
Lec 14: CFI
CS492E: Introduction to Software Security

Sang Kil Cha

1



Defense Techniques So Far …

• DEP

• ASLR

• Canary

2

Problem: control-flow hijacking still possible



Control Flow Hijack Exploit

3

Attacker’s own code

e.g., install malicious software



Can we enforce 
control-flow 
integrity?

4



CFI Policy

The CFI security policy dictates that software execution 
must follow a path of a Control-Flow Graph (CFG) 
determined ahead of time.

5

Quote from control flow integrity, CCS 2005



CFG (Control Flow Graph)

A CFG is a graph that represents all paths that might be 
traversed through a program execution.

6



CFG (Control Flow Graph)

Each node in a CFG represents a basic block

7

Basic Block:

A sequence of statements 

that is always entered at 

the beginning and exited at 

the end*

* Quote from Modern Compiler Implementation



Basic Block

0:   55                      push   ebp

1:   89 e5                   mov ebp,esp

3:   83 ec 10                sub    esp,0x10

6:   c7 45 f8 00 00 00 00    mov DWORD PTR [ebp-0x8],0x0

d:   c7 45 fc 0a 00 00 00    mov DWORD PTR [ebp-0x4],0xa

14:   eb 08                   jmp 1e <v+0x1e>

16:   83 45 f8 01             add    DWORD PTR [ebp-0x8],0x1

1a:   83 6d fc 01             sub    DWORD PTR [ebp-0x4],0x1

1e:   83 7d fc 00             cmp DWORD PTR [ebp-0x4],0x0

22:   7f f2                   jg 16 <v+0x16>

24:   8b 45 f8                mov eax,DWORD PTR [ebp-0x8]

27:   c9                      leave

28:   c3                      ret

8



CFI = Any Execution Should Follow 
Control Paths of This CFG

9

0

1e

16

24



CFI Assumptions

• Attackers cannot execute data (DEP is enabled)

• Programs cannot change themselves (no self-modifying code)

10



How to Enforce CFI?

• Give unique IDs at destinations

• For all branch instructions, check destination IDs before taking 
the branch

11



How to Instrument?

12

Image from control flow integrity, CCS 2005



CFI Challenge

13

What if a single branch instruction can jump 

to multiple addresses? (e.g., call eax)



Example

14

Image from control flow integrity, CCS 2005



Example

15

Image from control flow integrity, CCS 2005

Can you spot labeling problems?



Problem: What if D returns to A?

16

B

A

C

D

Label 42

Label 42

Return



Potential Solutions

17

• Multiple tags

• Shadow call stack

What’s the problem?



Another Problem

18

C

A

B

Label 42

Label 42

Context insensitive!



Shadow Call Stack

• In function prologues, store the return address in another area 
of memory

• In function epilogues, check if we are returning to the proper 
address

A Binary Rewriting Defense against Stack based Buffer Overflow 
Attacks, USENIX ATC 2003

19



CFI with Shadow Call Stack

20

Why not just use a ret instruction?

Image from control flow integrity, CCS 2005



Time of Check to Time of Use

if (access("file", W_OK) != 0) {

exit(1); // exit if not writable

}

fd = open("file", O_WRONLY);

write(fd, buffer, sizeof(buffer));

21

TOC

TOU

Attacker can 

manipulate the file 

system

Example taken from Wikipedia (https://en.wikipedia.org/wiki/Time_of_check_to_time_of_use)



TOCTTOU

22

Image from control flow integrity, CCS 2005

TOCTTOU can happen 

here if ret is used



Runtime Overhead

23

Image from control flow integrity, CCS 2005



CFI Practical Implication?

• CFI on binary code is difficult
− Subtlety of Vulcan

• CFI is slow

24



CFI on Binary: Legacy Code

• CFG reconstruction from binary is difficult

• Indirect jumps?

