
Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
1 / 39

Lec 20: Computation
Expression

CS220: Programming Principles

Sang Kil Cha

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
2 / 39

Computation Expression

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
3 / 39

Recall Asynchronous Computations

async { exprs ... } was an example of computation expressions. Computation
expressions provide a convenient syntax for writing computations.

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
4 / 39

Another Example: seq

The seq computation expression has a similar form: seq { ... }. And it helps build
sequence expressions.

seq { for i = 0 to 5 do yield (i, i * i) }
seq { while true do yield 1 } // Infinite sequence .

Compared to Seq.unfold, which one is easier to understand?

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
5 / 39

What is Similar?

Given the above examples of computation expressions, i.e., seq and async, is there
any common thing that you can figure out?

Those exprssions represent specific computations under a specific context.

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
5 / 39

What is Similar?

Given the above examples of computation expressions, i.e., seq and async, is there
any common thing that you can figure out?

Those exprssions represent specific computations under a specific context.

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
6 / 39

Expressing Context-Sensitive Computations

We can represent context-sensitive computations using a “wrapped” type1, called
computation.

1They are wrapped by a type constructor.

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
7 / 39

Attendance Check

Note:
1. This slide appears at random time during the class.
2. This link is only valid for a few minutes.
3. We don’t accept late responses.

https://forms.gle/5Y1MCvoFn7W7dAAF8

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
8 / 39

Monads

A monad is a design pattern that allows structuring programs generically while
automating away boilerplate code needed by the program logic2.

Monads allow us to hide some low-level details of computations.

2https://en.wikipedia.org/wiki/Monad_(functional_programming)

https://en.wikipedia.org/wiki/Monad_(functional_programming)

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
9 / 39

What Were Hidden in async and seq?

• When building an async computation, all the low-level thread management code
was hidden from the expression.

• When building a seq computation, the details about constructing cons cells and
maintaining its state were hidden.

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
10 / 39

Monads in this Class

A monad is a triple of a generic type constructor (M<’T>) and the two following
operations.

val Bind: M<’T> * (’T -> M<’U>) -> M<’U>

val Return: ’T -> M<’T>

✓ Monads are like a box: it is a box with a value of type ’T, and the function (’T ->
M<’U>) takes the value from the box and returns another box of type (M<’U>).

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
11 / 39

Motivating Example

let inc x = x + 1
let dec x = x - 1
// Concise and easy to understand
let id = inc >> dec

Function composition is elegant and easy to understand.

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
12 / 39

Motivating Example (cont’d)

type ResultWithDebugMessage <'a> = {
Result : 'a
DbgMsg : string

}
let inc x = { Result = x + 1; DbgMsg = " incremented " }
let dec x = { Result = x - 1; DbgMsg = " decremented " }
let id = inc >> dec // type mismatch .

Works, but not elegant.

let id x =
let rA = inc x
let rB = dec rA. Result
{ Result = rB. Result ; DbgMsg = rA. DbgMsg + "\n" + rB. DbgMsg }

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
13 / 39

Make it Combinable

let bind f r =
let r' = f r.Result
{ r' with DbgMsg = r.DbgMsg + "\n" + r'. DbgMsg }

let id = inc >> bind dec

The id function now combines inc and dec in an elegant manner.

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
14 / 39

Return the Boxed Type

We want to make ResultWithDebugMessage value from an integer: wrap function
simply wraps a value without any debugging message.

let wrap r = { Result = r; DbgMsg = "" }
let id =

inc
>> bind dec
>> bind (fun x -> x + 1 |> wrap)
>> bind dec

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
15 / 39

Signatures of bind and wrap

val bind:
(’a -> ResultWithDebugMessage<’b>)
-> ResultWithDebugMessage<’a>
-> ResultWithDebugMessage<’b>

val wrap:
’a -> ResultWithDebugMessage<’a>

val Bind:
M<’T> * (’T -> M<’U>) -> M<’U>

(Same as bind after swapping the
argument order)

val Return: ’T -> M<’T>

ResultWithDebugMessage<’a> was an example of monad!

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
16 / 39

Bottom Line

We can logically bind functions while hiding some details behind the scene with
monads. Typically we define a bind operator (»=), which is an infix-operator for the
Bind function discussed above.

let (>>=) m f = bind f m
let id x = inc x >>= dec >>= inc >>= dec

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
17 / 39

Enhancing The Expressivenes

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
18 / 39

Let-Bindings Revisited

We can always convert let-bindings to a function with nested function calls: function
calls another function, and the function calls another function, and so on.

let x = 1
let y = 2 + x
let z = x * y
z

1 |> fun x ->
2 + x |> fun y ->

x * y |> fun z ->
z

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
19 / 39

Creating a Bind Function

Let us now create a bind function that takes in a value and a function, and apply the
value to the function (as in the pipe operator).

let bind x f = f x
let ret x = x
bind 1 (fun x ->

bind (2 + x) (fun y ->
bind (x * y) (fun z ->

ret z)))

This is so-called “continuation passing style” (CPS).

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
20 / 39

Continuation Passing Style?

In CPS, functions always end with a function that we call continuation, which
describes what to do next.

