
Lec 16: Anti-Malware
CS492E: Introduction to Software Security

Sang Kil Cha

1

Anti-Malware or Anti-Virus (AV)

We will interchangeably use the terms.

2

Terminology

• Virus

• Worm

• Trojan

• Rootkit

• Spyware

• Bots

• Backdoor

• Adware

• Ransomware

• Etc.

3

AV (Anti-Virus)

4

Cohen’s Question

Given an arbitrary program, can we design a Turing machine that
determines whether the program is malicious or not?

5

No, this is an undecidable problem!

Informal Proof

Define a function isVirus that takes a program as input, and
outputs true if the program is a virus or false otherwise. Let’s
assume that this function exists:

def isVirus(prog):

… # somehow test prog and returns true or false

6

Informal Proof (cont’d)

Define a function myVirus:

def myVirus(): # consider myVirus as a program

if isVirus(myVirus):

return # do nothing

else:

infectOtherPrograms()

destroyUserData()

return

7

Self contradictory

Cohen’s Conclusion

• Precise virus detection is not decidable.

• Virus removal (AV) is not always guaranteed because it is
dependent on virus detection.

8

Simplest Malware Detection

• Compute hashes of malware samples

• Compute hashes for target files and find ones that match with
one of the malware hashes (a.k.a. signatures)

9

What’s wrong?

Easy to Bypass

• Add a dummy (dead) code

• Reorder instructions

• Replace instructions with semantically equivalent ones

10

Hash-based detection is still used in AV, why?

Pattern Matching (RegExp)

closeDoc{-35}setTimeOut{-30}addAnnot...

11

A ClamAV signature for CVE-2016-0931

(Adobe Acrobat PDF exploit)

Defeating Pattern-based Detection

Signature: (\xb0\x0b)(.*)(\xcd\x80)

mov al, 0xb

int 0x80

mov al, 0xa

inc al

int 0x80

12

Bypassing signature-based detection is so easy!

Polymorphism

Change the form of malware when it propagates in order to
bypass pattern matching

13

Changing the Form?

• Malicious use:
Bypass malicious code detection (≈ Intrusion detection)

• Benign use:
Software protection (make reverse engineering difficult)

14

Polymorphism Example

15

Decryption Routine

Encrypted Code

Jmp to XYZ

XYZ

XYZ

Polymorphism Example

16

Decryption Routine

Original Code

Jmp to XYZ

We can produce millions of distinct

binaries (with the same semantics)

by just changing the encryption key

XYZ is often called OEP

(Original Entry Point)

Self-Modifying Code

• Code that alters its own instructions while it is running

• W ^ X (Write xor eXecute) policy of modern OS?

17

Polymorphism Example

18

Decryption Routine

Encrypted Code 1

Jmp to XYZ

Decryption Routine

Encrypted Code 2

Jmp to XYZ

Decryption Routine

Encrypted Code 3

Jmp to XYZ

Checking Decryption Routine

19

Decryption Routine

Encrypted Code 1

Jmp to XYZ

Decryption Routine

Encrypted Code 2

Jmp to XYZ

Decryption Routine

Encrypted Code 3

Jmp to XYZ

Possible to Create Signatures

20

Decryption Routine Decryption Routine Decryption Routine

See https://github.com/Yara-Rules/rules/tree/master/PackersNext Question:

Can we also make the decryption routine polymorphic?

Polymorphic Encryption

Make the encryption/decryption routine unique!

21

Polymorphic Encryption (cont’d)

22

Original

Code

Polymorphic

Encryption

Engine

Decryption Routine1

Encrypted code1

Decryption Routine2

Encrypted code2

…

Polymorphic Encryption Example

for (int i = 0; i < codeLen / 4; i++) {
v = in[i]; // for every 4-byte value of the orig code
key[i] = random_int(); // random 4-byte int
op[i] = random_op(); // random operation
switch (op[i]) {
case ADD: v += key[i]; break;
case SUB: v -= key[i]; break;
case XOR: v ^= key[i]; break;
... // omitted
}
out[i] = v; // store the encrypted code

}

23

Polymorphic Decryption Example

for (int i = 0; i < codeLen / 4; i++) {
v = in[i]; // for every 4-byte of the encrypted code
k = key[i];
switch (op[i]) {
case ADD: v -= k; break;
case SUB: v += k; break;
case XOR: v ^= k; break;
...
}
out[i] = v; // store the decrypted code

}
// The encrypted code can be located here (self-modifying)

24

Can We Still Write Signatures?

