
Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
1 / 33

Lec 19: Asynchronous
Computation

CS220: Programming Principles

Sang Kil Cha



Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
2 / 33

Asynchronous Computation



Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
3 / 33

Asynchrony

Asynchrony means that one or more computations can execute independently of
the main program flow. In other words, the main program flow does not wait for the
completion of the asynchronous computations.



Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
4 / 33

Concurrency, Parallelism, and Asynchrony

• Concurrency is when multiple computations execute in overlapping time
periods.

• Parallelism is when multiple computations run at exactly the same time.
• Asynchrony is when one or more computations execute separately from the

main program flow.

See https://learn.microsoft.com/en-us/dotnet/fsharp/tutorials/async
for more discussion about the terms.

https://learn.microsoft.com/en-us/dotnet/fsharp/tutorials/async


Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
5 / 33

Synchronous vs. Asynchronous

Synchronous.

download "http :// example .com/"
// Above computation may take long
handleUserInput ()

Asynchronous.

downloadAsync "http :// example .com/"
// Above immediately returns
handleUserInput ()



Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
6 / 33

Attendance Check

Note:
1. This slide appears at random time during the class.
2. This link is only valid for a few minutes.
3. We don’t accept late responses.

https://forms.gle/xUwetNF9g4PUW2zM9


Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
7 / 33

Why Asynchronous?

Maximize the ability of our computation resource. You don’t get blocked by a single
task.

Suppose we are downloading 10 files (F1, F2, · · · , F10) from 10 distinct URLs where
each web server has different network throughput.



Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
8 / 33

Asynchronous Computation Everywhere

1. Web browser allows you to navigate web pages while downloading a file.
2. Visual studio captures compilation errors while you are typing your code.
3. Copilot can assist you while you are writing your code.
4. And many more.



Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
9 / 33

How to Detach a Computation from the Main
Program?

1. Create an asynchronous computation: async { expression }.
2. Run the asynchronous computation with Async.Start or similar functions.
3. Then you can continue with the main program flow while the asynchronous

computation is running.



Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
10 / 33

Async<’T> type.

An asynchronous computation is represented by the Async<’T> type, which will be
evaluated as a value of type ’T at some point in the future.

async {
let ones = Seq.unfold (fun _ -> Some (1, ())) ()
ones |> Seq.item 1000000 |> printfn "%d"

} |> Async.Start
printfn "This message may appear before the above."



Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
11 / 33

Synchronous Wait

val Async.RunSynchronously: Async<’T> -> ’T

We can wait for the result of an asynchronous computation using
Async.RunSynchronously.

async {
let ones = Seq.unfold (fun _ -> Some (1, ())) ()
ones |> Seq.item 1000000 |> printfn "%d"

} |> Async. RunSynchronously
printfn "This message will appear after the above."



Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
12 / 33

Achieving Parallelism

val Async.Parallel: seq<Async<’T» -> Async<’T []>

We can run multiple asynchronous computations in parallel using Async.Parallel.

[ async { Console . WriteLine "A" }
async { Console . WriteLine "B" } ]

|> Async. Parallel
|> Async. RunSynchronously



Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
13 / 33

Example: Asynchronous Web Browsing

All existing web browsers can download and render multiple web pages in a
concurrent manner. The download process is roughly as follows.

1. Send a page request to the target web server.
2. Wait for the server’s response.
3. Get the response.

The entire process should run in the order, although each of the
steps is asynchronous!



Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
14 / 33

Let the download process be an async computation
(WebClient.AsyncDownloadString). Then we can create another asynchronous
computation that internally runs the download computation.

open System
open System .Net

let download url = async {
let uri = Uri (url)
use webclient = new WebClient ()
let! html = webclient . AsyncDownloadString (uri)
Console . WriteLine $"{url} Read {html. Length } chars ."

}

[ download " https :// www. google .com"
download " https :// github .com"
download " https :// fsharp .org" ]

|> Async . Parallel
|> Async . RunSynchronously



Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
15 / 33

let!

“let! name = expr” in an async block means: “perform the asynchronous
computation expr and bind the result to name when the operation completes.”.

This way, we can easily have nested asynchronous operations.



Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
16 / 33

return and return!

