
Domain-Driven Design In-Class Activity #24 Conclusion Question?
1 / 29

Lec 24: Domain Modeling
CS220: Programming Principles

Sang Kil Cha

Domain-Driven Design In-Class Activity #24 Conclusion Question?
2 / 29

Domain-Driven Design

Domain-Driven Design In-Class Activity #24 Conclusion Question?
3 / 29

Disclaimer
This lecture is mainly inspired by https://www.slideshare.net/ScottWlaschin/
domain-driven-design-with-the-f-type-system-functional-londoners-2014.

https://www.slideshare.net/ScottWlaschin/domain-driven-design-with-the-f-type-system-functional-londoners-2014
https://www.slideshare.net/ScottWlaschin/domain-driven-design-with-the-f-type-system-functional-londoners-2014

Domain-Driven Design In-Class Activity #24 Conclusion Question?
4 / 29

Attendance Check

Note:
1. This slide appears at random time during the class.
2. This link is only valid for a few minutes.
3. We don’t accept late responses.

https://forms.gle/Zrfnc2wCmtoQhznp7

Domain-Driven Design In-Class Activity #24 Conclusion Question?
5 / 29

Motivation: S/W Engineering is Difficult

If your code is not well-structured, it becomes a nightmare to maintain and extend it.
How can we structure our code in a way that it is easy to understand and maintain?

Domain-Driven Design In-Class Activity #24 Conclusion Question?
6 / 29

What is DDD?

DDD is an approach to developing complex software in which we focus on the core
domain and domain logic rather than technology.

Domain is a sphere of knowledge, influence, or activity. The subject area to which
the user applies a program is the domain of the software.1

1Eric Evans, Domain-Driven Design Reference.

Domain-Driven Design In-Class Activity #24 Conclusion Question?
7 / 29

Do Not Focus on Technology

• DDD is not about technology.
• DDD is about understanding the domain.
• DDD is about understanding the business.

By understanding the domain, we can build our program in a way that it reflects the
domain, which makes it easier to understand and maintain.

Domain-Driven Design In-Class Activity #24 Conclusion Question?
8 / 29

Ubiquitous Language

DDD requires that users (i.e., customers) and developers share a common language
to describe the domain. This is so-called ubiquitous language.

For example, suppose we are building a system for a bank. The term account
should have the same meaning for both the users and the developers. Is it a
checking account, a savings account, or both? How about joint accounts? When we
talk about account, we should all have the same understanding.

Domain-Driven Design In-Class Activity #24 Conclusion Question?
9 / 29

F#’s Rich Type System

F#’s rich type system is a perfect fit for DDD. We can encode domain logic into types,
which makes it easier to understand and maintain the code.

Domain-Driven Design In-Class Activity #24 Conclusion Question?
10 / 29

Designing a Card Game

First, let’s design a card game. What are the components of a card game?
• A card game consists of a deck of cards, a set of players, and a set of rules.
• A deck of cards consists of a set of cards.
• A card consists of a suit and a rank.
• A player consists of a name and a hand of cards.
• A hand of cards consists of a set of cards.

Can we describe this domain in F#?

Domain-Driven Design In-Class Activity #24 Conclusion Question?
11 / 29

Designing a Card Game

Start by defining the types.

module CardGame =
type Suit = Club | Diamond | Spade | Heart
type Rank = Ace | Two | Three | ... | Jack | Queen | King
type Card = Suit * Rank
type Hand = Card list
type Deck = Card list
type Player = { Name: string ; Hand: Hand }
type Game = { Deck: Deck; Players : Player list }
type Deal = Deck -> Deck * Card
type PickupCard = Hand -> Card -> Hand

Domain-Driven Design In-Class Activity #24 Conclusion Question?
12 / 29

Types are Self-Explanatory

The types are “mostly” self-explanatory even for non-programmers, i.e., customers or
domain experts. In fact, we can make it even clearer by leveraging comments.

module CardGame =
/// Represents a suit of a card.
type Suit = Club | Diamond | Spade | Heart

/// Represents a rank of a card.
type Rank = Ace | Two | Three | ... | Jack | Queen | King

...

Domain-Driven Design In-Class Activity #24 Conclusion Question?
13 / 29

Discuss with Domain Experts

Using these types, we can discuss with customers (domain experts) to make sure
that we understand the domain correctly. This is a very important step in DDD.

We haven’t implemented any functions/classes yet. We are just discussing the type
definitions, which describe the domain.

Rich type system enables DDD!

Domain-Driven Design In-Class Activity #24 Conclusion Question?
13 / 29

Discuss with Domain Experts

Using these types, we can discuss with customers (domain experts) to make sure
that we understand the domain correctly. This is a very important step in DDD.

We haven’t implemented any functions/classes yet. We are just discussing the type
definitions, which describe the domain.

Rich type system enables DDD!