25



CFI on Binary: Bypassing CFI

• Dynamically generated code
− Self modifying code (e.g., packing)

− JIT compiled code

• CFI is not perfect anyways

26



CFI Practicality: Coarse-Grained CFI

• Practical Control Flow Integrity and Randomization for Binary 
Executables, Oakland 2013

• Control Flow Integrity for COTS binaries, USENIX Security 
2013

• Transparent ROP Exploit Mitigation Using Indirect Branch 
Tracing, USENIX Security 2013

• ROPecker: A Generic and Practical Approach for Defending 
against ROP attacks, NDSS 2014

27



CFI Practicality: Coarse-Grained CFI

• Practical Control Flow Integrity and Randomization for Binary 
Executables, Oakland 2013

• Control Flow Integrity for COTS binaries, USENIX Security 
2013

• Transparent ROP Exploit Mitigation Using Indirect Branch 
Tracing, USENIX Security 2013

• ROPecker: A Generic and Practical Approach for Defending 
against ROP attacks, NDSS 2014

28

• Reduce the # of labels to check

(e.g., checks if a function returns to a call-

preceded instruction)

• Employ behavioral heuristics to quickly 

check integrity (e.g., detect gadget-like 

sequences)



Attacking Coarse-Grained CFI

• Stitching the Gadgets: On the Ineffectiveness of Coarse-
Grained Control-Flow Integrity Protection, USENIX Security 
2014

• Size Does Matter: Why Using Gadget-Chain Length to Prevent 
Code-Reuse Attacks is Hard, USENIX Security 2014

• Out of Control: Overcoming Control-Flow Integrity, Oakland 
2014

29



CFI is Now in Major Compilers

Enforcing Forward-Edge Control-Flow Integrity in GCC & LLVM, 
USENIX Security 2014

30

Protect forward edges with

VTV (VTable Verification)

IFCC (Indirect Function Call Checker)

FSAN (Indirect Function Call Sanitizer)



Performance vs. Security

Still not solved 

31



Implication of Shadow Call Stack

What if we have a perfect CFI, but without shadow call stack?

32

We can return to some functions

that are not in the CFG



CFI Without Shadow Call Stack

• ROP may be possible, but not easy

• Return-into-libc is much easier though
− system calls memcpy
− If a vulnerable function can call memcpy, then we can jump back to 

system (with a dispatcher function)

Control-Flow Bending: On the Effectiveness of Control-Flow 
Integrity, USENIX Security 2015

33



Dispatcher Function

A function that can overwrite its own return address when given 
arguments supplied by an attacker.

Any function that has a “write-what-where” primitive

E.g. memcpy, printf, fputs, etc.

34



memcpy

memcpy(dst, src, 8);

35

Return address

Current Frame

memcpyWe can jump to any caller of 
memcpy



Eval: CFI Without Shadow Call Stack

• Anaylzed 6 apps.

• Successfully exploited 5 apps. assuming fully precise static CFI
without shadow call stack

36



What about Fully Precise CFI?

• We now assume we use shadow call stack

• We cannot use dispatcher functions any more

• Are we secure now?

37



Printf-Oriented Programming

• A single call to printf allows an attacker to perform Turing-
complete computation!

• Assume we can fully control the arguments to printf

• Can bypass fully precise CFI

38



Printf-Oriented Programming

• Memory read: %s

• Memory write: %n

• Conditional?

39



Conditional

if ( *c ) {

*t = x;

}

40

“%s%hhnQ%*d%n”, c, s, x-2, 0, t

Single byte write that overwrite Q

If NULL byte is written, printf terminates

Address of Q

Width specifier



Turing Complete!

41

Image from the slides of Control-Flow Bending: On the Effectiveness of Control-Flow Integrity, USENIX Security 2015



Printf-Oriented Programming

• Single call to printf is enough to run any arbitrary code

• No need to violate CFI

42



Question

Do you think printf-oriented-programming-based 
attacks hijack control flow?

43



Questions?

44


