knowledge

2. Observe the environment (walls, passages, etc.)

3. Update the learnt knowledge

4. Goto 1
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Research Challenges?
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Questions?
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