
Lec 18: Instrumentation
CS492E: Introduction to Software Security

Sang Kil Cha

1

How to Monitor Program Execution?

• Attaching debugger to a running process (e.g., ptrace)
− GDB, LLDB, WinDbg, etc.

− Single stepping: context switching for every single execution

• Instrumentation
− Pin, DynamoRio, Valgrind, etc.

2

Instrumentation?

void somefn()

{

char array[42];

for (int i = 0; i < 42; i++) {

array[i] = i;

}

}

3

Instrumentation?

void somefn()

{

char array[42];

printf(“before loop\n”);

for (int i = 0; i < 42; i++) {

printf(“inner loop\n”);

array[i] = i;

}

}

4

5

S
ta

ti
c

D
y
n

a
m

ic

Source-based Binary-based

Pin (PLDI 2005)

DynamoRio (CGO 2003)

PEBIL (ISPASS 2010)

DynInst (HPCA 2000)

Valgrind (PLDI 2007)

CIL (CC 2002)

LLVM (CGO 2004)
Diablo (ISSPIT 2005)

Dynamic Instrumentation

6

1

2 3

4

Code JIT-compiled Code

1

2 3

4

Dynamic vs. Static Instrumentation

• Dynamic
− High overhead

− Easy to instrument external libraries

− Handles dynamically generated code

• Static
− Fast

− Difficult to instrument external libraries (need to be separately
instrumented)

− Cannot handle dynamically generated code

7

Valgrind

• Developed in 2003 by Nicholas Nethercote
− Valgrind: A Framework for Heavyweight Dynamic Binary

Instrumentation,
PLDI 2007

− How to Shadow Every Byte of Memory Used by a Program,
VEE 2007

• Memcheck tool detects memory errors (only for dynamically
allocated memory objects)

8

Shadow Memory

• Shadow memory stores metadata for each memory cell

• Memcheck uses shadow memory
− A bits: every memory byte is shadowed with a single A bit, which

indicates if the memory byte is accessible or not (e.g., freed memory)

− V bits: every register and memory byte is shadowed with eight V bits,
which indicate if the value bits are initialized.

9

Shadow Memory

10Image taken from How to Shadow Every Byte of Memory Used by a Program, VEE 2007

Address Sanitizer (Asan)

• Static instrumentation version of Memcheck

• AddressSanitizer: A Fast Address Sanity Checker,
USENIX ATC 2012

11

Compact Shadow Memory

• Memcheck: byte-to-byte mapping

• Asan: 8-byte-to-byte mapping

• Key idea: heap memory is always 8-byte aligned

12

9 States for 8-Byte Aligned Memory

13

0

7

6

5

4

3

2

1

-1

Addressable

Unaddressable

Mapping from Real to Shadow
Memory
• Memcheck: address

translation table

• Asan: no table lookup
− Reserve 1/23 memory space

− Shadow = (Addr >> 3) + Offset

14Image taken from AddressSanitizer: A Fast Address Sanity Checker, ATC 2012

Instrumentation: 8-byte Access

// Instrumentation begins

ShadowAddr = (Addr >> 3) + Offset;

if (*ShadowAddr != 0) ReportAndCrash(Addr);

// Instrumentation ends

*Addr = 42; // Original instruction

15

Instrumentation: 1-, 2-, or 4-byte
Access
// Instrumentation begins

ShadowAddr = (Addr >> 3) + Offset;

k = *ShadowAddr;

if (k != 0 && ((Addr & 7) + AccessSize > k))
ReportAndCrash(Addr);

// Instrumentation ends

*Addr = 42; // Original instruction

// Accessing (AccessSize) bytes

16

Instrumenting Stack

void foo() {

char arr[10];

<function body>

}
17

Instrumenting Stack

18

void foo() {

char rz1[32];

char arr[10];

char rz2[32-10+32];

unsigned *shadow = (unsigned*)(((long)rz1>>3)+Offset);

// poison the redzones around arr.

shadow[0] = 0xffffffff; // rz1

shadow[1] = 0xffff0200; // arr and rz2

shadow[2] = 0xffffffff; // rz2

<function body>

// un-poison all.

shadow[0] = shadow[1] = shadow[2] = 0;

}

32-byte aligned redzones

around the stack object

Memory Alloc/Dealloc

• Insert redzones around allocated memory

• Freed page is set to be “red”

• Similar to sparse page mapping
(We will discuss this later again)

19

AddressSanitizer has False Negatives

int *a = new int[2]; // 8-byte aligned

int *u = (int*)((char*)a + 6);

*u = 1; // Access to range [6-9]

20

Anti Debugging

21

Anti- Debugging/Instrumentation

• Benign use: software copy protection

• Malicious use: malware

22

Software Copy Protection

How would you protect your software?

23

Example of Copy Protection

Ask a question that only a valid user can answer:

• What is the xth word in page y of the manual?

• What is your serial number that is given at the time you
purchased?

24

Example of Copy Protection (cont’d)

Check if a program is running on a registered device

• IMEI of a smartphone

• IP address, Mac address, user ID, etc.

25

Example of Copy Protection (cont’d)

A phone-based activation

• Only a registered phone number can be used

• You will not share your license (or serial) with many people

26

Altering Software?

You can easily bypass all such protections by simply modifying

the program executables.

27

// ...

if (phone_activation() == SUCCESS)
return VALID_USER;

// ...

