
Lec 17: Anti-Malware 2
CS492E: Introduction to Software Security

Sang Kil Cha

1

Recap

• Polymorphism

• Polymorphic encryption

2

Metamorphic Malware

• No pack/unpack code

• Automatically change the code itself each time it propagates

3

Metamorphic Malware (cont’d)

4

Malicious Code

Morphing Code

When propagate
Malicious Code’

Morphing Code’

How about … ?

5

Original

Code

Metamorphic

Engine

New Code1

New Code2

New Coden

…

Techniques for Metamorphism

• Add some dead code in random places in the code

• Reallocate registers

• Function reordering

• And many more …

6

Dynamic Analysis

• Behavioral analysis

• Run the program/system and observe behavior

7

Whether it is polymorphic or metamorphic,

it will show the same behavior

Two Categories of Behavioral Detection

• Heuristic-based or Rule-based: detect malicious behavior
− Remote shell is spawned from a process

− Malware-specific behavior

• Anomaly-based: detect abnormal behavior
− Define what normal (benign) behavior is

− When your system behaves abnormally, raise an alarm

8

Which one is better? And why?

Heuristic-based Approach: SNORT

• Observe network behaviors

• Consist of a large collection of rules

9

Anomaly-based Approach

Try to define normal (or expected) behavior in order to identify

malicious behavior!

Reference: Anomaly Detection: A Survey, CSUR 2009

10

3 Types of Anomalies

• Point anomalies: defined with an individual data point

• Contextual anomalies: defined in a certain context

• Collective anomalies: defined with a collection of related data

11

Point Anomalies

If an individual data instance can be considered as anomalous

with respect to the rest of data, then the instance is termed as a

point anomaly.

From Anomaly Detection: A Survey, CSUR 2009

12

Example: Credit Card Fraud Detection

Customer X typically spends 1,000 won ~ 100,000 won per

transaction.

A transaction for which the amount spent is 10,000,000 won is

anomalous.

13

Contextual Anomalies

If a data instance is anomalous in a specific context (but not

otherwise), then it is termed as a contextual anomaly.

a.k.a. conditional anomalies

From Anomaly Detection: A Survey, CSUR 2009

14

Example: Temperature

30 °C in winter of Daejeon is abnormal

15

Example: Credit Card Fraud Detection

Customer X typically spends 100,000 won per week.

Weekly bill of 1,000,000 won during Chuseok holiday is normal.

16

Collective Anomalies

If a collection of related data instances is anomalous with respect

to the entire data set, it is termed as a collective anomaly.

From Anomaly Detection: A Survey, CSUR 2009

17

Example: Money Transfer

A transfers 100,000 won to X: normal

B transfers 100,000 won to X: normal

C transfers 100,000 won to X: normal

D transfers 100,000 won to X: normal

…

Y transfers 100,000 won to X: normal

Z transfers 100,000 won to X: normal

18

Abnormal

Behavioral IDS

Collective anomaly detection for HIDS

A sense of self for UNIX processes, IEEE S&P 1996

19

Natural Immune System

20Image taken from http://thehealingfrequency.com/how-to-build-up-your-immune-system-naturally/

Can we build a malware detection

system that is as good as natural

immune system?

Definition of Self

• Collect a sequence of system calls for normally operating
programs

• Build a profile of normal behavior based on the sequence

• When we observe discrepancies, we treat them as anomalies

21

Building a Pairwise Profile

• Sliding window of size 4

• Normal execution example:

open–read–mmap–mmap–open–getrlimit–mmap–close

22
Image from A sense of self for UNIX processes, IEEE S&P 1996

Detecting Anomaly

• Sliding window of size 4

• Abnormal execution example:

open–read–mmap–open–open–getrlimit–mmap–close

23

In total 4 mismatch out of 18 (3 x 5 + 2 + 1)

possible pairwise mismatches = 22% miss rate

If the miss rate is above a certain threshold, we

say the system is abnormal

Obtaining Execution Profile?

• Ptrace

• Attaching debugger to a running process
− GDB, LLDB, WinDbg, etc.

− Single stepping: context switching for every single execution

• Instrumentation
− Pin, DynamoRio, Valgrind, etc.

24

Defeating Behavior-based Detection

Mimic normal system call sequences!

Mimicry Attacks on Host-based Intrusion Detection Systems,

CCS 2002

25

More Fundamental Question

• How can we trick dynamic analysis?