• Signature database will easily blow up

• Simple static pattern matching does not help anymore

25

Any issues in polymorphic encryption?

In-Memory Detection

• The same original code will be eventually unpacked to memory
at some point

• Memory-based scanning still works! (no more static detection)

• Generic unpacking technique exists

26

Performance vs. Security

• Performance really matters

• Signature-based detection is still largely popular

27

Fun Fact

• Signature-based detection is fast

• But it gets slower as we add more signatures

28

29

More # of malicious apps

 More # of signatures

 More memory

 Poor cache performance

 Slow!

Motivation

Can we make signature-based scanning fast and more scalable?

SplitScreen: Enabling Efficient, Distributed Malware Detection,
NSDI 2010

30

Opportunity: Fewer Signatures
Matched

31

4 month study of CMU email malware
< 1% of signatures used by ClamAV for all

malware

Traditional Signature-based AV

32

Files

All

Malware

Sigs Exact

Signature

Matching

Malware or not?

Many

Bits

Poor

Locality

SplitScreen Architecture

33

Files

All

Malware

Sigs

FFBF Malware or not?

Good

Locality

Identified

Sigs

Exact

Signature

Matching

Suspect

Files

Good

Locality

Few

Bits

FFBF: Feed-Forward Bloom Filter

• A modified Bloom filter

• Quick matching with one-sided error
− False positives possible

− False negatives not possible

34

Traditional Bloom Filter

35

Patterns (signatures)

940f047591

90ac0c9aff 0

Bit Vector

0 0 0 0 0 0 0 0 0 0 01 11
Hash Functions

1 1

…

Traditional Bloom Filter

36

Patterns (signatures)

940f047591

90ac0c9aff 0

Bit Vector

0 0 0 0 0 0 0 0 0 0 01 111 1

Target File ...d9d0940f047591c320...

Rolling Hash

Found Suspect

…

Feed-Forward Bloom Filter

37

Patterns (signatures)

940f047591

90ac0c9aff 0

Bit Vector

0 0 0 0 0 0 0 0 0 0 01 11
Hash Functions

1 1

…

Feed-Forward Bloom Filter

38

Patterns (signatures)

940f047591

90ac0c9aff 0

Bit Vector

0 0 0 0 0 0 0 0 0 0 01 111 1

Target File ...d9d0940f047591c320...

Rolling Hash

Found Suspect

…

Feed-Forward Bloom Filter

39

Patterns (signatures)

940f047591

90ac0c9aff

Bit Vector

0 0 0 0 0 0 0 0 0 0 0 01 111 1

Target File ...d9d0940f047591c320...

Rolling Hash

… 0 0 0 0 0 0 0 0 0 0 0 01 10

All-patterns

bitvector

Matched-patterns

bitvector

Pattern Filtering

40

Patterns (signatures)

940f047591

90ac0c9aff

Target File ...d9d0940f047591c320...

Rolling Hash

… 0 0 0 0 0 0 0 0 0 0 0 01 10

Matched-patterns

bitvector

SplitScreen Recap

41

Files

All

Malware

Sigs

FFBF Malware or not?

Good

Locality

Identified

Sigs

Exact

Signature

Matching

Suspect

Files

Good

Locality

Few

Bits

Frequency-based
Signature Fragment Selection
• Choose signature fragment based-upon frequency when

initialize FFBF. (Choose a fragment of the least frequency)

• Example

2e6868636c69636b28293b{-5}73657474696d656f75742822

42

Frequency 10

Frequency 20

Frequency 0

(Choose this)

Thoughput (1.6 GB Clean Files)

43

Better Cache Performance

44

Less Memory

45

Signature Distribution Cost?

As the signature database gets larger, distributing it also
becomes expensive!

46

SplitScreen allows

on-demand signature distribution

On-Demand Signature Distribution

47

Files

All

Malware

Sigs

FFBF Malware or not?

Identified

Sigs

Exact

Signature

Matching

Suspect

Files

On-Demand Signature Distribution

48

Files

All

Malware

Sigs

Client

Server

All-patterns Bit Vector

Matched-patterns Bit Vector

Suspect

Files

Identified

Sigs

Malware or not?

Exact

Signature

Matching

Lower Signature Distribution Cost

49

10x less server

bandwidth

Conclusion

• Perfect AV is not feasible

• Infinite war between malware authors and defenders
− Hash-based detection
− Signature-based detection
− Polymorphic malware
− Polymorphic encryption

• Signature-based detection is still critical, and SplitScreen
enables efficient and distributed malware detection

50

Questions?

51

