
Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
1 / 41

Lec 21: Monadic Parser
CS220: Programming Principles

Sang Kil Cha

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
2 / 41

Interpreter

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
3 / 41

Metalinguistic Abstraction

A form of language for describing another language. This allows us to better
understand a computation problem by using a new language.

Can we leverage F# (or any other language) to describe and evaluate another
language?

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
4 / 41

Writing an Interpreter

An evaluator (or interpreter) for a programming language is a procedure that, when
applied to an expression of the language, performs the actions required to evaluate
that expression1.

An interpreter is just another program.

1Excerpt from the Wizard book Ch. 4.

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
5 / 41

Why?

We have been simply using programming languages to develop a program.
However, most powerful programmers should be able to design their own languages
for their needs: we should become a designer of programming languages, but not
merely a user.

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
6 / 41

Interpretation

Interpreter.

module Interpreter =
let grammar = // embedded grammar
let context = // initial context
let interpret (source: string) =

parse grammar source // Grammar -> string -> AST
|> evaluate context // AST -> Context -> Context

Interpretation runs in two major steps: parse and evaluate. We will discuss the
details one by one.

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
7 / 41

Attendance Check

Note:
1. This slide appears at random time during the class.
2. This link is only valid for a few minutes.
3. We don’t accept late responses.

https://forms.gle/m98gx1mFj5yVkixw6

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
8 / 41

Monadic Parser

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
9 / 41

Parsing

Parsing is the process of transforming a string into an Abstract Syntax Tree (AST)
based on a grammar.

val parse: Grammar -> string -> AST

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
10 / 41

AST

AST is a tree representing the syntactic structure of a program (or written words in a
language).

An AST for 1 + 2× 3:

+

1 ×

2 3

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
11 / 41

AST is Not Ambiguous

A language usually has some ambiguity, but an AST does not. For example,
1 + 2× 3 may mean either (1 + 2)× 3 or 1 + (2× 3) depending on the precedence of
the + and × operator. However, the AST in the previous page is not ambiguous.

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
12 / 41

AST is Abstract

Both “1+2” and “1 + 2” correspond to the same AST, although the two strings are
different if we look at their concrete syntax. Therefore, they are abstract.

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
13 / 41

AST is a Tree

AST for a “language of integer addition and subtraction” (AddSubLang).

type Expr =
| Number of int
| Add of Expr * Expr // This line effectively creates a tree
| Sub of Expr * Expr // This line effectively creates a tree

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
14 / 41

AST Example (1 + 2 - 3)

Add (Number 1, Sub (Number 2, Number 3))

+

1 −

2 3

Sub (Add (Number 1, Number 2), Number 3)

−

+

1 2

3

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
15 / 41

How Do We Describe a Grammar?

Backus-Naur Form (BNF) recursively describes a grammar2 of a language.

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<number> ::= <digit> | <number> <digit>

1. A ::= B means A is defined as B.
2. Symbols without angle brackets mean a terminal, which is an elementary

symbol that cannot be replaced with another.
3. Symbols with angle brackets mean a nonterminal, which can be replaced by

terminals.
4. A | B means “A or B”.

2Context-Free Grammar

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
16 / 41

Our AddSubLang Grammar

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<number> ::= <digit> | <number> <digit>
<expr> ::= <number> + <expr>

| <number> - <expr>
| <number>

Our goal: writing a parser that “looks like” this grammar!

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
17 / 41

Parser Computation Expression

1. Generic type constructor: Parser<’a>.
2. Bind operator: given a Parser<’a> and a function (’a -> Parser<’b>), return

a new parser Parser<’b>.
3. Return operator: given a value (’a), return a new parser (Parser<’a>).
4. And many more operations possible!

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
18 / 41

Example Scenarios

• Consider a parser P that can parse a character ‘1’. We can “bind” the parsing
result of P to a parameter of a function (i.e., continuation) in order to create a
new parser that makes use of the result.

• Imagine two parsers P1 and P2 that can parse a string "abc" and "def",
respectively. We can “combine” the two parsers to create a new parser that can
parse "abcdef".

We call this type of computation expression as a “monadic parser”,
or a “parser combinator”.

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
19 / 41

Parser Type

type Parser <'a> = {
Parse: string -> Result <'a * string , string >

}

Given a string, the Parse function returns a Result type. The success case of the
Result returns a parsed value of type ’a and the next string to parse, and the failure
case returns an error message of type string.

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
20 / 41

Simple Character Parser

/// Helper function to run Parser computation expression
let runOnInput parser str =

parser .Parse str

module Parser =
let char =

{ Parse = fun s ->
if System . String . IsNullOrEmpty (s) then

Error "No more input."
else

Ok (s[0], s[1..]) }

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
21 / 41

Make It a Monad

type ParserBuilder () =
member __.Bind (p, f) =

{ Parse = (fun s ->
match runOnInput p s with
| Ok (v, rest) -> runOnInput (f v) rest
| Error e -> Error e) }

member __.Return (v) =
{ Parse = (fun s -> Ok (v, s)) }

let parser = ParserBuilder ()

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
22 / 41

Combining Parsers

Parser for two consecutive (any) characters.

let twoChars =
parser {

let! a = char
let! b = char
return (a, b)

} // what is the type of twoChars ?

