
In-Class Activity #02 Integer Types Integer Overflow Conclusion Question?
1 / 22

Lec 3: Integer Arithmetic
CS220: Programming Principles

Sang Kil Cha

In-Class Activity #02 Integer Types Integer Overflow Conclusion Question?
2 / 22

In-Class Activity #02

In-Class Activity #02 Integer Types Integer Overflow Conclusion Question?
3 / 22

Preparation

We are going to use the same git repository as before. Just in case you don’t have it,
clone the repository using the following command.

1. Clone the repository to your machine.
- git clone https://github.com/KAIST-CS220/CS220-Main.git

2. Move in to the directory CS220-Main/Activities
- cd CS220-Main
- cd Activities

In-Class Activity #02 Integer Types Integer Overflow Conclusion Question?
4 / 22

Exercise

Modify the max function. The function should take in four integers as input, and
returns as output the largest number among the given numbers.

In-Class Activity #02 Integer Types Integer Overflow Conclusion Question?
5 / 22

Attendance Check

Note:
1. This slide appears at random time during the class.
2. This link is only valid for a few minutes.
3. We don’t accept late responses.

https://forms.gle/d8GyNPZrVEgaA7Tq6

In-Class Activity #02 Integer Types Integer Overflow Conclusion Question?
6 / 22

Integer Types

In-Class Activity #02 Integer Types Integer Overflow Conclusion Question?
7 / 22

Various Primitive Types in F#

int64, uint64, int32, uint32, int16, uint16, uint8, int8.

But, no int128! Why?

In-Class Activity #02 Integer Types Integer Overflow Conclusion Question?
8 / 22

Suffix for Number Literals

To represent a number literal, we use suffix to represent its type.

Type Suffix Example

int / int32 no suffix / l 1 / 1l
uint32 u 1u
int64 L 1L
uint64 UL 1UL
int16 s 1s
uint16 us 1us

int8 / sbyte y 1y
uint8 / byte y 1uy

In-Class Activity #02 Integer Types Integer Overflow Conclusion Question?
9 / 22

Signed vs. Unsigned

Unsigned integers cannot represent “negative numbers”.

1u - 42u = ?

In-Class Activity #02 Integer Types Integer Overflow Conclusion Question?
10 / 22

Integer Overflow

In-Class Activity #02 Integer Types Integer Overflow Conclusion Question?
11 / 22

Unit of Computation

In a modern desktop machine, we use a 64-bit CPU, which means that the basic
computation unit of it is 64 bits (8 bytes). Most instructions in our CPU can handle
only up to 64-bit numbers.

In-Class Activity #02 Integer Types Integer Overflow Conclusion Question?
12 / 22

What’s the Implication?

18446744073709551615 + 1 = 0

Why? 264 − 1 = 18446744073709551615.

In-Class Activity #02 Integer Types Integer Overflow Conclusion Question?
12 / 22

What’s the Implication?

18446744073709551615 + 1 = 0

Why? 264 − 1 = 18446744073709551615.

In-Class Activity #02 Integer Types Integer Overflow Conclusion Question?
13 / 22

Overflow By Examples

18446744073709551615UL + 1UL // 0UL
2147483647 + 1 // -2147483648
0u - 1u // 4294967295u

In-Class Activity #02 Integer Types Integer Overflow Conclusion Question?
14 / 22

Detecting Overflows?

We can always detect overflows by subdividing normal and abnormal cases.

let z = x - y // example : subtract operation
if z <= x then // normal
else // abnormal (overflow)

In-Class Activity #02 Integer Types Integer Overflow Conclusion Question?
15 / 22

Representing Big Numbers?

We can “emulate” big numbers with 64-bit/32-bit operations using data abstraction!1

type UInt128 = uint64 * uint64

1Using a tuple. You will learn this later.

In-Class Activity #02 Integer Types Integer Overflow Conclusion Question?
16 / 22

Big vs. Normal Integers

Big integer (arbitrary-precision) arithmetic is slower, and uses more memory.
Therefore, we prefer to use normal integers in most cases.

Why? You need to understand the distinction between register and memory. Take
CS230 (System Programming), etc.

In-Class Activity #02 Integer Types Integer Overflow Conclusion Question?
17 / 22

Big Numbers

There is a built-in data type bigint for representing big numbers. We use ‘I’ as a
suffix for big numbers.

1I + 2I // 3I
1I - 2I // -1I
999I // valid
bigint 42 // bigint is a conversion function
bigint 42L = 42I // true

In-Class Activity #02 Integer Types Integer Overflow Conclusion Question?
18 / 22

Floating Point Types?

Use float for double-precision floating-point numbers, and float32 for
single-precision floating-point numbers.

In-Class Activity #02 Integer Types Integer Overflow Conclusion Question?
19 / 22

Quiz #1

• The problem is publicly available at
https://github.com/KAIST-CS220/Quiz1.

• This will be auto-graded (unlike the previous in-class activities).
• You can even see all the tests:

https://github.com/KAIST-CS220/Quiz1/blob/main/Tests/Tests.fs.
• The main purpose of this quiz is to get used to the GitHub classroom

environment, which will be used for future assignments.
• First, you should accept the assignment invitation.
• Then you wait for a minute or two until your own private repository is created.
• Finally, you can clone your own repository and start working on the quiz.

https://github.com/KAIST-CS220/Quiz1
https://github.com/KAIST-CS220/Quiz1/blob/main/Tests/Tests.fs

In-Class Activity #02 Integer Types Integer Overflow Conclusion Question?
20 / 22

Conclusion

In-Class Activity #02 Integer Types Integer Overflow Conclusion Question?
21 / 22

Further Readings

• https://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html

https://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html

In-Class Activity #02 Integer Types Integer Overflow Conclusion Question?
22 / 22

Question?

	In-Class Activity #02
	Integer Types
	Integer Overflow
	Conclusion
	Question?

