
Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
1 / 35

Lec 23: Railway-Oriented
Programming

CS220: Programming Principles

Sang Kil Cha



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
2 / 35

Railway-Oriented Programming



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
3 / 35

Disclaimer
This lecture is mainly inspired by https://fsharpforfunandprofit.com/rop/.

https://fsharpforfunandprofit.com/rop/


Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
4 / 35

Attendance Check

Note:
1. This slide appears at random time during the class.
2. This link is only valid for a few minutes.
3. We don’t accept late responses.

https://forms.gle/2vXYw3hPHVvzZ4Yr5


Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
5 / 35

Motivation

ROP is a functional way of sequentially composing functions. It makes our code
more elegant and easier to understand.



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
6 / 35

Recall: Maybe Computation Expression

type MaybeBuilder () =
member __.Bind (m, f) = Option .bind f m
member __. Return (m) = Some m

let maybe = MaybeBuilder ()



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
7 / 35

Example: Input Validation

type Input = { ID: string ; PW: string }

let validateID input =
if input .ID. Length > 4 && input .ID. Length <= 12 then Some input else None

let validatePWLength input =
if input .PW. Length > 8 then Some input else None

let validatePWLowercase input =
if input .PW |> String . exists System .Char. IsLower then Some input else None

let validatePWUppercase input =
if input .PW |> String . exists System .Char. IsUpper then Some input else None

let validatePWDigit input =
if input .PW |> String . exists System .Char. IsDigit then Some input else None



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
8 / 35

With Maybe Computation Expression

let validate input = maybe {
let! _ = validateID input
let! _ = validatePWLength input
let! _ = validatePWLowercase input
let! _ = validatePWUppercase input
let! _ = validatePWDigit input
return input

}

How about using the bind operator (»=)?



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
9 / 35

With Bind Operator

let (>>=) m f = Option .bind f m

let validate input =
Some input
>>= validateID
>>= validatePWLength
>>= validatePWLowercase
>>= validatePWUppercase
>>= validatePWDigit



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
10 / 35

Using Result Type

To get more information about the failure, we can use the Result type, which also
provides the same high-order function, bind.

let (>>=) m f = Result .bind f m

let validate input =
Ok input
>>= validateID
>>= validatePWLength
>>= validatePWLowercase
>>= validatePWUppercase
>>= validatePWDigit



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
11 / 35

Composing Functions

We can compose functions using the » operator, too.

let validate =
validateID
>> Result .bind validatePWLength
>> Result .bind validatePWLowercase
>> Result .bind validatePWUppercase
>> Result .bind validatePWDigit

We can think bind as a converter that converts a function into a new function that
takes in a Result type as input, and returns a Result type as output.



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
12 / 35

Visual Explanation (Railway Analogy)

validateID

�»

validatePWLength

validatePWLength

Bind−−→

bind validatePWLength

After the bind operation, a railway switch (one-track input) is converted into a
two-track input.



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
13 / 35

Revisiting »=

The operator »= combines one-to-two track railways by converting them into a
two-to-two track railway.



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
14 / 35

An Alternative to Bind

Can we combine railways without converting them?
validateID

+

validatePWLength

⇓

This just becomes another switch (one-to-two track railway).



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
15 / 35

Kleisli Composition

let (>=>) f g x =
match f x with
| Ok res -> g res
| Error e -> Error e

let validate =
validateID
>=> validatePWLength
>=> validatePWLowercase
>=> validatePWUppercase
>=> validatePWDigit



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
16 / 35

Bind vs. Kleisli Composition

• bind is an adapter that converts a one-to-two track railway into a two-to-two
track railway, so that it can be combined with another two-to-two railways.

• >=> is a combinator that combines two one-to-two track railways into another
one-to-two track railway.

• If we have an existing two-to-two track railway, we would use bind to combine a
one-to-two track railway with it. If all the railways we have are one-to-two track
railways, we would simply use >=> to combine them.



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
17 / 35

Revisiting Kleisli Composition

let (>=>) f g x =
match f x with
| Ok res -> g res
| Error e -> Error e

// Rewritten with function composition .
let (>=>) f g =

f >> Result .bind g



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
18 / 35

Inserting Regular Functions into the Railway

Previous functions are all one-to-two track railways, but how about one-to-one track
railways? Can we combine them with the existing railways?

