
Lec 18: Instrumentation
CS492E: Introduction to Software Security

Sang Kil Cha

1



How to Monitor Program Execution?

• Attaching debugger to a running process (e.g., ptrace)
− GDB, LLDB, WinDbg, etc.

− Single stepping: context switching for every single execution

• Instrumentation
− Pin, DynamoRio, Valgrind, etc.
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Instrumentation?

void somefn()

{

char array[42];

for (int i = 0; i < 42; i++ ) {

array[i] = i;

}

}
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Instrumentation?

void somefn()

{

char array[42];

printf(“before loop\n”);

for (int i = 0; i < 42; i++ ) {

printf(“inner loop\n”);

array[i] = i;

}

}
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PEBIL (ISPASS 2010)
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Diablo (ISSPIT 2005)



Dynamic Instrumentation
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Dynamic vs. Static Instrumentation

• Dynamic
− High overhead

− Easy to instrument external libraries

− Handles dynamically generated code

• Static
− Fast

− Difficult to instrument external libraries (need to be separately 
instrumented)

− Cannot handle dynamically generated code
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Valgrind

• Developed in 2003 by Nicholas Nethercote
− Valgrind: A Framework for Heavyweight Dynamic Binary 

Instrumentation,
PLDI 2007

− How to Shadow Every Byte of Memory Used by a Program,
VEE 2007

• Memcheck tool detects memory errors (only for dynamically 
allocated memory objects)
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Shadow Memory

• Shadow memory stores metadata for each memory cell

• Memcheck uses shadow memory
− A bits: every memory byte is shadowed with a single A bit, which 

indicates if the memory byte is accessible or not (e.g., freed memory)

− V bits: every register and memory byte is shadowed with eight V bits, 
which indicate if the value bits are initialized.
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Shadow Memory

10Image taken from How to Shadow Every Byte of Memory Used by a Program, VEE 2007



Address Sanitizer (Asan)

• Static instrumentation version of Memcheck

• AddressSanitizer: A Fast Address Sanity Checker,
USENIX ATC 2012
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Compact Shadow Memory

• Memcheck: byte-to-byte mapping

• Asan: 8-byte-to-byte mapping

• Key idea: heap memory is always 8-byte aligned
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9 States for 8-Byte Aligned Memory
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Mapping from Real to Shadow 
Memory
• Memcheck: address 

translation table

• Asan: no table lookup
− Reserve 1/23 memory space

− Shadow = (Addr >> 3) + Offset

14Image taken from AddressSanitizer: A Fast Address Sanity Checker, ATC 2012



Instrumentation: 8-byte Access

// Instrumentation begins

ShadowAddr = (Addr >> 3) + Offset;

if (*ShadowAddr != 0) ReportAndCrash(Addr);

// Instrumentation ends

*Addr = 42; // Original instruction
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Instrumentation: 1-, 2-, or 4-byte 
Access
// Instrumentation begins

ShadowAddr = (Addr >> 3) + Offset;

k = *ShadowAddr;

if (k != 0 && ((Addr & 7) + AccessSize > k))
ReportAndCrash(Addr);

// Instrumentation ends

*Addr = 42; // Original instruction

// Accessing (AccessSize) bytes
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Instrumenting Stack

void foo() {

char arr[10];

<function body>

}
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Instrumenting Stack

18

void foo() {

char rz1[32];

char arr[10];

char rz2[32-10+32];

unsigned *shadow = (unsigned*)(((long)rz1>>3)+Offset);

// poison the redzones around arr.

shadow[0] = 0xffffffff; // rz1

shadow[1] = 0xffff0200; // arr and rz2

shadow[2] = 0xffffffff; // rz2

<function body>

// un-poison all.

shadow[0] = shadow[1] = shadow[2] = 0;

}

32-byte aligned redzones

around the stack object



Memory Alloc/Dealloc

• Insert redzones around allocated memory

• Freed page is set to be “red”

• Similar to sparse page mapping
(We will discuss this later again)
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AddressSanitizer has False Negatives

int *a = new int[2]; // 8-byte aligned

int *u = (int*)((char*)a + 6);

*u = 1; // Access to range [6-9]
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Anti Debugging
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Anti- Debugging/Instrumentation

• Benign use: software copy protection

• Malicious use: malware
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Software Copy Protection

How would you protect your software?
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Example of Copy Protection

Ask a question that only a valid user can answer:

• What is the xth word in page y of the manual?

• What is your serial number that is given at the time you 
purchased?
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Example of Copy Protection (cont’d)

Check if a program is running on a registered device

• IMEI of a smartphone

• IP address, Mac address, user ID, etc.

25



Example of Copy Protection (cont’d)

A phone-based activation

• Only a registered phone number can be used

• You will not share your license (or serial) with many people
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Altering Software?

You can easily bypass all such protections by simply modifying 

the program executables.
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// ...

if ( phone_activation() == SUCCESS )
return VALID_USER;

// ...

