
Lec 5: Trusting Trust
CS492E: Introduction to Software Security

Sang Kil Cha

1

Why Binary?

2

Binary vs. Source Code

Given both binary and source code of a program, which one do
you need to analyze if you want to know the program is safe to
run?

1. Source code

2. Binary code

3

Source Code is Not Always Available

• Malware

• Commercial software

• Etc.

4

What about open-sourced programs?

Fun Fact

Security experts often analyze binaries even though they
possess source code.

5

Why?

Key Question

You are given the entire source code of an app, can you find all
possible vulnerabilities in the app by analyzing its source code?

6

7

Ken Thompson

Reflections on Trusting Trust

CACM 1984

The answer is NO!

Trusting Trust

8

Trust Boundary

9

H/W

Kernel

User program Syscall

Trust Boundary

10

H/W

Kernel

User program

S/W

Software Security = Distrusting S/W

• You cannot trust code that you did not totally create yourself

• No amount of source-level verification or scrutiny will protect
you from using untrusted code!

11

Stage 1:
Self-Reproducing Program (a.k.a. Quine)

12

Stage 2: C Compiler in C

13

Stage 3: Trojan Horse

void compile(char *s)

{

// ...

}

14

void compile(char *s)

{

if(match(s, “login pattern”)) {

compile(“login backdoor”);

return;

}

// ...

}

Stage 3: Trojan Horse (2)

void compile(char *s)

{

// ...

}

15

void compile(char *s)

{

if(match(s, “login pattern”)) {

compile(“login backdoor”);

return;

}

if(match(s, “compiler pattern”)) {

compile(“insert the backdoor”);

return;

}

// ...

}

Self-Replicating Backdoor

This technique applies to any program-handling program such as
an assembler, a loader, or hardware microcode, etc.

16

To What Extend Should We Trust?

17

CPU

Kernel

Program

Compiler

What You See Is Not What You Execute*

18

#include <stdio.h>
int main (void)
{
printf(“hi\n”);

}

Source Code

0101010101011111010
1010101010101010001
0010010001111111010
1111101001010100010
0010110100010110100
0101001001010010111
1110101010000001010
1011000001000001011

Binary Code

* 2007 Gogul Balakrishnan, PhD Thesis

Binary Code Analysis is Essential

19

0101010101011111010
1010101010101010001
0010010001111111010
1111101001010100010
0010110100010110100
0101001001010010111
1110101010000001010
1011000001000001011

Binary Code

This is what we execute

Reverse Engineering

20

0101010101011111010
1010101010101010001
0010010001111111010
1111101001010100010
0010110100010110100
0101001001010010111
1110101010000001010
1011000001000001011

Semantics

Reverse Engineering

Read and analyze binaries and understand their semantics

21

Example Kernel Vulnerability

groups_per_flex = 1 << sbi->s_log_groups_per_flex;

if (groups_per_flex == 0) return 1;

flex_group_count = … / groups_per_flex;

22

When overflow?

Example Kernel Vulnerability

groups_per_flex = 1 << sbi->s_log_groups_per_flex;

if (groups_per_flex == 0) return 1;

flex_group_count = … / groups_per_flex;

23

36?

On x86, 1 << 36 is equivalent to 1 << 4 = 16

On PPC, 1 << 36 is 0

Binary Analysis
= Software Security

24

Binary Analysis is Difficult

25

Reverse

Engineering

Compile

Why Difficult?

• Requires manual effort

• There’s no program abstraction in binary code

26

4C 8B 47 08 mov r8,qword ptr [rdi+8]

BA 02 00 00 00 mov edx,2

48 8B 4F 20 mov rcx,qword ptr [rdi+20h]

45 0F B7 08 movzx r9d,word ptr [r8]

E8 54 16 00 00 call 00000001400026BC

48 8B 74 24 38 mov rsi,qword ptr [rsp+38h]

8B C3 mov eax,ebx

48 8B 5C 24 30 mov rbx,qword ptr [rsp+30h]

48 83 C4 20 add rsp,20h

5F pop rdi

C3 ret

48 8B C4 mov rax,rsp

48 89 58 08 mov qword ptr [rax+8],rbx

48 89 68 10 mov qword ptr [rax+10h],rbp

48 89 70 18 mov qword ptr [rax+18h],rsi

48 89 78 20 mov qword ptr [rax+20h],rdi

41 54 push r12

41 56 push r14

41 57 push r15

48 83 EC 40 sub rsp,40h

48 8B 9C 24 90 00 mov rbx,qword ptr [rsp+0000000000000090h]

27

Types?

Functions?

Variables?

…

Conclusion

• Binary analysis is necessary for software security.

• Binary analysis is difficult, but we will learn how to do it
throughout this course.

• More advanced topics for binary analysis and software security
− IS561: Binary Code Analysis and Secure Software Systems

28

Questions?

29

