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Why Use Debugger?

• Help developers run other programs in a controlled environment

• Help examine execution context for every program point
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How?

Debugger can access the registers/memory of another process, 
but how?
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With the help of the OS!



Debugging APIs

• Linux/macOS: ptrace

• Windows: functions in evntrace.h, debugapi.h
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Debuggers are just a program that uses those APIs



Why Learn Debugging APIs?

Because you have full control over a program execution:

• Dynamically analyze program behaviors

• Programatically control program executions
(debugging, cracking, etc.)

• …
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Debugging Internals

• Tracee: a process to be traced

• Tracer: a process to control (trace) the tracee

• OS provides an interface between the two via interrupts
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Two Main Methods

• Create and run a new tracee from scratch
− (GDB) run

• Attach to an existing process
− (GDB) attach
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ptrace

#include <sys/ptrace.h>

long ptrace(enum __ptrace_request request,

pid_t pid,

void *addr,

void *data);
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Many different 

operations available



Creating a Tracee

pid_t child_pid;

child_pid = fork();

if (child_pid == 0) {

ptrace(PTRACE_TRACEME, 0, 0, 0); // become a tracee

exec(...); // execl, execve, etc.

} else if (child_pid > 0) { // I am the tracer

int wait_status;

wait(&wait_status); // this will return when the tracee is ready

// ...

} else { /* fatal error here */ }
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Reading/Writing Registers/Memory

• Read a word from memory
ptrace(PTRACE_PEEKTEXT, child_pid, addr, 0);

• Write a word (v) to memory
ptrace(PTRACE_POKETEXT, child_pid, addr, v);

• Read registers
struct user_regs_struct regs;
ptrace(PTRACE_GETREGS, child_pid, 0, &regs);

• Write to registers
regs.eax = 1;
ptrace(PTRACE_SETREGS, child_pid, 0, &regs);
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Running Tracee

• Single-stepping: stop at every instruction

while (1) {

ptrace(PTRACE_SINGLESTEP, child_pid, 0, 0);

// peek/poke the child process

}

• Run until an interrupt occurs

ptrace(PTRACE_CONT, child_pid, 0, 0);

• Run until a syscall is invoked from the tracee

ptrace(PTRACE_SYSCALL, child_pid, 0, 0);

11



Breakpoints?

• Tracer waits for an interrupt (with PTRACE_CONT)

• Tracee issues an interrupt at a breakpoint, but how?
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SIGTRAP = INT3

• INT3 instruction is a one-byte (0xcc) instruction in Intel that is 
dedicated for setting up a software breakpoint.

• When a user inserts a breakpoint at an address A, the 
debugger will replace the byte at A with 0xcc, and will 
remember the original value.

• Once a breakpoint is hit by the tracee, then the tracer will 
restore the original byte value, modify the EIP to A, so that the 
modified instruction can be executed normally.
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Example

8049120:    b8 2c c0 04 08          mov    eax,0x804c02c

8049125:    2d 2c c0 04 08          sub    eax,0x804c02c // breakpoint

804912a:    c1 f8 02                sar eax,0x2
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8049120:    b8 2c c0 04 08          mov    eax,0x804c02c

8049125:    cc int3

8049126:    2c c0                   sub    al, 0xc0

8049128:    04 08                   add    al, 0x8

804912a:    c1 f8 02                sar eax,0x2



Software vs. Hardware Breakpoints

• Software breakpoints require modifying the code

• Intel CPU provides special registers for configuring H/W 
breakpoints
−No need to change the code (thus, more reliable)

−Can break on memory access, too

−But the number of settable breakpoints is largely limited

− (GDB) rwatch, awatch, etc.
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Useful Tools Implemented with ptrace

• strace: Syscall tracing tool

• ltrace: library call tracing tool

• GDB: debugger

• …
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Exercise

Important notes:
−Read the manual for ptrace system call

−Read the manual for wait system call
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Conclusion

• Understanding the debugging internals is essential for writing 
your own dynamic analysis tools

• On *nix world, ptrace is used to implement a debugger
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Questions?
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