
Programs Ingredients of Programs Evaluation Conclusion Question?
1 / 52

Lec 2: Abstraction
CS220: Programming Principles

Sang Kil Cha

Programs Ingredients of Programs Evaluation Conclusion Question?
2 / 52

Attendance Check

Note:
1. This slide appears at random time during the class.
2. This link is only valid for a few minutes.
3. We don’t accept late responses.

https://forms.gle/EFTzeXW4uwPGpL9H8

Programs Ingredients of Programs Evaluation Conclusion Question?
3 / 52

Submit Your GitHub ID

https://forms.gle/KxP3j1jHcStjRaGq8

Programs Ingredients of Programs Evaluation Conclusion Question?
4 / 52

Programs

Programs Ingredients of Programs Evaluation Conclusion Question?
5 / 52

Programming

• Programming is the process of creating a program.

• We represent a program with a language (or programming language).

Programs Ingredients of Programs Evaluation Conclusion Question?
5 / 52

Programming

• Programming is the process of creating a program.
• We represent a program with a language (or programming language).

Programs Ingredients of Programs Evaluation Conclusion Question?
6 / 52

Programming Languages

High-level language: F#, Haskell, Scala, etc.

Low-level language: Assembly language

Programs Ingredients of Programs Evaluation Conclusion Question?
7 / 52

Low-level Programming Languages

Low-level programming languages provide a way to directly manipulate the
computer hardware.

What are the pros and cons of low-level programming languages?

Programs Ingredients of Programs Evaluation Conclusion Question?
7 / 52

Low-level Programming Languages

Low-level programming languages provide a way to directly manipulate the
computer hardware.

What are the pros and cons of low-level programming languages?

Programs Ingredients of Programs Evaluation Conclusion Question?
8 / 52

High-level Programming Languages

High-level programming languages provide a way to abstract our ideas about
computations.

Why abstraction matters?

Programs Ingredients of Programs Evaluation Conclusion Question?
8 / 52

High-level Programming Languages

High-level programming languages provide a way to abstract our ideas about
computations.

Why abstraction matters?

Programs Ingredients of Programs Evaluation Conclusion Question?
9 / 52

Abstraction in Math

We see them all the time.

Let x be a “complex formula”. Then, y = x+

Programs Ingredients of Programs Evaluation Conclusion Question?
10 / 52

Why Abstraction?

1. Abstraction hides unnecessary details, making things easier to understand.
2. Abstraction allows us to focus on the important parts of a problem.
3. Abstraction allows us to build complex systems by combining simple ideas

(because abstracted ideas can be easily combined to form more complex ideas).

Programs Ingredients of Programs Evaluation Conclusion Question?
11 / 52

Abstraction in Programming Language

Q: Which programming language construct helps in abstracting things away?

Recall from CS101.

Programs Ingredients of Programs Evaluation Conclusion Question?
12 / 52

Programming is All About Abstraction

Image from https://techsuplex.com/2017/02/01/evolution-mobile-phone/

Programs Ingredients of Programs Evaluation Conclusion Question?
13 / 52

Why Abstraction?

Abstraction is what our brains do.
• We can only understand simple information at a time.
• We can only understand abstracted information.
• We need abstraction to build large and complex systems.

Programs Ingredients of Programs Evaluation Conclusion Question?
14 / 52

Good Programming Language?

A good programming language should help developers abstract things away thereby
making the code readable. And we will learn how to do it with F#.

Programs Ingredients of Programs Evaluation Conclusion Question?
15 / 52

F#

F# is a “functional-first” language.
• F# is a multi-paradigm language that prioritizes functional programming.
• F# code is concise and easy to read.
• F# code is likely to be correct.
• F# code requires less maintenance cost.
• But may require skills and effort to write code.

Programs Ingredients of Programs Evaluation Conclusion Question?
16 / 52

Ingredients of Programs

Programs Ingredients of Programs Evaluation Conclusion Question?
17 / 52

Key Ingredient: Value

A program is a series of computations (functions) that eventually result in a value.

In programming, we use functions to represent computations. We build abstractions
with functions, and manipulate data with functions. We also combine functions to
make another abstraction, i.e., a function.

In the end, programming is all about creating functions (or writing down values).