Typically one-byte change in binary



Software Cracking

• Remove or disable features
− Copy protection routines

− Advertisement

• Reversing is crucial: no source code for COTS software

This is Illegal!
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PTRACE Recap

Debugee process

ptrace(PTRACE_TRACEME, 0, 0, 0);

execve("/bin/ls", args /* arguments */, 0);
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PTRACE Recap

Debuger process

int status;

waitpid(pid, &status, 0);

while (WIFSTOPPED(status)) {

ptrace(PTRACE_SINGLESTEP, pid, 0, 0);

// Do something

waitpid(pid, &status, 0);

}
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Breakpoints?

• Software breakpoints
− int3 instruction (0xcc) replacement

− Unlimited

• Hardware breakpoints
− DR registers on x86

− Limited to 4 (on x86)
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Software Breakpoint

4004d6: 55 push rbp
4004d7: 48 89 e5 mov rbp,rsp
4004da: b8 00 00 00 00 mov eax,0x0
4004df: 5d pop rbp
4004e0: c3 ret
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Software Breakpoint

4004d6: 55 push rbp
4004d7: 48 89 e5 mov rbp,rsp
4004da: cc int3
4004db: 00 00 add BYTE PTR [rax],al
4004dd: 00 00 add BYTE PTR [rax],al
4004df: 5d pop rbp
4004e0: c3 ret
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1. SIGTRAP at 4004da

2. Replace the byte at 4004da with the original byte (b8)

3. Modify the program counter (EIP/RIP)

4. Resume



Anti-Debugging (1)

if (ptrace(PTRACE_TRACEME, 0, 0, 0) < 0) {
return 1;

}
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Anti-Debugging (2)

/proc/$PPID/status

Check the parent’s name!
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Anti-Debugging (3)

signal(SIGTRAP, handler); // Implicit control flow
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Anti-Debugging (4)

memchr(code, 0xcc, size);
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Debugger without PTRACE?

• Emulator-based debugging

• Instrumentation-based

38



Red Pill and Blue Pill
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Image from https://en.wikipedia.org/wiki/Red_pill_and_blue_pill



Red Pill = Detect Virtualization

• /proc/ide/hd*/model

• dmidecode

• Timing channel

• Etc.
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Static 
Instrumentation
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Binary Rewriting
= Static Binary Instrumentation
Given a binary, statically instrument it in such a way that the 
rewritten binary will run as it is.

42



Why Binary Rewriting is Difficult?

// func1:
0x1100: push rbp
0x1103: mov rbp, rsp
0x1107: sub rsp, 0x50
…

// func2:
0x1200: push rbp
0x1203: mov rbp, rsp
…
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What happens when we add 

instrumentation code here?



Fixing Cross-References is Difficult

• Identifying dynamically computed references is difficult

• Correctly identifying jump tables in is difficult

• Correctly recovering CFG is difficult
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Compiler-Assisted Rewriters

• Assuming the existence of source code

• Or debugging symbols
(like a cheat key for binary analysis)

• Tools: ATOM, Vulcan, Diablo, Pebil, etc.
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Debugging Symbols?

• You can use the “-g” option to produce a binary with full 
symbolic information.

− It is nearly equivalent to having the source code

• Even if you do not use the “-g” option, there still remain partial 
information.

• When you run the “strip” command, then you can completely 
remove debugging symbols.
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Patch-based Rewriters

Fix the layout of the binary. So there’s no need to fix the 
references in the binary.
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But how do you add instrumentation without 

changing the layout of the binary?



Fixing the Layout

// func1:

0x1100: push rbp

0x1103: mov rbp, rsp

0x1107: sub rsp, 0x50 => jmp detour

0x110b:

…

// func2:

0x1200: push rbp

0x1203: mov rbp, rsp

…

detour:

// instrumentation routine starts here.

sub rsp, 0x50

jmp 0x110b

* Detours: Binary interception of win32 functions. USENIX 1999 48

This part is simply appended 

without touching the original 

layout

Many tools: Detour, DynInst, E9Patch, etc.



Any Problem?

// func1:

0x1100: push rbp

0x1103: mov rbp, rsp

0x1107: sub rsp, 0x50 => jmp detour

0x110b:

…

// func2:

0x1200: push rbp

0x1203: mov rbp, rsp

…

detour:

// instrumentation routine starts here.

sub rsp, 0x50

jmp 0x110b
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What if the target instruction is smaller than the jump instruction?



Table-based Rewriters

• Address the applicability of patch-based rewriting methods.

• Create a duplicate copy of a binary, and use an address-
translation table at runtime.

− The table maps an original address to a new address (of the copy)
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Table-based Rewriters (cont’d)

// func1:

0x11100: push rbp

0x11103: mov rbp, rsp

; instrumentation code

...

0x11117: call table_lookup_rax

0x11119: call rax ; 0x11300

…

// func2:

0x11300: push rbp

0x11303: mov rbp, rsp

…
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// func1:
0x1100: push rbp
0x1103: mov rbp, rsp
0x1107: call rax; func2
…

// func2:
0x1200: push rbp
0x1203: mov rbp, rsp
…

1200 -> 11300



What’s the Problem?

• Time overhead

• Space overhead
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Conclusion

• Instrumentation is crucial for monitoring program executions

• Dynamic instrumentation is slow, but can be used in several 
practical scenarios

• Anti-debugging technique tries to hinder dynamic analyses

• Static binary instrumentation is still an on-going research area
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Questions?
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