• How can we hide execution behavior of a program?

26

Platform-
Independent
Programs

27Platform-Independent Programs, CCS 2010

Common Assumption

A single executable program runs only on a specific platform.

28

Firefox compiled for x86

Crash

Common Assumption (cont’d)

A single executable program runs only on a specific platform.

29

Firefox compiled for macOS (x86)

Windows

Crash

A program can run only on one platform

30

Automatically generate single

binary string that is valid

on multiple platforms

A Platform is …

• ISA (Instruction Set Architecture)
− ARM, MIPS, Intel

• OS (Operating System)
− Linux, macOS, Windows

31

Platform-Independent Program (PIP)

32

Windows

Desired Behavior Desired Behavior

So, Why PIP?

Cool, new paradigm!

33

Programmer’s Perspective

34

Attacker’s Perspective

• Platform-independent exploit (shellcode)

• Platform-independent malware

35

Execution-based Steganography

Hide runtime behavior of the program!

36

Intuition: False Friends

37

Γεια

/ya/
Hi

야
/ya/

Hey you!

Greek Korean

Intuition: False Friends

38

What’s up? 왔어?

English Korean

Instruction Overlap

39

5656565616

push esi

push esi

push esi

push esi
bnel $r18,$r22,0x1595c

Basic Construction: Finding Overlaps
between Jump Instructions

40

eb0200ea16 … x86 Logic ARM Logic

ARM b 0xbb4

x86 jmp 0x4

Challenges

• Automatically constructing PIPs

• Turing-complete language
− PIP meta-language for generating PIPs

41

Single PIP Header

42

eb0200ea16 … x86 Logic ARM Logic

Separately compiled binary

PIP

Size may differHow many

headers possible?

Over billions of PIP Headers Possible!

• For x86, ARM, and MIPS

• Various jump offsets

43

But, each binary string should be compiled separately!

Turing-Complete PIP?

• Construct platform-independent instructions
− A platform-independent gadget is a platform-independent instruction

• Splice platform-independent instructions using jump instructions

44

Turing-Complete Language with
Platform-Independent Gadgets

45

Header x86 Logic ARM Logic Header x86 Logic ARM Logic

add eax, ebx

add r0,r0,r1

A platform-independent Instruction

Finding Gadget Headers

• Headers must be side-effect free

• For all platforms, a gadget header is decoded for each platform as in
a form of

(nop*)(branch)(.*)

• Example: eb0200ea16
− ARM: b 0xbb4
− x86: jmp 0x4

• ≫ billions of 12-byte overlaps for x86,ARM,MIPS

46

PIP Allows Different Logic
for Each Platform

47

Windows

Desired Behavior A Desired Behavior B

Execution-based
Steganography

48

Classic Steganography

49

Alice Bob

Warden

Hello!

Alice says hello to Bob

Secret X Secret X

Shared-secret: Vocabulary

Execution-based Steganography

50

Alice Bob

Warden

Alice sends

a firefox binary

Secret X

(Running on MIPS)

Secret X

(Running on MIPS)

Shared-secret: Platform

Dynamic analysis on x86

Other Results

• 8 platform-independent shellcode (x86, ARM, and MIPS)
− Confirmed with 2 real-world exploits

• Platform-independent malware
− A virus that spreads over NFS

• Platform-independent shellcode for OSes
− FreeBSD, Linux, and Mac OS X

Platform-Independent Programs, CCS 2010 51

Discussion

• Some OS rejects a program if the file format of the program contains
wrong architecture information.

− Some executable file format does not include architecture information (e.g.,
COFF).

• Architecture checks are important against PIP, even though they
were likely not intended as a security measure.

− Embedded archs, emulators may all be vulnerable to PIP attacks

52

7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00 |.ELF............|
02 00 03 00 01 00 00 00 54 80 04 08 34 00 00 00 |........T...4...|

…

1-byte field representing architecture

x86 vs. x86-64

15-byte code: \x31\xc9\x41\xe2\x08\x90 ...

53

xor ecx,ecx
inc ecx
loop 0xd
nop
…

xor ecx,ecx
loop 0xd
nop
…

x86 x86-64

Conclusion

• Metamorphism: harder to break than polymorphism

• Dynamic analysis (behavior-based analysis) for the rescue?

• Mimicry attack

• Execution-based steganography (with PIP)

54

Questions?

55

