Lec 20: Binary Analysis

CS492E: Introduction to Software Security

Sang Kil Cha

SEC e

Binary Analysis is Difficult

Not only automated analysis, but manual analysis is difficult.

What's the problem?

No Program Abstraction!

4C 8B 47 08 mov r8,qword ptr [rdi+8]

BA 02 00 00 00 mov edx, 2

48 8B 4F 20 mov rcx,qword ptr [rdi+20h]

45 OF B7 08 movzXx rod,word ptr [r8]

E8 54 16 00 00 call 00000001400026BC

48 8B 74 24 38 mov rsi,qword ptr [rsp+38h]

8B C3 mov eax, ebx

48 8B 5C 24 30 mov rbx,qword ptr [rsp+30h] Pd() tB/F)EEES

48 83 C4 20 add rsp, 26h No variables
” " e No functions
48 8B C4 mov rax,rsp

48 89 58 08 mov gword ptr [rax+8],rbx

Binary Analysis (= Reverse Engineering)

< Idea >
Source Code >

Compile : Reverse
Intermediate _ _
Representation Engineering

Assembly Code >

Binary Code >
SOFT

Diassembly

First Step: Disassembling Binary Code

< Idea >
< Source Code >

: Reverse
Intermediate _ _
Representation Engineering

< Assembly Code >
< Binary Code >

Disassemble

Recursive Descent Disassembly

1. Disassemble instruction one by one until reaching branch
Instructions

2. When there Is a branch instruction, we examine the target
address(es) of the branch instruction, and recursively
disassemble from there.

Figuring out Branch Target(s)

JMP EAX
CALL [EAX]

Can we statically decide what kind of
values EAX can have?

0000000000001130 <main>:
1130: push rbp
Simplest Example mx e
1134: mov DWORD PTR [rbp-0x4],0x0
113b: mov DWORD PTR [rbp-0x8],edi

int main(int c, char** argv) 113e: mov QWORD PTR [rbp-0x10],rsi

(1142: mov eax,DWORD PTR [rbp-0x8]
switch (c) 1145: add eax, Oxffffffff
{ 1148: mov ecx,eax
case 1: counter += 20; break; 114a: sub eax,0x7
case 2: counter += 33; break; 114d: mov QWORD PTR [rbp-0x18],rcx
case 3: counter += 62; break; 1151: ja 122e <main+@xfe>
case 4: counter += 15; break; 1157: lea rax, [rip+0@xea6]
case 5: counter += 416; break; 115e: mov rcx,QWORD PTR [rbp-0x18]
case 6: counter += 3545; break; 1162: movsxd rdx,DWORD PTR [rax+rcx*4]
case 7: counter += 23; break; 1166: add rdx, rax
case 8: counter += 81; break; 1169: jmp rdx
} 116b: lea rax, [rip+0x2ebe]
return counter; 1172: mov rcx,QWORD PTR [rax]
} 1175: add rcx,ex14

Lifting

Second Step: Lifting
(dea)

Source Code

Reverse
Intermediate _ _
Representation Engineering
Assembly Code
Binary Coce >
SOFT

Why IR?

 Platform-neutral representation

* IR represents explicit semantics

Lifting Example

add dword ptr [ecx], eax

$

T 0:132 := EAX
T 1:i32 := [ECX]
T 2:i32 := (T_0:i32 + T_1:i32)

[ECX] := T_2:i32

CF := (T_2:i32 < T_0:i32)

OF := ((high:i1(T_©0:132) = high:i1(T_1:i32)) & (high:i1(T_@:i32) ~ high:i1(T_2:i32)))
AF := ((((T_2:i32 ~ T_0:i32) ~ T_1:i32) & (Ox1:i32 << 0x4:132)) = (Ox1:i32 << 0x4:132))
SF := high:i1(T_2:i32)

ZF := (T_2:i32 = 0x0:132)

T 3:i32 := (T_2:i32 ~ (T_2:i32 >> zext:i32(0x4:i8)))

T 4:i132 := ((T_2:132 ~ (T_2:132 >> zext:i32(0x4:i8))) ~ (T_3:132 >> zext:i32(0x2:i8)))

PF := (~ low:i1((((T_2:132 ~ (T_2:i32 >> zext:i32(0x4:i8))) ~ (T_3:i32 >> zext:i32(0x2:i8))) ~ (T _4:132 >> zext:i32(0x1:i8)))))

W SAUANWO R

wsiounue o

\ e

: S _.\mef&....._..("

SOFTWRE
SECURITY..