Programs Ingredients of Programs Evaluation Conclusion Question?
17 / 52

Key Ingredient: Value

A program is a series of computations (functions) that eventually result in a value.

In programming, we use functions to represent computations. We build abstractions
with functions, and manipulate data with functions. We also combine functions to
make another abstraction, i.e., a function.

In the end, programming is all about creating functions (or writing down values).

Programs Ingredients of Programs Evaluation Conclusion Question?
18 / 52

Functional Programming

Imperative programming is all about firing up commands: “do this, do that, etc.”, but
functional programming is all about writing down functions denoting values.
Therefore, we often call functional programming as value-oriented programming.

Programs Ingredients of Programs Evaluation Conclusion Question?
19 / 52

Expression

An expression is an abstraction that can be evaluated by the programming
language interpreter to produce a value.

Expressions are the basic building block for programs.

Every expression has its own semantics, which describes what kind of
computation the expression represents.

Programs Ingredients of Programs Evaluation Conclusion Question?
19 / 52

Expression

An expression is an abstraction that can be evaluated by the programming
language interpreter to produce a value.

Expressions are the basic building block for programs.

Every expression has its own semantics, which describes what kind of
computation the expression represents.

Programs Ingredients of Programs Evaluation Conclusion Question?
20 / 52

Types

Each expression has its own type, which poses constraints on the expression. We
say a program is well-typed when all the expressions in the program satisfy the type
constraints.

Evaluation of an expression simply fails when the type checking fails.

Programs Ingredients of Programs Evaluation Conclusion Question?
21 / 52

Values

The simplest form of an expression, which does not need further evaluation.

Simple number (int).

42

Floating-point number (float).

4.2

Simple string (string).

"hello"

Boolean (bool).

true

Programs Ingredients of Programs Evaluation Conclusion Question?
22 / 52

Compound Expressions

Compound expression.

42 + 10 * 2

?

4.2 + 1

A type error raised while evaluating the expression!

Programs Ingredients of Programs Evaluation Conclusion Question?
22 / 52

Compound Expressions

Compound expression.

42 + 10 * 2

?

4.2 + 1

A type error raised while evaluating the expression!

Programs Ingredients of Programs Evaluation Conclusion Question?
23 / 52

Giving a Name to a Value

We often see statements in Math that look as below:

Let N be XYZ...

“let” Binding.

let price = 100
let numCars = 2 * 3 + 4
// You don 't need to remember the exact numbers .
let total = price * numCars

Programs Ingredients of Programs Evaluation Conclusion Question?
24 / 52

Functions

A function is an expression that takes in an expression and returns an expression.

A simple function that takes in an integer and returns an integer.

function x -> x + 1

In math, the above function would be written as f(x) = x+ 1.

Programs Ingredients of Programs Evaluation Conclusion Question?
25 / 52

Named Functions and Applications

We usually give a name to a function in order to call it. We say we apply a function f
to an argument a, when we call f with a as a parameter. Function applications
typically do not require parentheses in F#.

Example: a simple increment function.

let increment = function x -> x + 1

increment 1 // this will return 2
increment (1) // you can use parentheses

Programs Ingredients of Programs Evaluation Conclusion Question?
26 / 52

REPL

• Read-Evaluate-Print Loop.
• You first type in an expression to REPL.
• It will read it, evaluate it, and print out the result of evaluation.
• A REPL for F# is fsi (or fsharpi).
• The result of evaluation is stored in a special identifier, called “it”.

Programs Ingredients of Programs Evaluation Conclusion Question?
27 / 52

Type Annotation

We can use ‘colon’ to indicate type of an expression.

Example: type annotation.

function (x: int) -> x + 1 // specify argument type

let increment : (int -> int) = // specify func. type
function x -> x + 1

“int -> int” is a function type that takes input of type int and returns output of type int.

Programs Ingredients of Programs Evaluation Conclusion Question?
28 / 52

Indentation Matters

Valid.

let f =
let y = 42
function x -> x + y

Invalid.

let f =
let y = 42

function x -> x + y // Wrong indentation .

