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Why Binary?
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Binary vs. Source Code

Given both binary and source code of a program, which one do 
you need to analyze if you want to know the program is safe to 
run?

1. Source code

2. Binary code
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Source Code is Not Always Available

• Malware

• Commercial software

• Etc.
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What about open-sourced programs?



Fun Fact

Security experts often analyze binaries even though they 
possess source code.
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Why?



Key Question

You are given the entire source code of an app, can you find all 
possible vulnerabilities in the app by analyzing its source code?
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Ken Thompson

Reflections on Trusting Trust

CACM 1984

The answer is NO!



Trusting Trust
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Trust Boundary
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Trust Boundary
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Software Security = Distrusting S/W

• You cannot trust code that you did not totally create yourself

• No amount of source-level verification or scrutiny will protect 
you from using untrusted code!
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Stage 1:
Self-Reproducing Program (a.k.a. Quine)
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Stage 2: C Compiler in C

13



Stage 3: Trojan Horse

void compile(char *s)

{

// ...

}
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void compile(char *s)

{

if(match(s, “login pattern”)) {

compile(“login backdoor”);

return;

}

// ...

}



Stage 3: Trojan Horse (2)

void compile(char *s)

{

// ...

}
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void compile(char *s)

{

if(match(s, “login pattern”)) {

compile(“login backdoor”);

return;

}

if(match(s, “compiler pattern”)) {

compile(“insert the backdoor”);

return;

}

// ...

}



Self-Replicating Backdoor

This technique applies to any program-handling program such as 
an assembler, a loader, or hardware microcode, etc.
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To What Extend Should We Trust?
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What You See Is Not What You Execute*
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#include <stdio.h>
int main (void)
{
printf( “hi\n” );

}

Source Code

0101010101011111010
1010101010101010001
0010010001111111010
1111101001010100010
0010110100010110100
0101001001010010111
1110101010000001010
1011000001000001011

Binary Code

* 2007 Gogul Balakrishnan, PhD Thesis



Binary Code Analysis is Essential
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0101010101011111010
1010101010101010001
0010010001111111010
1111101001010100010
0010110100010110100
0101001001010010111
1110101010000001010
1011000001000001011

Binary Code

This is what we execute



Reverse Engineering
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0101010101011111010
1010101010101010001
0010010001111111010
1111101001010100010
0010110100010110100
0101001001010010111
1110101010000001010
1011000001000001011

Semantics



Reverse Engineering

Read and analyze binaries and understand their semantics
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Example Kernel Vulnerability

groups_per_flex = 1 << sbi->s_log_groups_per_flex;

if (groups_per_flex == 0) return 1;

flex_group_count = … / groups_per_flex;
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When overflow?



Example Kernel Vulnerability

groups_per_flex = 1 << sbi->s_log_groups_per_flex;

if (groups_per_flex == 0) return 1;

flex_group_count = … / groups_per_flex;
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36?

On x86, 1 << 36 is equivalent to 1 << 4 = 16

On PPC, 1 << 36 is 0



Binary Analysis
= Software Security
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Binary Analysis is Difficult
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Reverse 
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Compile



Why Difficult?

• Requires manual effort

• There’s no program abstraction in binary code
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4C 8B 47 08        mov r8,qword ptr [rdi+8]

BA 02 00 00 00     mov edx,2

48 8B 4F 20        mov rcx,qword ptr [rdi+20h]

45 0F B7 08        movzx r9d,word ptr [r8]

E8 54 16 00 00     call        00000001400026BC

48 8B 74 24 38     mov rsi,qword ptr [rsp+38h]

8B C3              mov eax,ebx

48 8B 5C 24 30     mov rbx,qword ptr [rsp+30h]

48 83 C4 20        add         rsp,20h

5F                 pop         rdi

C3                 ret

48 8B C4           mov rax,rsp

48 89 58 08        mov qword ptr [rax+8],rbx

48 89 68 10        mov qword ptr [rax+10h],rbp

48 89 70 18        mov qword ptr [rax+18h],rsi

48 89 78 20        mov qword ptr [rax+20h],rdi

41 54              push        r12

41 56              push        r14

41 57              push        r15

48 83 EC 40        sub         rsp,40h

48 8B 9C 24 90 00  mov rbx,qword ptr [rsp+0000000000000090h]
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Types?

Functions?

Variables?

…



Conclusion

• Binary analysis is necessary for software security.

• Binary analysis is difficult, but we will learn how to do it 
throughout this course.

• More advanced topics for binary analysis and software security
− IS561: Binary Code Analysis and Secure Software Systems
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Questions?
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