Lec 17: Anti-Malware 2

CS492E: Introduction to Software Security

Sang Kil Cha

Recap
* Polymorphism

« Polymorphic encryption

SOFTWARE ;
SECURITY...

Metamorphic Malware

* No pack/unpack code

« Automatically change the code itself each time it propagates

Metamorphic Malware (cont'd)

Malicious Code

Morphing Code

When propagate

-

Malicious Code’

Morphing Code’

How about ... ?

j..

Original
Code

-

Metamorphic
Engine

~

7

New Code,

7

/ New Code,

1

New Code,

Techniques for Metamorphism

« Add some dead code in random places in the code
» Reallocate registers
* Function reordering

 And many more ...

Dynamic Analysis
« Behavioral analysis

* Run the program/system and observe behavior

Whether it Is polymorphic or metamorphic,
it will show the same behavior

Two Categories of Behavioral Detection

* Heuristic-based or Rule-based: detect malicious behavior
— Remote shell is spawned from a process
— Malware-specific behavior

 Anomaly-based: detect abnormal behavior
— Define what normal (benign) behavior is
- When your system behaves abnormally, raise an alarm

Which one Is better? And why?

Heuristic-based Approach: SNORT

* Observe network behaviors
» Consist of a large collection of rules

Anomaly-based Approach

Try to define normal (or expected) behavior in order to identify
malicious behavior!

Reference: Anomaly Detection: A Survey, CSUR 2009

3 Types of Anomalies

* Point anomalies: defined with an individual data point

« Contextual anomalies: defined in a certain context

e Collective anomalies: defined with a collection of related data

Point Anomalies

If an individual data instance can be considered as anomalous
with respect to the rest of data, then the instance Is termed as a
point anomaly.

From Anomaly Detection: A Survey, CSUR 2009

SOFT

12
SEC

Example: Credit Card Fraud Detection

Customer X typically spends 1,000 won ~ 100,000 won per
transaction.

A transaction for which the amount spent is 10,000,000 won is
anomalous.

Contextual Anomalies

If a data instance is anomalous in a specific context (but not
otherwise), then it is termed as a contextual anomaly.

a.k.a. conditional anomalies

From Anomaly Detection: A Survey, CSUR 2009

SOFT
SEC 14

Example: Temperature

30 °C in winter of Daejeon is abnormal

Example: Credit Card Fraud Detection

Customer X typically spends 100,000 won per week.

Weekly bill of 1,000,000 won during Chuseok holiday is normal.

Collective Anomalies

If a collection of related data instances is anomalous with respect
to the entire data set, it is termed as a collective anomaly.

From Anomaly Detection: A Survey, CSUR 2009

SOFT

17
SEC

Example: Money Transfer

A transfers 100,000 won to X: norma
B transfers 100,000 won to X: norma
C transfers 100,000 won to X: norma
D transfers 100,000 won to X: nhorma Abnormal

Y transfers 100,000 won to X: normal
Z transfers 100,000 won to X: normal

Behavioral IDS

Collective anomaly detection for HIDS

A sense of self for UNIX processes, IEEE S&P 1996

Natural Immune System

FACTOrS OF aN UNHEALTHY IMMUNG SYSIEM Can we build a malware detection
& system that is as good as natural
’ Immune system?

e
WO INCTE3Sg YOUr IMMUNITY

Definition of Self

 Collect a sequence of system calls for normally operating
programs

 Build a profile of normal behavior based on the sequence

 When we observe discrepancies, we treat them as anomalies

Building a Pairwise Profile

« Sliding window of size 4
* Normal execution example:
open-read-mmap-mmap-open-getrlimit-mmap-close

call position 1 | position 2 | position 3

open read, mimap mmap,
getrlimit close

read mimap mmap open

mMmap mmap, open, getrlimit,
open, getrlimit | mmap
close

getrlimit | mmap close

close

Detecting Anomaly

e Sliding window of size 4
« Abnormal execution example:
open-read-mmap-open-open-getrlimit-mmap-close

In total 4 mismatch outof 18 (3 x5+ 2 + 1)
possible pairwise mismatches = 22% miss rate

If the miss rate I1s above a certain threshold, we
say the system is abnormal

Obtaining Execution Profile?

e Ptrace

 Attaching debugger to a running process
- GDB, LLDB, WinDbg, etc.
— Single stepping: context switching for every single execution

* [nstrumentation
- Pin, DynamoRio, Valgrind, etc.

Defeating Behavior-based Detection

Mimic normal system call sequences!

Mimicry Attacks on Host-based Intrusion Detection Systems,
CCS 2002

More Fundamental Question

* How can we trick dynamic analysis?

