
Lec 19: Obfuscation
CS492E: Introduction to Software Security

Sang Kil Cha

1

Motivation

Can we make it difficult to reverse engineer binaries?

2

Obfuscation

The deliberate act of creating source or machine code that is
difficult for humans to understand.

- Wikipedia

3

Why Obfuscate Binary Code?

• Digital Rights Management (DRM) or Copy Protection
− Example: you have a secret algorithm in your software product, and

you don’t want to reveal it

• What about malicious uses?

4

Ultimate Copy Protection?

Figure from “A Taxonomy of Obfuscating Transformations”, Tech Report, University of Auckland, 1997 5

Why Not Obfuscate All the Time?

• Performance overhead

• Hard to debug / maintain

6

Traditional Obfuscation (Source Level)

Image take from https://en.wikipedia.org/wiki/International_Obfuscated_C_Code_Contest 7

Traditional Obfuscation (Source Level)

http://www.ioccc.org/2015/endoh3/prog.c 8

9

Binary Obfuscation

Fun Fact

Oftentimes, hand-written assembly code is already
difficult to reverse ☺

10

Recursive vs. Linear-Sweep
Disassembly
1 mov eax, [ebx]
2 call 100
3 .dword 0x42424242
4 mov edi, [eax]
5 test edi, edi
6 jne 1
7 pop eax

11

1 mov eax, [ebx]
2 call 104
3 inc edx
4 inc edx
5 inc edx
6 inc edx
7 mov edi, [eax]
8 test edi, edi
9 jne 1
10 pop eax

Disassembly Coverage?

Figure from An In-Depth Analysis of Disassembly on Full-Scale x86/x64 Binaries, USENIX Security 2016 12

Why Linear Sweep Works Well?

13

Self-Repairing Disassembly

Image taken from “Obfuscation of Executable Code to Improve Resistance to Static Disassembly”, CCS 2003 14

Example

_start:
push ebx
xor ebx, ebx
je L0
.byte 0x11
L0:
pop ebx
ret

15

Data

Example: Linear Sweep

_start:
push ebx
xor ebx, ebx
je L0
.byte 0x11
L0:
pop ebx
ret

16

Output from OBJDUMP

00000175 <.text>:
175: 53 push ebx
176: 31 db xor ebx,ebx
178: 74 01 je 0x17b
17a: 11 5b c3 adc DWORD PTR [ebx-0x3d],ebx

Example: Recursive Descent

_start:
push ebx
xor ebx, ebx
je L0
.byte 0x11
L0:
pop ebx
ret

17

Why?

Disassembler Assumption

A sequence of bytes can only be represented in a single way

18

Obfuscation (1): Opaque Predicate

A variable in a program is opaque when it always has a fixed
value, which is known a priori to the obfuscator, but is difficult to
users (or deobfuscators) to deduce its value.

19

Opaque Predicates

int a = 5, b = 6;

int x = a + b;

if (b > 5) { ... /* dummy code */ }

if (rand() % 5 < a) { ... /* dummy code */ }

...

20

Collatz Conjecture (in 1937)

21

If we apply this function iteratively, we will always see 1

regardless of which positive integer is chosen initially.

Until now, we haven’t found any counter example, but we also

don’t have any proof so far.

if (collatz(i) == 1) { … }

Jump Table Spoofing

• Generalization of opaque predicates

• Convert a jump into an indirect jump through a jump table,
where the index of the table is computed by an opaque
expression that always evaluates to a single value

22

Obfuscation (2): Extended Loop

i = 1;

while (i < 100) {

...

i++;

}

23

i = 1; j = 100;

while (i < 100

&& (j*j*(j+1)*(j+1) % 4 == 0)) {

...

i++;

j = j*i+3;

}

Obfuscation (3):
Function Boundary Confusion
• call / ret instructions can be used for RIP-relative

computations

• Difficult to decide whether a code block followed by call
instruction is indeed a function entry or not

24

Knowing function boundaries is important for

intra-procedural analyses or decompilation

Example Function

_start:
push ebx
xor ebx, ebx
call L0
L0:
pop ebx
add ebx, 0x6
push ebx
ret
pop ebx
ret

25

Output from OBJDUMP

00000175 <.text>:
175: 53 push ebx
176: 31 db xor ebx,ebx
178: e8 00 00 00 00 call 0x17d
17d: 5b pop ebx
17e: 83 c3 06 add ebx,0x6
181: 53 push ebx
182: c3 ret
183: 5b pop ebx
184: c3 ret

Confused Function Boundary

26

_start:
push ebx
xor ebx, ebx
call L0
L0:
pop ebx
add ebx, 0x6
push ebx
ret
pop ebx
ret

Conclusion

• Obfuscation is a way to protect software from reverse
engineering.

• Finding a general way to de-obfuscate binaries is on-going
research.

27

Questions?

28