This way of combining two parsers is so common, so we even create a function (and
an operator) that does this: andThen function.

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
23 / 41

andThen Function

andThen takes in two parsers and return a new parser.

let andThen p1 p2 =
parser {

let! a = p1
let! b = p2
return (a, b)

}

let (.>>.) = andThen // infix operator for andThen
let twoChars = char .>>. char // much concise now!

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
24 / 41

Parsing a Specific Character

let char ch =
{ Parse = fun s ->

if System.String. IsNullOrEmpty (s) then
Error "No more input."

else
if s[0] = ch then Ok (s[0], s[1..])
else Error " Invalid character ." }

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
25 / 41

Parsing a Specific String

let strABC 1 = char 'A' .>>. char 'B' .>>. char 'C'
let rec sequence parsers =

match parsers with
| [] -> parser { return [] }
| hd :: tl ->

parser {
let! h = hd
let! t = sequence tl
return (h :: t)

}
let strABC 2 =

[char 'A'; char 'B'; char 'C'] |> sequence

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
26 / 41

Map from a Parser to Another

let map f parser =
{ Parse = fun s ->

match runOnInput parser s with
| Ok (v, rest) -> Ok (f v, rest)
| Error e -> Error e }

let (|>>) p f = map f p

let strABC =
sequence [char 'A '; char 'B'; char 'C']
|>> (List. toArray >> System . String)

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
27 / 41

Parse A or B

Given two parsers PA and PB, create a parser that runs either one of them.

let orElse p1 p2 =
{ Parse = fun s ->

match runOnInput p1 s with
| Ok (v, rest) -> Ok (v, rest)
| Error _ -> runOnInput p2 s }

let (<|>) = orElse

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
28 / 41

Parser for Numbers

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

let digit = char '0' <|> char '1' <|> ... <|> char '9'

<number> ::= <digit> | <number> <digit>

let rec number =
(number .>>. digit) <|> digit // type mismatch

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
29 / 41

Recursive Definition of a Number

let number =
let rec num () =

parser {
let! d = digit
let! n = num ()
return d :: n

} <|> parser { return [] }
num ()
|>> (List. toArray >> System . String >> int >> Number)

But this is dirty!

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
30 / 41

Extended BNF (Use Repetition)

We can use curly braces to represent zero or more occurrences of a term.

<number> ::= digit { <digit> } // repeatition

let rec zeroOrMore p s =
match runOnInput p s with
| Error _ -> ([], s)
| Ok (v, s) ->

let v', s' = zeroOrMore p s
v :: v', s'

let many p = { Parse = fun s -> Ok (zeroOrMore p s) }

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
31 / 41

Redefining Number with many

<number> ::= digit { <digit> }

let number =
parser {

let! d = digit
let! ds = many digit // zero or more
return List. toArray (d :: ds) |> System . String |> int |>

Number
}

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
32 / 41

Parsing Expressions

<expr> ::= <number> + <expr>
| <number> - <expr>
| <number>

let rec expr =
parser {

let! n = number
let! _ = char '+'
let! e = expr
return Add (n, e)

} <|> number // Subtraction case omitted

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
33 / 41

Warning

warning FS0040: This and other recursive references to the object(s)
being defined will be checked for initialization-soundness at runtime
through the use of a delayed reference. This is because you are
defining one or more recursive objects, rather than recursive
functions.

Can we avoid this warning?

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
34 / 41

Tying the Knot

Resolve circular dependencies by making the expression parser (expr) reference a
mutable parser internally.

let mutable exprRef = { Parse = fun _ -> failwith "XXX" }
let expr = { Parse = fun s -> runOnInput exprRef s }

exprRef <-
parser {

let! n = number
let! _ = char '+'
let! e = expr
return Add (n, e)

} <|> number // Subtraction case omitted

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
35 / 41

In-Class Activity #21

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
36 / 41

Preparation

We are going to use the same git repository as before. Just in case you don’t have it,
clone the repository using the following command.

1. Clone the repository to your machine.
- git clone https://github.com/KAIST-CS220/CS220-Main.git

2. Move in to the directory CS220-Main/Activities
- cd CS220-Main
- cd Activities

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
37 / 41

Problem: Finish the Parser Implementation

Finalize the parser rules so that we can parse AddSubLang expressions with space
chars. For example, the parser should be able to parse the following string: 1 + 2 -
3.

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
38 / 41

Conclusion

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
39 / 41

• Monads are a powerful abstraction mechanism.
• We have observed its power by building our own parser combinator.
• Writing and evaluating your own language is essential to be competent in

programming.

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
40 / 41

Further Readings

• https://fsharpforfunandprofit.com/posts/
understanding-parser-combinators/.

https://fsharpforfunandprofit.com/posts/understanding-parser-combinators/
https://fsharpforfunandprofit.com/posts/understanding-parser-combinators/

Interpreter Monadic Parser In-Class Activity #21 Conclusion Question?
41 / 41

Question?

	Interpreter
	Monadic Parser
	In-Class Activity #21
	Conclusion
	Question?