* How can we hide execution behavior of a program?

Platform-
Independent
Programs

Common Assumption

A single executable program runs only on a specific platform.

F' | Firefox compiled for x86

N

£ el
'"?;\side

Common Assumption (cont'd)

A single executable program runs only on a specific platform.

F' | Firefox compiled for macOS (x86)

A program can r n one platform

Automatically generate single
binary string that is valid
on multiple platforms

A Platform is ...

* |SA (Instruction Set Architecture)
- ARM, MIPS, Intel

* OS (Operating System)
- Linux, macOS, Windows

Platform-Independent Program (PIP)

"C|

mslde

Mac

Desired Behavior Desired Behavior

SOFT

So, Why PIP?

Cool, new paradigm!

Programmer’s Perspective

Advanced Install Options & Other
Platforms

J Windows 64-bit 4 Linux 64-bit
J Windows 32-bit J Linux 32-bit
Jy macOS

GETITON # Download on the
» Google Play ¢ App Store

Attacker’s Perspective

 Platform-independent exploit (shellcode)

 Platform-independent malware

Execution-based Steganography

Hide runtime behavior of the program!

Intuition: False Friends
Of

fyal
Hey you!

Y an \
@,

Greek Korean

Intuition: False Friends

@,
" N *\ 'I',"
English Korean

e —

Instruction Overlap

L 4

rfel

ih’

ide

DUS
DUS
DUS

DU S

D D B e)

esl
esi
esi
esi

56565656,

MIS

TECHNOLOGIES

bnel $ri18,%$r22,0x1595c

Basic Construction: Finding Overlaps
between Jump Instructions

eb0200ea .. x86 Logic ARM Logic

ARM

Challenges

« Automatically constructing PIPs

 Turing-complete language
- PIP meta-language for generating PIPs

Single PIP Header

PIP

Separately compiled binary

eb0200ea .. x86 Logic ARM Logic

How many Size may differ
headers possible?

Over billions of PIP Headers Possible!

 For x86, ARM, and MIPS

* Various jump offsets

But, each binary string should be compiled separately!

Turing-Complete PIP?

« Construct platform-independent instructions
— A platform-independent gadget is a platform-independent instruction

 Splice platform-independent instructions using jump instructions

Turing-Complete Language with
Platform-Independent Gadgets

A platform-independent Instruction

-

Header x86 Logic ARM Logic Header

[V

x86 Logic ARM Logic

1\ A

add eax, ebx

add roe,ro,rl

Finding Gadget Headers

« Headers must be side-effect free

* For all platforms, a gadget header is decoded for each platform as in
a form of

(nop*)(branch)(.*)

« Example: eb0200ea,,
- ARM: b ©xbb4
— X86: jmp Ox4

« > Dillions of 12-byte overlaps for x86,ARM,MIPS

PIP Allows Different Logic
for Each Platform

Desired Behavior A Desired Behavior B

SOFT

Execution-based
Steganography

Classic Steganography

Shared-secret: Vocabulary

DA< et

N g

pme——

0o (&

Warden

Alice says hello to Bob

Execution-based Steganograph

Secret X
(Running on MIPS)

Secret X
(Running on MIPS)

Shared-secret: Platform

Alice sends
a firefox binary

G (")
0o &
Warden Dynamic analysis on x86

50

Other Results

« 8 platform-independent shellcode (x86, ARM, and MIPS)
— Confirmed with 2 real-world exploits

 Platform-independent malware
— A virus that spreads over NFS

 Platform-independent shellcode for OSes
- FreeBSD, Linux, and Mac OS X

Platform-Independent Programs, CCS 2010

e —

Discussion

7f 45 4c 46 01 01 01 90 ©O 00 00 00 00 00 00 @@ |.ELF............ |
02 06@0 1 00 00 00 54 80 04 08 34 00 00 00 |........ T...4...|

1-byte field representing architecture

* Some OS rejects a program If the file format of the program contains
wrong architecture information.

— Some executable file format does not include architecture information (e.g.,
COFF).

* Architecture checks are important against PIP, even though they
were likely not intended as a security measure.

— Embedded archs, emulators may all be vulnerable to PIP attacks

X86 vs. x86-64

15-byte code: \x31\xc9\x41\xe2\x08\x90 ...

X86 X86-64
XOr ecx,ecx
inc ecx XOr ecx,ecx
1oop @xd loop ©xd
nop

nop

Conclusion

« Metamorphism: harder to break than polymorphism
« Dynamic analysis (behavior-based analysis) for the rescue?

« Mimicry attack

« Execution-based steganography (with PIP)

Questions?