// Normal
let add a b = a + b
let x = add (add 1 2) 3
// CPS
let add a b cont = cont (a + b)
let x = add 1 2 (fun r -> add r 3 (fun r -> r))

⋆ Food for Thought. CPS forces us to write tail-recursive functions, but it doesn’t
mean that it helps reduce memory consumption.

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
21 / 39

CPS Bindings vs. Let-Bindings

Syntactically different but semantically the same.

bind 1 (fun x ->
bind (2 + x) (fun y ->

bind (x * y) (fun z ->
ret z)))

let x = 1
let y = 2 + x
let z = x * y
z

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
22 / 39

Hiding Complex Logic

If we can transform the chain of bind-ret function calls into expressions that look
like let-bindings, and if our language supports such a transformation, then we can
hide some complex logic under a beautiful language.

let bind x f =
printfn "you can do some complex things here."
f x

bind 1 (fun x ->
bind (2 + x) (fun y ->

bind (x * y) (fun z ->
ret z)))

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
23 / 39

let vs. let!

Compare bind and ResultWithDebugMessage.bind

let bind x f = f x // 'a -> ('a -> 'b) -> 'b

module ResultWithDebugMessage =
// ResultWithDebugMessage <'a> ->
// ('a -> ResultWithDebugMessage <'b>) ->
// ResultWithDebugMessage <'b>
let bind r f =

let r' = f r. Result
{ r' with DbgMsg = r. DbgMsg + "\n" + r '. DbgMsg }

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
24 / 39

Example: Safe Division

Safe division function.

let safeDiv a b =
if b = 0 then None
else Some (a / b)

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
25 / 39

Too Many Nested Checks

// unsafe div
let x = (((a / b) / c) / d) / e
// safe div
let x' =

match safeDiv a b with
| None -> None
| Some r ->

match safeDiv r c with
| None -> None
| Some r ->

match safeDiv r d with
| None -> None
| Some r -> safeDiv r e

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
26 / 39

Observation

The nested match expressions follow a CPS. We can write our own “bind” function
to connect them!

let bind (x, f) =
match x with
| None -> None
| Some m -> f m

let ret x = Some x

bind (safeDiv a b, fun r ->
bind (safeDiv r c, fun r ->

bind (safeDiv r d, fun r ->
bind (safeDiv r e, fun r ->

ret r))))

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
27 / 39

Built-in Binder: Option.bind

Works the same, but it takes a continuation first.

val Option.bind: (’a -> ’b option) -> ’a option -> ’b option

safeDiv a b |> Option .bind (fun r ->
safeDiv r c |> Option .bind (fun r ->

safeDiv r d |> Option .bind (fun r ->
safeDiv r e |> Option .bind (fun r ->

ret r))))

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
28 / 39

Computation Expression Builder

A computation expression builder is a class that contains several member functions
such as Bind and Return.

val __.Bind: M<’T> * (’T -> M<’U>) -> M<’U>

val __.Return: ’T -> M<’T>

We can define our own builder to create our computation expressions.

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
29 / 39

Maybe Computation Expression

type MaybeBuilder () =
member __.Bind (m, f) = Option.bind f m
member __.Return (m) = Some m

let maybe = MaybeBuilder ()

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
30 / 39

maybe {
let! r = safeDiv a b
let! r = safeDiv r c
let! r = safeDiv r d
let! r = safeDiv r e
return r

}

• The Bind member corresponds to the let! expression.
• The Return member corresponds to the return expression.

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
31 / 39

DB Example

match Email. create emailInput with
| Some email ->

match Name. create nameInput with
| Some name ->

match ID. create idInput with
| Some id ->

DB. insert db email name id // insert into the DB
| None -> db // return the DB as it is

| None -> db
| None -> db

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
32 / 39

DB Example (cont’d)

maybe {
let! email = Email.create emailInput
let! name = Name.create nameInput
let! id = ID.create idInput
return DB.insert email name id

}

Elegant and easy to read!

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
33 / 39

In-Class Activity #20

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
34 / 39

Preparation

We are going to use the same git repository as before. Just in case you don’t have it,
clone the repository using the following command.

1. Clone the repository to your machine.
- git clone https://github.com/KAIST-CS220/CS220-Main.git

2. Move in to the directory CS220-Main/Activities
- cd CS220-Main
- cd Activities

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
35 / 39

Problem: Define Your Own

Define your own computation expression for list. The computation expression should
be able to handle the following code.

mylist { for i in [1 .. 10] do yield i * i }
mylist { for i in [1 .. 10] do yield i * i }

Hint: you need to define Yield and For members.

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
36 / 39

For Member

for identifier = enumerable-expr do cexpr

becomes

builder.For (enumerable-expr, fun identifier -> cexpr)

for identifier = expr1 to expr2 do cexpr

becomes

builder.For (seq [expr1 .. expr2], fun identifier -> cexpr)

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
37 / 39

Conclusion

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
38 / 39

Further Readings

• https:
//fsharpforfunandprofit.com/series/computation-expressions.html

https://fsharpforfunandprofit.com/series/computation-expressions.html
https://fsharpforfunandprofit.com/series/computation-expressions.html

Computation Expression Enhancing The Expressivenes In-Class Activity #20 Conclusion Question?
39 / 39

Question?

	Computation Expression
	Enhancing The Expressivenes
	In-Class Activity #20
	Conclusion
	Question?