Suppose we want to trim whitespace from the given user input. We would write a
one-to-one track railway function:

let trimID input =
{ input with ID = input.ID.Trim () }

let trimPW input =
{ input with PW = input.PW.Trim () }



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
19 / 35

Introducing switch

switch is a function that converts a one-to-one track railway into a one-to-two track
railway.

let switch f x = Ok (f x)
// or more simply
let switch f = f >> Ok

let validate =
switch trimID
>=> switch trimPW
>=> validateID
>=> validatePWLength
>=> validatePWLowercase
>=> validatePWUppercase
>=> validatePWDigit



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
20 / 35

Map: One-to-One to Two-to-Two

How about converting a one-to-one track railway into a two-to-two track railway? This
operation is typically called map, and it is defined in the standard library: Result.map.

let map = Result .map

let validate =
switch trimID
>> map trimPW
>=> validateID
>=> validatePWLength
>=> validatePWLowercase
>=> validatePWUppercase
>=> validatePWDigit



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
21 / 35

Switch and Map

switch−−−−→
(never used)

map−−→



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
22 / 35

T-Splitter Function

• tee is a function that splits a railway into two railways, one of which is a
dead-end railway1. It works like tee in Linux.

• tee is a command-line tool in Linux that reads from standard input and writes to
standard output and files.

- echo "Hello" | tee file.txt
- The above command writes "Hello" to the file file.txt and also prints "Hello" to

the standard output.

• The name tee comes from the T-splitter in plumbing.

1A dead-end here means that the function will not return any value and just produce a side effect.



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
23 / 35

Debugging with tee

let tee f x =
f x |> ignore
x

let debugPrint input = printfn "%A" input

let validate =
switch trimID
>=> switch (tee debugPrint ) // or >> tee debugPrint
>=> switch trimPW
>=> validateID
>=> validatePWLength
>=> validatePWLowercase
>=> validatePWUppercase
>=> validatePWDigit



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
24 / 35

tee

(dead-end)

tee−−→



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
25 / 35

Parallel Combination of Railways

• So far, we have been combining railways in a sequential manner.
• But parallel combination is often desirable. For example, we may want to get two

or more validation errors at once, instead of just one. Current validator will stop
at the first error!



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
26 / 35

Parallel Combination



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
27 / 35

Parallel Combinator: &&&

&&& is a parallel combinator that combines two railways into one.



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
28 / 35

let (&&&) f g x =
match f x, g x with
| Ok res1, Ok _ -> Ok res1 (* returning either one is ok *)
| Error e, Ok _ -> Error e
| Ok _, Error e -> Error e
| Error e1, Error e2 -> Error (e1 + Environment . NewLine + e2)

let validateIDAndPW =
validateID
&&& validatePWLength
&&& validatePWLowercase
&&& validatePWUppercase
&&& validatePWDigit

let validate =
switch trimID
>=> switch trimPW
>=> validateIDAndPW



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
29 / 35

Key Takeaway

Once we define the railway operators, such as bind, >=>, switch, etc., we can easily
compose functions in a railway-oriented manner, which makes our code more
elegant and easier to understand. ROP is a good example showing the power of
functional abstraction.

There are more railway operators didn’t cover in this lecture. For example, one could
consider handling exceptions in a railway-oriented manner. For more information,
please refer to the original article.



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
30 / 35

In-Class Activity #23



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
31 / 35

Preparation

We are going to use the same git repository as before. Just in case you don’t have it,
clone the repository using the following command.

1. Clone the repository to your machine.
- git clone https://github.com/KAIST-CS220/CS220-Main.git

2. Move in to the directory CS220-Main/Activities
- cd CS220-Main
- cd Activities



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
32 / 35

Problem

Modify the given implementation as well as the parallel combinator &&& so that the
program can handle a list of error messages (string list) instead of a single error
message (string).



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
33 / 35

Conclusion



Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
34 / 35

Further Readings

• https://fsharpforfunandprofit.com/posts/recipe-part2/.

https://fsharpforfunandprofit.com/posts/recipe-part2/


Railway-Oriented Programming In-Class Activity #23 Conclusion Question?
35 / 35

Question?


	Railway-Oriented Programming
	In-Class Activity #23
	Conclusion
	Question?

