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Defense Techniques So Far …

• DEP

• ASLR

• Canary
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Problem: control-flow hijacking still possible



Control Flow Hijack Exploit
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Attacker’s own code

e.g., install malicious software



Can we enforce 
control-flow 
integrity?
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CFI Policy

The CFI security policy dictates that software execution 
must follow a path of a Control-Flow Graph (CFG) 
determined ahead of time.
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Quote from control flow integrity, CCS 2005



CFG (Control Flow Graph)

A CFG is a graph that represents all paths that might be 
traversed through a program execution.
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CFG (Control Flow Graph)

Each node in a CFG represents a basic block
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Basic Block:

A sequence of statements 

that is always entered at 

the beginning and exited at 

the end*

* Quote from Modern Compiler Implementation



Basic Block

0:   55                      push   ebp

1:   89 e5                   mov ebp,esp

3:   83 ec 10                sub    esp,0x10

6:   c7 45 f8 00 00 00 00    mov DWORD PTR [ebp-0x8],0x0

d:   c7 45 fc 0a 00 00 00    mov DWORD PTR [ebp-0x4],0xa

14:   eb 08                   jmp 1e <v+0x1e>

16:   83 45 f8 01             add    DWORD PTR [ebp-0x8],0x1

1a:   83 6d fc 01             sub    DWORD PTR [ebp-0x4],0x1

1e:   83 7d fc 00             cmp DWORD PTR [ebp-0x4],0x0

22:   7f f2                   jg 16 <v+0x16>

24:   8b 45 f8                mov eax,DWORD PTR [ebp-0x8]

27:   c9                      leave

28:   c3                      ret
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CFI = Any Execution Should Follow 
Control Paths of This CFG
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CFI Assumptions

• Attackers cannot execute data (DEP is enabled)

• Programs cannot change themselves (no self-modifying code)
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How to Enforce CFI?

• Give unique IDs at destinations

• For all branch instructions, check destination IDs before taking 
the branch
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How to Instrument?
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Image from control flow integrity, CCS 2005



CFI Challenge
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What if a single branch instruction can jump 

to multiple addresses? (e.g., call eax)



Example
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Image from control flow integrity, CCS 2005



Example
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Image from control flow integrity, CCS 2005

Can you spot labeling problems?



Problem: What if D returns to A?
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Potential Solutions
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• Multiple tags

• Shadow call stack

What’s the problem?



Another Problem
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Context insensitive!



Shadow Call Stack

• In function prologues, store the return address in another area 
of memory

• In function epilogues, check if we are returning to the proper 
address

A Binary Rewriting Defense against Stack based Buffer Overflow 
Attacks, USENIX ATC 2003
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CFI with Shadow Call Stack
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Why not just use a ret instruction?

Image from control flow integrity, CCS 2005



Time of Check to Time of Use

if (access("file", W_OK) != 0) {

exit(1); // exit if not writable

}

fd = open("file", O_WRONLY);

write(fd, buffer, sizeof(buffer));
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TOC

TOU

Attacker can 

manipulate the file 

system

Example taken from Wikipedia (https://en.wikipedia.org/wiki/Time_of_check_to_time_of_use)



TOCTTOU
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Image from control flow integrity, CCS 2005

TOCTTOU can happen 

here if ret is used



Runtime Overhead
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Image from control flow integrity, CCS 2005



CFI Practical Implication?

• CFI on binary code is difficult
− Subtlety of Vulcan

• CFI is slow
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CFI on Binary: Legacy Code

• CFG reconstruction from binary is difficult

• Indirect jumps?
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CFI on Binary: Bypassing CFI

• Dynamically generated code
− Self modifying code (e.g., packing)

− JIT compiled code

• CFI is not perfect anyways
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CFI Practicality: Coarse-Grained CFI

• Practical Control Flow Integrity and Randomization for Binary 
Executables, Oakland 2013

• Control Flow Integrity for COTS binaries, USENIX Security 
2013

• Transparent ROP Exploit Mitigation Using Indirect Branch 
Tracing, USENIX Security 2013

• ROPecker: A Generic and Practical Approach for Defending 
against ROP attacks, NDSS 2014
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CFI Practicality: Coarse-Grained CFI

• Practical Control Flow Integrity and Randomization for Binary 
Executables, Oakland 2013

• Control Flow Integrity for COTS binaries, USENIX Security 
2013

• Transparent ROP Exploit Mitigation Using Indirect Branch 
Tracing, USENIX Security 2013

• ROPecker: A Generic and Practical Approach for Defending 
against ROP attacks, NDSS 2014
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• Reduce the # of labels to check

(e.g., checks if a function returns to a call-

preceded instruction)

• Employ behavioral heuristics to quickly 

check integrity (e.g., detect gadget-like 

sequences)



Attacking Coarse-Grained CFI

• Stitching the Gadgets: On the Ineffectiveness of Coarse-
Grained Control-Flow Integrity Protection, USENIX Security 
2014

• Size Does Matter: Why Using Gadget-Chain Length to Prevent 
Code-Reuse Attacks is Hard, USENIX Security 2014

• Out of Control: Overcoming Control-Flow Integrity, Oakland 
2014
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CFI is Now in Major Compilers

Enforcing Forward-Edge Control-Flow Integrity in GCC & LLVM, 
USENIX Security 2014
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Protect forward edges with

VTV (VTable Verification)

IFCC (Indirect Function Call Checker)

FSAN (Indirect Function Call Sanitizer)



Performance vs. Security

Still not solved 
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Implication of Shadow Call Stack

What if we have a perfect CFI, but without shadow call stack?
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We can return to some functions

that are not in the CFG



CFI Without Shadow Call Stack

• ROP may be possible, but not easy

• Return-into-libc is much easier though
− system calls memcpy
− If a vulnerable function can call memcpy, then we can jump back to 

system (with a dispatcher function)

Control-Flow Bending: On the Effectiveness of Control-Flow 
Integrity, USENIX Security 2015
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Dispatcher Function

A function that can overwrite its own return address when given 
arguments supplied by an attacker.

Any function that has a “write-what-where” primitive

E.g. memcpy, printf, fputs, etc.
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memcpy

memcpy(dst, src, 8);
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Return address

Current Frame

memcpyWe can jump to any caller of 
memcpy



Eval: CFI Without Shadow Call Stack

• Anaylzed 6 apps.

• Successfully exploited 5 apps. assuming fully precise static CFI
without shadow call stack
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What about Fully Precise CFI?

• We now assume we use shadow call stack

• We cannot use dispatcher functions any more

• Are we secure now?
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Printf-Oriented Programming

• A single call to printf allows an attacker to perform Turing-
complete computation!

• Assume we can fully control the arguments to printf

• Can bypass fully precise CFI
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Printf-Oriented Programming

• Memory read: %s

• Memory write: %n

• Conditional?
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Conditional

if ( *c ) {

*t = x;

}
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“%s%hhnQ%*d%n”, c, s, x-2, 0, t

Single byte write that overwrite Q

If NULL byte is written, printf terminates

Address of Q

Width specifier



Turing Complete!
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Image from the slides of Control-Flow Bending: On the Effectiveness of Control-Flow Integrity, USENIX Security 2015



Printf-Oriented Programming

• Single call to printf is enough to run any arbitrary code

• No need to violate CFI
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Question

Do you think printf-oriented-programming-based 
attacks hijack control flow?
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Questions?
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