Domain-Driven Design In-Class Activity #24 Conclusion Question?
14 / 29

Example: PlayerInfo

Before

type PlayerInfo = {

FirstName : string

MiddleName : string

LastName : string

EmailAddress : string

IsEmailVerified : bool
}

After

type PlayerInfo = {
/// Can have maximum 50 chars .
FirstName : string
/// This should be optional .
MiddleName : string
/// Can have maximum 50 chars .
LastName : string
/// Should follow email format .
EmailAddress : string
/// True only if the email is verified .
IsEmailVerified : bool

}

Domain-Driven Design In-Class Activity #24 Conclusion Question?
15 / 29

Make a Field Optional

type PlayerInfo = {
FirstName : string
/// Middle name is optional .
MiddleName : string option
LastName : string
EmailAddress : string
IsEmailVerified : bool

}

Domain-Driven Design In-Class Activity #24 Conclusion Question?
16 / 29

Constrained String

(* This can be later changed to a class if needed . *)
type StringMaxFiftyChars = StringMaxFiftyChars of string

module StringMaxFiftyChars = (* N.B. no need to have this module for now *)
let create s = failwith "TODO"

type PlayerInfo = {
FirstName : StringMaxFiftyChars
MiddleName : string option
LastName : StringMaxFiftyChars
EmailAddress : string
IsEmailVerified : bool

}

Domain-Driven Design In-Class Activity #24 Conclusion Question?
17 / 29

Email Address Type

type EmailAddress = EmailAddress of string

module EmailAddress = (* no need to have this for now *)
let create s = failwith "TODO"

type PlayerInfo = {
FirstName : StringMaxFiftyChars
MiddleName : string option
LastName : StringMaxFiftyChars
EmailAddress : EmailAddress
IsEmailVerified : bool

}

Domain-Driven Design In-Class Activity #24 Conclusion Question?
18 / 29

Divide Types by (Sub)Domain

type PlayerName = {
FirstName : StringMaxFiftyChars
MiddleName : string option
LastName : StringMaxFiftyChars

}

type PlayerInfo = {
Name: PlayerName
Email : Email

}

type Email = {
EmailAddress : EmailAddress
IsEmailVerified : bool

}

Domain-Driven Design In-Class Activity #24 Conclusion Question?
19 / 29

Flag variable

type Email = {
EmailAddress : EmailAddress
IsEmailVerified : bool

}

If the email address changes, then the verified flag should set to false. To make the
two fields synchronized, one needs to carefully implement the code, which can be
error-prone.

Domain-Driven Design In-Class Activity #24 Conclusion Question?
20 / 29

Encode Domain Logic into Types

type VerifiedEmailAddress = Verified of EmailAddress

type Email =
| Unverified of EmailAddress
| Verified of VerifiedEmailAddress

module Email =
// verify : EmailAddress -> VerifiedEmailAddress option
let verify (email : EmailAddress): VerifiedEmailAddress option =

failwith "TODO"

Domain-Driven Design In-Class Activity #24 Conclusion Question?
21 / 29

The Key Take-Away

How many lines of functions did we write so far? The domain model has evolved as
we write mostly types without considering the actual implementation. F# is the
perfect language to do DDD, which is a well-known software engineering principle for
building complex systems.

This way of developing software is also known as type-driven development or
typeful programming.

Domain-Driven Design In-Class Activity #24 Conclusion Question?
22 / 29

Changed Domain?

We can easily adopt new requirements with the help of strong type system.

type PlayerInfo = {
Name: PlayerName
Email: Email
Address : PostalAddress // Added!

}

Domain-Driven Design In-Class Activity #24 Conclusion Question?
23 / 29

In-Class Activity #24

Domain-Driven Design In-Class Activity #24 Conclusion Question?
24 / 29

Preparation

We are going to use the same git repository as before. Just in case you don’t have it,
clone the repository using the following command.

1. Clone the repository to your machine.
- git clone https://github.com/KAIST-CS220/CS220-Main.git

2. Move in to the directory CS220-Main/Activities
- cd CS220-Main
- cd Activities

Domain-Driven Design In-Class Activity #24 Conclusion Question?
25 / 29

Problem

Let’s practice DDD by designing a model for the following domain. You want to build
a system for e-commerce. The system should allow registered customers to get 10%
discount when they spend more than 100000 KRW.

We can start by defining a simple Customer type:

type Customer = {
Id: string
IsRegistered : bool

}

Domain-Driven Design In-Class Activity #24 Conclusion Question?
26 / 29

What’s Wrong with the Type?

Having two boolean fields can be error-prone. Can we explicitly encode the
registration status? Try to design a better type by yourself. You should also
implement the calculateTotal function, which takes in a customer and their total
spending as input, and returns the total amount After applying the discount. For
example, when a customer spends 200000 KRW, then the total amount should be
180000 KRW (after 10% discount).

Domain-Driven Design In-Class Activity #24 Conclusion Question?
27 / 29

Conclusion

Domain-Driven Design In-Class Activity #24 Conclusion Question?
28 / 29

Further Readings

• https://tomasp.net/blog/type-first-development.aspx/.

https://tomasp.net/blog/type-first-development.aspx/

Domain-Driven Design In-Class Activity #24 Conclusion Question?
29 / 29

Question?

	Domain-Driven Design
	In-Class Activity #24
	Conclusion
	Question?