Further reading: https://fsharpforfunandprofit.com/posts/fsharp-syntax/.

https://fsharpforfunandprofit.com/posts/fsharp-syntax/

Programs Ingredients of Programs Evaluation Conclusion Question?
29 / 52

In-Class Activity #0

• Create a .fs file.
• Write a function, named square, which takes an integer n as input, and returns
n× n as output.

• Test your function with the REPL.

Programs Ingredients of Programs Evaluation Conclusion Question?
30 / 52

In-Class Activity #1

• Open up a terminal (console/shell).
• Make sure you can fire the following commands: git and dotnet.
• Clone the repository from https://github.com/KAIST-CS220/CS220-Main by

typing
$ git clone https://github.com/KAIST-CS220/CS220-Main.git

• Move to the Activities directory:
$ cd Activities

• Type dotnet run --project Act01 and make sure you can see the output 0
from your console.

• Follow the instruction in the comment of the Program.fs file and modify the file
to implement the square function.

https://github.com/KAIST-CS220/CS220-Main

Programs Ingredients of Programs Evaluation Conclusion Question?
31 / 52

Functions with Two or More Arguments

Q: We have only learned a way to write a function that takes a single argument. How
can we write a function that takes in two or more arguments without introducing a
new syntax?

(Hint)
• Function is an expression.
• Therefore, we can return a function from a function.

Programs Ingredients of Programs Evaluation Conclusion Question?
32 / 52

Currying

The technique of translating the evaluation of a function takes multiple arguments
into evaluating a sequence of functions, each with a single argument1.

A simple add function with currying.

let add =
function x -> function y -> x + y

add 1 2 // returns 3

1Definition taken from Wikipedia: https://en.wikipedia.org/wiki/Currying

https://en.wikipedia.org/wiki/Currying

Programs Ingredients of Programs Evaluation Conclusion Question?
33 / 52

Partial Function Application

What just happened when we evaluated the expression: add 1 2?

Programs Ingredients of Programs Evaluation Conclusion Question?
34 / 52

Partial Application Examples

Example: define a new function.

let addByTwo = add 2
addByTwo 3 // returns 5

Example: define a function that adds three integers.

let addThreeInts = // exercise

Programs Ingredients of Programs Evaluation Conclusion Question?
35 / 52

We Love Simplicity!

The Problem: the “function” keyword is too strict: it forces that the body, i.e., the
expression after the arrow (->), of the function should be in one line, and it only
allows a single parameter at a time.

Use “fun” instead of “function”!

Programs Ingredients of Programs Evaluation Conclusion Question?
35 / 52

We Love Simplicity!

The Problem: the “function” keyword is too strict: it forces that the body, i.e., the
expression after the arrow (->), of the function should be in one line, and it only
allows a single parameter at a time.

Use “fun” instead of “function”!

Programs Ingredients of Programs Evaluation Conclusion Question?
36 / 52

Have Fun with fun

(1) Rewrite add function with fun.

let add = fun x -> fun y -> x + y

(2) Rewrite add function with fun.

let add = fun x y -> x + y

Note: fun is usually a better choice due to its simplicity, but there are cases where you should use
function, especially when you do “pattern matching”, which will be covered later.

Programs Ingredients of Programs Evaluation Conclusion Question?
37 / 52

Make it Even Simpler

We will mostly use this form throughout the course.

(3) Rewrite add function.

let add x y = x + y

In the same vein, we prefer a simpler form of function application.

add 1 2 // Good
add (1) (2) // Bad
add (1, 2) // Wrong

Programs Ingredients of Programs Evaluation Conclusion Question?
38 / 52

Anonymous Functions

We call a function without its name as an anonymous function, a.k.a., lambda
expression (λ). We will see throughout this course why lambda expressions matter.

Anonymous function vs. named function.

function x -> x + 1 // anonymous function
let inc x = x + 1 // named function

Programs Ingredients of Programs Evaluation Conclusion Question?
39 / 52

Infix Operators

A function taking two arguments can often be more readable if we use infix notation.

“add 1 2” vs. “1 + 2”?

In fact, infix operators are a function. For example, the (+) operator was also a
function.