THEN
® RSP < RSP-8;
P Memory[SS:RSP] « SRC;
ELSE IF OperandSize = 32

Opcode* Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
FF /6 PUSH r/m16 M Valid Valid Push r/m16.
FF /6 PUSH r/m32 M NE Valid Push r/m32.
FF 16 PUSH r/mb&4 M Valid N.E. Push r/m64.
50+rw PUSH r16 0 Valid Valid Push r16.
50+rd PUSH r32 0 N.E Valid Push r32.
50+rd PUSH r&4 0 Valid NE. Push &4,
BAIib PUSH imm8 1 Valid Valid Push imm8.

Operation

(* See Description section for possible sign-extension or zero-extension of source operand and for *)
(* a case in which the size of the memory store may be smaller than the instruction's operand size *)

IF StackAddrSize = 64
THEN
IF OperandSize = 64

THEN
RSP « RSP - 4;
Description Memory[SS:RSP] « SRC;
_ ELSE (* OperandSize = 16 %)
Decrements the stack pointer and then stores the source operand on the top of the stack. Address and operand RSP RSP - 2:
sizes are determined and used as follows: Mem;_ [SS'RSF;] SRC:
! « SR
* Address size. The D flag in the current code-segment descriptor determines the default address size; it may be = i

overridden by an instruction prefix (67H).

The address size is used only when referencing a source operand in memory. ELSE IF StackAddrSize = 32

* Operand size. The D flag in the current code-segment descriptor determines the default operand size; it may THEN o
be overridden by instruction prefixes (66H or REX.W). IF OperandSize = 64
The operand size (16, 32, or 64 bits) determines the amount by which the stack pointer is decremented (2, 4 THEN
org) ESP — ESP-8;
Memory[SS:ESP] — SRC;

If the source operand is an immediate of size less than the operand size, a sign-extended value is pushed on

the stack. If the source operand is a segment register (16 bits) and the operand size is 64-bits, a zero- ELSE IF Operandsize = 32

extended value is pushed on the stack; if the operand size is 32-bits, either a zero-extended value is pushed THEN
on the stack or the segment selector is written on the stack using a 16-bit move. For the last case, all recent ESP « ESP - 4:
Core and Atom processors perform a 16-bit move, leaving the upper portion of the stack location unmodified. Memory[SS:ESP] «— SRC:

(* push quadword *)

(* push dword *)

(* push word *)

(* push quadword *)

(* push dword *)

If the source opefahd is an immediate of size less than the operand size, a sign-extended value is pushed on
the stack. If the source operand is a segment register (16 bits) and the operand size is 64-bits, a_zero-
extended value is pushed on the stack; if the operand size is 32-bits, either a zero-extended value is pushed

on the stack or the segment selector is written on the stack using a 16-bit move. For the last case, all recent
Core and Atom processors perform a 16-bit move, leaving the upper portion of the stack location unmodified.

The stack-address size determines the width of the stack pointer when writing to the stack in memory and
when decrementing the stack pointer. (As stated above, the amount by which the stack pointer is
decremented is determined by the operand size.)

If the operand size is less than the stack-address size, the PUSH instruction may result in a misaligned stack

pointer (a stack pointer that is not aligned on a doubleword or quadword boundary). IF OperandSize = 32

The PUSH ESP instruction pushes the value of the ESP register as it existed before the instruction was executed. If THEN

a PUSH instruction uses a memory operand in which the ESP register is used for computing the operand address, Sp . Sp_a:

the address of the operand is computed before the ESP register is decremented. M - S_S SrP SRC
emo : .

