Lec 16: Anti-Malware

CS492E: Introduction to Software Security

Sang Kil Cha

Anti-Malware or Anti-Virus (AV)

We will interchangeably use the terms.

Terminology

- Virus
- Worm
- Trojan
- Rootkit
- Spyware
- Bots
- Backdoor
- Adware
- Ransomware
- Etc.

AV (Anti-Virus)

Cohen's Question

Given an arbitrary program, can we design a Turing machine that determines whether the program is malicious or not?

No, this is an undecidable problem!

Informal Proof

Define a function *isVirus* that takes a program as input, and outputs true if the program is a virus or false otherwise. Let's assume that this function exists:

def isVirus(prog):

... # somehow test prog and returns true or false

Informal Proof (cont'd)

Define a function *myVirus*:

def myVirus(): # consider myVirus as a program
 if isVirus(myVirus):
 return # do nothing
 else:
 infectOtherPrograms()
 destroyUserData()
 return
 Self contradictory

Cohen's Conclusion

- Precise virus detection is not decidable.
- Virus removal (AV) is not always guaranteed because it is dependent on virus detection.

Simplest Malware Detection

- Compute hashes of malware samples
- Compute hashes for target files and find ones that match with one of the malware hashes (a.k.a. signatures)

Easy to Bypass

- Add a dummy (dead) code
- Reorder instructions
- Replace instructions with semantically equivalent ones

Hash-based detection is still used in AV, why?

Pattern Matching (RegExp)

closeDoc{-35}setTimeOut{-30}addAnnot...

A ClamAV signature for CVE-2016-0931 (Adobe Acrobat PDF exploit)

Defeating Pattern-based Detection

Signature: (\xb0\x0b)(.*)(\xcd\x80)

mov al, 0xb
int 0x80
Bypassing signature-based detection is so easy!
mov al, 0xa
inc al
int 0x80

Change the form of malware when it propagates in order to *bypass pattern matching*

Changing the Form?

Malicious use:

Bypass malicious code detection (≈ Intrusion detection)

• Benign use: Software protection (make reverse engineering difficult)

Polymorphism Example

	Decryption Routine
	Jmp to XYZ
XYZ	Encrypted Code

Polymorphism Example

XYZ is often called **OEP** (Original Entry Point)

We can produce millions of distinct binaries (with the same semantics) by just changing the encryption key

Self-Modifying Code

- Code that alters its own instructions while it is running
- W ^ X (Write xor eXecute) policy of modern OS?

Polymorphism Example

Decryption Routine	Decryption Routine	Decryption Routine
Jmp to XYZ	Jmp to XYZ	Jmp to XYZ
Encrypted Code 1	Encrypted Code 2	Encrypted Code 3

Checking Decryption Routine

Possible to Create Signatures

Next Question: Can we also make the decryption routine polymorphic?

Polymorphic Encryption

Make the encryption/decryption routine unique!

Polymorphic Encryption (cont'd)

Polymorphic Encryption Example

```
for ( int i = 0; i < codeLen / 4; i++ ) {</pre>
  v = in[i]; // for every 4-byte value of the orig code
  key[i] = random_int(); // random 4-byte int
  op[i] = random op(); // random operation
  switch ( op[i] ) {
  case ADD: v += key[i]; break;
  case SUB: v -= key[i]; break;
  case XOR: v ^= key[i]; break;
  ... // omitted
  out[i] = v; // store the encrypted code
```

Polymorphic Decryption Example

```
for ( int i = 0; i < codeLen / 4; i++ ) {</pre>
  v = in[i]; // for every 4-byte of the encrypted code
  k = key[i];
  switch ( op[i] ) {
  case ADD: v -= k; break;
  case SUB: v += k; break;
  case XOR: v ^= k; break;
  . . .
  out[i] = v; // store the decrypted code
// The encrypted code can be located here (self-modifying)
```

Can We Still Write Signatures?

- Signature database will easily blow up
- Simple static pattern matching does not help anymore

Any issues in polymorphic encryption?

In-Memory Detection

- The same original code will be eventually unpacked to memory at some point
- Memory-based scanning still works! (no more static detection)
- Generic unpacking technique exists

Performance vs. Security

- Performance really matters
- Signature-based detection is still largely popular

Fun Fact

- Signature-based detection is fast
- But it gets slower as we add more signatures

Figure 1: Total known malware

Motivation

Can we make signature-based scanning fast and more scalable?

SplitScreen: Enabling Efficient, Distributed Malware Detection, **NSDI 2010**

Opportunity: Fewer Signatures Matched

SECURI

Traditional Signature-based AV

SplitScreen Architecture

FFBF: Feed-Forward Bloom Filter

- A modified Bloom filter
- Quick matching with one-sided error
 - False positives possible
 - False negatives not possible

Traditional Bloom Filter

Traditional Bloom Filter

Feed-Forward Bloom Filter

Feed-Forward Bloom Filter

Feed-Forward Bloom Filter

Pattern Filtering

SplitScreen Recap

Frequency-based Signature Fragment Selection

 Choose signature fragment based-upon frequency when initialize FFBF. (Choose a fragment of the *least* frequency)

Thoughput (1.6 GB Clean Files)

Better Cache Performance

Less Memory

Signature Distribution Cost?

As the signature database gets larger, distributing it also becomes expensive!

SplitScreen allows on-demand signature distribution

On-Demand Signature Distribution

On-Demand Signature Distribution

Lower Signature Distribution Cost

Conclusion

- Perfect AV is not feasible
- Infinite war between malware authors and defenders
 - Hash-based detection
 - Signature-based detection
 - Polymorphic malware
 - Polymorphic encryption
- Signature-based detection is still critical, and SplitScreen enables efficient and distributed malware detection

Questions?