Typically one-byte change in binary

Software Cracking

• Remove or disable features
− Copy protection routines

− Advertisement

• Reversing is crucial: no source code for COTS software

This is Illegal!
28

PTRACE Recap

Debugee process

ptrace(PTRACE_TRACEME, 0, 0, 0);

execve("/bin/ls", args /* arguments */, 0);

29

PTRACE Recap

Debuger process

int status;

waitpid(pid, &status, 0);

while (WIFSTOPPED(status)) {

ptrace(PTRACE_SINGLESTEP, pid, 0, 0);

// Do something

waitpid(pid, &status, 0);

}

30

Breakpoints?

• Software breakpoints
− int3 instruction (0xcc) replacement

− Unlimited

• Hardware breakpoints
− DR registers on x86

− Limited to 4 (on x86)

31

Software Breakpoint

4004d6: 55 push rbp
4004d7: 48 89 e5 mov rbp,rsp
4004da: b8 00 00 00 00 mov eax,0x0
4004df: 5d pop rbp
4004e0: c3 ret

32

BP

Software Breakpoint

4004d6: 55 push rbp
4004d7: 48 89 e5 mov rbp,rsp
4004da: cc int3
4004db: 00 00 add BYTE PTR [rax],al
4004dd: 00 00 add BYTE PTR [rax],al
4004df: 5d pop rbp
4004e0: c3 ret

33

1. SIGTRAP at 4004da

2. Replace the byte at 4004da with the original byte (b8)

3. Modify the program counter (EIP/RIP)

4. Resume

Anti-Debugging (1)

if (ptrace(PTRACE_TRACEME, 0, 0, 0) < 0) {
return 1;

}

34

Anti-Debugging (2)

/proc/$PPID/status

Check the parent’s name!

35

Anti-Debugging (3)

signal(SIGTRAP, handler); // Implicit control flow

36

Anti-Debugging (4)

memchr(code, 0xcc, size);

37

Debugger without PTRACE?

• Emulator-based debugging

• Instrumentation-based

38

Red Pill and Blue Pill

39

Image from https://en.wikipedia.org/wiki/Red_pill_and_blue_pill

Red Pill = Detect Virtualization

• /proc/ide/hd*/model

• dmidecode

• Timing channel

• Etc.

40

Static
Instrumentation

41

Binary Rewriting
= Static Binary Instrumentation
Given a binary, statically instrument it in such a way that the
rewritten binary will run as it is.

42

Why Binary Rewriting is Difficult?

// func1:
0x1100: push rbp
0x1103: mov rbp, rsp
0x1107: sub rsp, 0x50
…

// func2:
0x1200: push rbp
0x1203: mov rbp, rsp
…

43

What happens when we add

instrumentation code here?

Fixing Cross-References is Difficult

• Identifying dynamically computed references is difficult

• Correctly identifying jump tables in is difficult

• Correctly recovering CFG is difficult

44

Compiler-Assisted Rewriters

• Assuming the existence of source code

• Or debugging symbols
(like a cheat key for binary analysis)

• Tools: ATOM, Vulcan, Diablo, Pebil, etc.

45

Debugging Symbols?

• You can use the “-g” option to produce a binary with full
symbolic information.

− It is nearly equivalent to having the source code

• Even if you do not use the “-g” option, there still remain partial
information.

• When you run the “strip” command, then you can completely
remove debugging symbols.

46

Patch-based Rewriters

Fix the layout of the binary. So there’s no need to fix the
references in the binary.

47

But how do you add instrumentation without

changing the layout of the binary?

Fixing the Layout

// func1:

0x1100: push rbp

0x1103: mov rbp, rsp

0x1107: sub rsp, 0x50 => jmp detour

0x110b:

…

// func2:

0x1200: push rbp

0x1203: mov rbp, rsp

…

detour:

// instrumentation routine starts here.

sub rsp, 0x50

jmp 0x110b

* Detours: Binary interception of win32 functions. USENIX 1999 48

This part is simply appended

without touching the original

layout

Many tools: Detour, DynInst, E9Patch, etc.

Any Problem?

// func1:

0x1100: push rbp

0x1103: mov rbp, rsp

0x1107: sub rsp, 0x50 => jmp detour

0x110b:

…

// func2:

0x1200: push rbp

0x1203: mov rbp, rsp

…

detour:

// instrumentation routine starts here.

sub rsp, 0x50

jmp 0x110b

49

What if the target instruction is smaller than the jump instruction?

Table-based Rewriters

• Address the applicability of patch-based rewriting methods.

• Create a duplicate copy of a binary, and use an address-
translation table at runtime.

− The table maps an original address to a new address (of the copy)

50

Table-based Rewriters (cont’d)

// func1:

0x11100: push rbp

0x11103: mov rbp, rsp

; instrumentation code

...

0x11117: call table_lookup_rax

0x11119: call rax ; 0x11300

…

// func2:

0x11300: push rbp

0x11303: mov rbp, rsp

…

51

// func1:
0x1100: push rbp
0x1103: mov rbp, rsp
0x1107: call rax; func2
…

// func2:
0x1200: push rbp
0x1203: mov rbp, rsp
…

1200 -> 11300

What’s the Problem?

• Time overhead

• Space overhead

52

Conclusion

• Instrumentation is crucial for monitoring program executions

• Dynamic instrumentation is slow, but can be used in several
practical scenarios

• Anti-debugging technique tries to hinder dynamic analyses

• Static binary instrumentation is still an on-going research area

53

Questions?

54

