
Lec 8: Debugger
CS492E: Introduction to Software Security

Sang Kil Cha

1

Why Use Debugger?

• Help developers run other programs in a controlled environment

• Help examine execution context for every program point

2

How?

Debugger can access the registers/memory of another process,
but how?

3

With the help of the OS!

Debugging APIs

• Linux/macOS: ptrace

• Windows: functions in evntrace.h, debugapi.h

4

Debuggers are just a program that uses those APIs

Why Learn Debugging APIs?

Because you have full control over a program execution:

• Dynamically analyze program behaviors

• Programatically control program executions
(debugging, cracking, etc.)

• …

5

Debugging Internals

• Tracee: a process to be traced

• Tracer: a process to control (trace) the tracee

• OS provides an interface between the two via interrupts

6

Two Main Methods

• Create and run a new tracee from scratch
− (GDB) run

• Attach to an existing process
− (GDB) attach

7

ptrace

#include <sys/ptrace.h>

long ptrace(enum __ptrace_request request,

pid_t pid,

void *addr,

void *data);

8

Many different

operations available

Creating a Tracee

pid_t child_pid;

child_pid = fork();

if (child_pid == 0) {

ptrace(PTRACE_TRACEME, 0, 0, 0); // become a tracee

exec(...); // execl, execve, etc.

} else if (child_pid > 0) { // I am the tracer

int wait_status;

wait(&wait_status); // this will return when the tracee is ready

// ...

} else { /* fatal error here */ }

9

Reading/Writing Registers/Memory

• Read a word from memory
ptrace(PTRACE_PEEKTEXT, child_pid, addr, 0);

• Write a word (v) to memory
ptrace(PTRACE_POKETEXT, child_pid, addr, v);

• Read registers
struct user_regs_struct regs;
ptrace(PTRACE_GETREGS, child_pid, 0, ®s);

• Write to registers
regs.eax = 1;
ptrace(PTRACE_SETREGS, child_pid, 0, ®s);

10

Running Tracee

• Single-stepping: stop at every instruction

while (1) {

ptrace(PTRACE_SINGLESTEP, child_pid, 0, 0);

// peek/poke the child process

}

• Run until an interrupt occurs

ptrace(PTRACE_CONT, child_pid, 0, 0);

• Run until a syscall is invoked from the tracee

ptrace(PTRACE_SYSCALL, child_pid, 0, 0);

11

Breakpoints?

• Tracer waits for an interrupt (with PTRACE_CONT)

• Tracee issues an interrupt at a breakpoint, but how?

12

SIGTRAP = INT3

• INT3 instruction is a one-byte (0xcc) instruction in Intel that is
dedicated for setting up a software breakpoint.

• When a user inserts a breakpoint at an address A, the
debugger will replace the byte at A with 0xcc, and will
remember the original value.

• Once a breakpoint is hit by the tracee, then the tracer will
restore the original byte value, modify the EIP to A, so that the
modified instruction can be executed normally.

13

Example

8049120: b8 2c c0 04 08 mov eax,0x804c02c

8049125: 2d 2c c0 04 08 sub eax,0x804c02c // breakpoint

804912a: c1 f8 02 sar eax,0x2

14

8049120: b8 2c c0 04 08 mov eax,0x804c02c

8049125: cc int3

8049126: 2c c0 sub al, 0xc0

8049128: 04 08 add al, 0x8

804912a: c1 f8 02 sar eax,0x2

Software vs. Hardware Breakpoints

• Software breakpoints require modifying the code

• Intel CPU provides special registers for configuring H/W
breakpoints
−No need to change the code (thus, more reliable)

−Can break on memory access, too

−But the number of settable breakpoints is largely limited

− (GDB) rwatch, awatch, etc.

15

Useful Tools Implemented with ptrace

• strace: Syscall tracing tool

• ltrace: library call tracing tool

• GDB: debugger

• …

16

Exercise

Important notes:
−Read the manual for ptrace system call

−Read the manual for wait system call

17

Conclusion

• Understanding the debugging internals is essential for writing
your own dynamic analysis tools

• On *nix world, ptrace is used to implement a debugger

18

Questions?

19