Example: infix operator.

let (+) x y = x + y

Programs Ingredients of Programs Evaluation Conclusion Question?
40 / 52

Nested Functions

Consider a function f(x, y) = x2 + y2.

let sumOfSquares x y = x * x + y * y // (1)

But, we can refactor the sqaure function, and use it in sumOfSquares.

let square x = x * x
let sumOfSquares x y = square x + square y // (2)

What’s the difference between the two functions? Think about the abstraction!

Programs Ingredients of Programs Evaluation Conclusion Question?
40 / 52

Nested Functions

Consider a function f(x, y) = x2 + y2.

let sumOfSquares x y = x * x + y * y // (1)

But, we can refactor the sqaure function, and use it in sumOfSquares.

let square x = x * x
let sumOfSquares x y = square x + square y // (2)

What’s the difference between the two functions? Think about the abstraction!

Programs Ingredients of Programs Evaluation Conclusion Question?
41 / 52

Conditional Expressions

How can we make tests and perform different operations depending on the results of
a test?

if (boolean expression) then (expression 1) else (expression 2)

• The boolean expression part is called predicate, which is an expression that
can be evaluated to either true or false.

• The expression 1 and 2 should have the same type, otherwise, type checking
will fail.

Programs Ingredients of Programs Evaluation Conclusion Question?
42 / 52

Conditional Expression Example

A abs function that returns an absolute integer value.

let abs x = if x < 0 then - x else x

Programs Ingredients of Programs Evaluation Conclusion Question?
43 / 52

Logical Composition

not a // boolean negation
a || b // boolean or
a && b // boolean and

if (a && b) || (c && d) then 100 else 200

Programs Ingredients of Programs Evaluation Conclusion Question?
44 / 52

Function Pipelining

We can apply function in a reverse order by using the infix operator (|>). This
operator allows function pipelining, which links a sequence of functions in an intuitive
manner.

f 10 // normal application
10 |> f // reverse application
inc (abs 10) // normal function chaining
10 |> abs |> inc // pipelining without parentheses

Programs Ingredients of Programs Evaluation Conclusion Question?
45 / 52

Evaluation

Programs Ingredients of Programs Evaluation Conclusion Question?
46 / 52

Evaluating an Expression

Evaluation is a procedure, i.e., a function, that takes in an expression as input, and
returns a value as output.

The evaluation function eval.

let eval expr = // How do we implement this ... ?

Programs Ingredients of Programs Evaluation Conclusion Question?
47 / 52

Evaluation Rule

So far we have learned three kinds of expressions: values, let-bindings, and
functions. The eval function of the expressions should run as follows.

• If the current expression is a value, we simply return the value.
• If the current expression is a let-binding, we first evaluate the subexpression2

(i.e., the expression body), and memorize the relationship between the identifier
and the evaluated value.

• If the current expression is a function, we first evaluate subexpressions (i.e.,
parameters) of it, and apply the function to the evaluated parameter values.

2We often call this as applicative-order evaluation.

Programs Ingredients of Programs Evaluation Conclusion Question?
48 / 52

Evaluation Example

Consider a compound expression: (2 + 4 * 6) * (3 + 5).

*

+

2 *

4 6

+

3 5

Programs Ingredients of Programs Evaluation Conclusion Question?
49 / 52

Conclusion

Programs Ingredients of Programs Evaluation Conclusion Question?
50 / 52

• A computation is the process of evaluating a series of expressions on a given
user input.

• Expressions in programming languages provide a way to represent data and
combine computations.

• Functions provide nice abstraction about computations. In fact, programming is
all about abstraction.

• Currying provides a way to deal with multiple parameters with single-parameter
functions.

• F# is beautiful, because it is concise while providing powerful abstraction
mechanisms, which will be well covered throughout the course.

• The expression evaluation process naturally introduces recursion, which is
indeed the next topic ⌣.

Programs Ingredients of Programs Evaluation Conclusion Question?
51 / 52

Question?

Programs Ingredients of Programs Evaluation Conclusion Question?
52 / 52

Further Reading

• The wizard book: Chapter 1.1.
• F# Indentation:

https://fsharpforfunandprofit.com/posts/fsharp-syntax/

https://fsharpforfunandprofit.com/posts/fsharp-syntax/

	Programs
	Ingredients of Programs
	Evaluation
	Conclusion
	Question?