We use return or return! at the end of an async computation (although it can be
omitted unless there is a recursion). In the above example, The last line of the async
computation simply omitted the return keyword.

return! is similar to return, but it first evaluates an async computation and waits
for it to finish (as in let!), and returns the result wrapper with an async computation.

async {
let! x = SomeAsyncComp
return x

}

async {
return! SomeAsyncComp

}



Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
17 / 33

Example: Parallelism and Performance

Suppose we create a list of random strings. And we want to count the number of ’a’s
in each string, and then sum them up.

let chars = " abcdefghijklmnopqrstuvwxyz " |> Seq. toArray
let r = Random ()
let strings =

List.init 10000 (fun _ ->
let len = r.Next 10000
String .init len (fun _ ->

chars [r.Next( chars . Length )] |> string ))

let countA (s: string ) =
s
|> Seq. filter (fun ch -> ch = 'a ') |> Seq. length

let countA ' s = async { return countA s }



Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
18 / 33

// Nonparallel
strings
|> List.map countA
|> List. reduce (+)
|> printfn "%d"

// Parallel (10x faster on a 8-core machine )
strings
|> List.map countA '
|> Async . Parallel
|> Async . RunSynchronously
|> Array . reduce (+)
|> printfn "%d"



Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
19 / 33

Task Expressions

Similar to Async<’T>, Task<’T> is a type that represents an asynchronous
computation that will produce a value of type ’T at some point in the future.

While Async<’T> is specific to F#, Task<’T> is a part of the .NET framework and is
compatible with other languages. Another important difference is that Task<’T>
expression will be evaluated immediately when it is created.



Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
20 / 33

Example Task Expression

open System
open System . Threading
open System . Threading . Tasks

let taskLoop cnt =
task {

for i in 1 .. cnt do
Console . WriteLine $" Count = {i}"
do! Task. Delay 1000

}
let t = taskLoop 10
t.Wait ()



Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
21 / 33

Actor Model



Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
22 / 33

Actor Model

The actor model in computer science is a mathematical model of concurrent
computation that treats "actors" as the universal primitives of concurrent
computation1.

1https://en.wikipedia.org/wiki/Actor_model

https://en.wikipedia.org/wiki/Actor_model


Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
23 / 33

Actor

An actor, which is a primitive unit of concurrent computation, receives a message
and do some computation based on it in a completely isolated environment. Actors
can communicate with each other by sending messages (mails), and each actor has
its own mailbox, which stores all the messages that are yet processed. Actors may
modify their own state, but they can only affect each other through messages. This
way, we can avoid using locks!



Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
24 / 33

F#’s Native Support for Actor Model

MailboxProcessor<’Msg> class represents an actor which executes an
asynchronous computation.

type MailboxProcessor <'Msg > =
class

interface IDisposable
...
member this.Post : 'Msg -> unit
member this.Start : unit -> unit
static member Start : ( MailboxProcessor <'Msg > -> Async <

unit >) -> MailboxProcessor <'Msg >
...



Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
25 / 33

Example: Echo Agent

let echoAgent = MailboxProcessor .Start (fun inbox ->
let rec loop () = async {

let! msg = inbox. Receive ()
printfn "Got message : %s" msg
return! loop ()

}
loop ())

echoAgent .Post "foo"
echoAgent .Post "bar"



Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
26 / 33

So, Why Actor Model?

1. No shared states: no locking!
2. Easy to write concurrent programs.



Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
27 / 33

Eliminating Mutable States (Bank Account)

type BankMessage = Withdraw of int

let account initialBalance =
MailboxProcessor . Start (fun inbox ->

let rec loop balance = async {
let! msg = inbox . Receive ()
match msg with
| Withdraw amount ->

let balance ' = balance - amount
printfn " Balance : %d" balance '
return! loop balance '

}
loop initialBalance

)



Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
28 / 33

In-Class Activity #19



Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
29 / 33

Preparation

We are going to use the same git repository as before. Just in case you don’t have it,
clone the repository using the following command.

1. Clone the repository to your machine.
- git clone https://github.com/KAIST-CS220/CS220-Main.git

2. Move in to the directory CS220-Main/Activities
- cd CS220-Main
- cd Activities



Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
30 / 33

Problem

Finalize the bank account actor model and test It. Explain why this program does not
require any locks.



Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
31 / 33

Conclusion



Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
32 / 33

Further Readings

• https:
//fsharpforfunandprofit.com/posts/concurrency-async-and-parallel/

• https://fsharpforfunandprofit.com/posts/concurrency-actor-model/

https://fsharpforfunandprofit.com/posts/concurrency-async-and-parallel/
https://fsharpforfunandprofit.com/posts/concurrency-async-and-parallel/
https://fsharpforfunandprofit.com/posts/concurrency-actor-model/


Asynchronous Computation Actor Model In-Class Activity #19 Conclusion Question?
33 / 33

Question?


	Asynchronous Computation
	Actor Model
	In-Class Activity #19
	Conclusion
	Question?