If the ESP or SP register is 1 when the PUSH instruction is executed in real-address mode, a stack-fault exception ELSE (* Opge[lndSizit'l 6%

(#5SS) is generated (because the limit of the stack segment is violated). Its delivery encounters a second stack-

fault exception (for the same reason), causing generation of a double-fault exception (#DF). Delivery of the SP«SP-2;

double-fault exception encounters a third stack-fault exception, and the logical processor enters shutdown mode. Memory[S5:5P] «— SRC;
See the discussion of the double-fault exception in Chapter & of the Intel® 64 and IA-32 Architectures Software Fl:
Developer's Manual, Volume 3A. f:

* push dword *)

(* push word *)

Example: BSF (Pseudo Code)

if (source == 0) {
ZF = 0O;
destination = undefined;
else {
ZF = 0;
T = 0;
while (Bit(source, T) == 0) {
T =T+ 1;
destination = T;

}
}

IR is Complex and Error-Prone!

Human is writing the lifter!

What Happens When IR is Incorrect?

 CVE-2009-2267, CVE-2009-1542
— Security vulnerabilities

« QEMU failed to load a Linux kernel due to an IR bug
— http://lists.gnu.org/archive/html/gemu-devel/2017-01/msg03062.html

http://lists.gnu.org/archive/html/qemu-devel/2017-01/msg03062.html

CFG Recovery
& More

Third Step: CFG Recovery & More

.

CFG Recovery < Source Code >
and Decompilation Intermediate Reverse
< > Engineering

Representation

< Assembly Code >
< Binary Coce >

Problem

* Recursive disassembly includes CFG recovery, but perfect
disassembly is infeasible.

* Knowing the function entry points remains problematic.

Call Target = Function?

« False positives: call targets may not be a function entry point

* False negatives: regular jump targets can be a function entry
point

Example: False Positives

1130: 55 push ebp

11al: 89 e5 mov ebp, esp
11a3: 50 push eax

11a4: e8 00 00 00 00 call 11a9

11a9: 58 pop eax

11laa: 81 cO 57 2e 00 00 add eax, Ox2e57

11b0o: 31 ¢9 xXor ecx, ecx

Example: False Negatives

c30a0: 31 6 xXor esi,esi
c30a2: eb Oc jmp c30bo

0000V C30bO < bfd generic read ar hdr mag>:
c30bo: 41 57 push r15
c30b2: 41 56 push rl4

Any Solution?

* Function entry points often have specific patterns
— But not all of them follow the patterns

« PC getters have specific patterns
- Inlined assembly code?

Partitioned Functions

0000000000R7d70 <move_fd.part.o>:

7d70: 55 push rbp

7d71: 89 fd mov ebp,edi

7d73: e8 28 bc ff ff call 39a@ <dup2@plt>

7d78: 89 ef mov edi,ebp static void

7d7a: 54 pop rbp move_fd (int oldfd, int newfd)

7d7b: e9 f0 bc ff ff jmp 3a70 <close@plt> {

if (oldfd != newfd)
00000000PVacPO <open_input files>: {
dup2 (oldfd, newfd);

ae82: 45 85 f6 test riad,ri4d close (oldfd);

ae85: 74 0a je aedl }

ae87: 31 f6 xor esi,esi }

ae89: 44 89 f7 mov edi,ril4d

ae8c: e8 df ce ff ff call 7d70 <move_ fd.part.o>

Decompile?

 Value-Set Analysis (VSA)
—Where are the variables?

* Type inference
— Can we recover variable types?

* Structure Analysis
— Can we recover high-level control flow structures?

B2R2: the Next Generation Binary
Analysis Framework

 Binary analysis platform developed in
KAIST

275 B2R2.org

 Won the best paper award in NDSS BAR ma@.m T ———
2019 @a a?f' & https://b2r2.0rg

E] Repositories 6 Packages People 1 Project

* https://github.com/B2R2-0rg/B2R2 Pinned repositoris

& B2R2

B2R2 is a collection of useful algorithms, functions, and tools for binary analysis.

®r+ sys0 Y47

https://github.com/B2R2-org/

R ——

https://github.com/B2R2-org/B2R2

Conclusion

 Binary analysis is largely unsolved.

* There are many on-going research projects in every step of
binary analysis.

Questions?

