
Streams Memoization In-Class Activity #18 Locking Conclusion Question?
1 / 37

Lec 18: Streams
CS220: Programming Principles

Sang Kil Cha

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
2 / 37

Streams

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
3 / 37

Attendance Check

Note:
1. This slide appears at random time during the class.
2. This link is only valid for a few minutes.
3. We don’t accept late responses.

https://forms.gle/oCF2bYMADpEXWcCQ7

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
4 / 37

Recap: Streams

Stream type: delayed list.

type Stream <'a> =
| Nil
| Cons of 'a * (unit -> Stream <'a>)

Streams can be used to represent values that are produced over time.

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
5 / 37

Eliminating “Iterations”

Recall Newton’s method, which is a recursive algorithm for computing a square root.

xn+1 =
1

2

(
xn +

a

xn

)

let improve guess x = (guess + (x / guess)) / 2.0

let sqrtStream x =
let rec stream =

Cons (1.0, fun () -> Stream .map (fun g -> improve g x) stream)
stream

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
6 / 37

Eliminating States with Streams

Pseudo-Random Number Generator (with a mutable variable).

let rand seed =
let mutable r = seed
fun () ->

r <- (1103515245 * r + 12345) &&& System .Int32. MaxValue
r

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
7 / 37

Eliminating States with Streams (cont’d)

Pseudo-Random Number Generator (with stream).

let randStream seed =
let rec r seed =

let next = (1103515245 * seed + 12345) &&& System .Int32.
MaxValue

Cons (next , (fun () -> r next))
r seed

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
8 / 37

BankAccount with Stream?

In essence, we represent time explicitly, using streams, so that we decouple time in
our simulated world from the sequence of events that take place during evaluation1

1Wizard Book Chap. 3.5.5.

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
9 / 37

BankAccount with Stream Example

let rec bankAccountStream balance amountStream =
Cons (balance ,

fun () ->
bankAccountStream

(balance - Stream .car amountStream)
(Stream .cdr amountStream))

No mutable state! Therefore, no race condition! We are back to functional.

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
10 / 37

Memoization

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
11 / 37

The Performance Problem of Lazy Expression

If we use a delayed object multiple times in a program, it is largely redundant to
evaluate the same expression everytime it is referenced.

Key insight to solve the problem: remember the evaluated value and just use it.

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
12 / 37

Memoization

let lazyExp () =
// complex expressions

let memoizedExp =
let mutable v = None
fun () ->

match v with
| None ->

let e = lazyExp ()
v <- Some e
e

| Some v -> v

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
13 / 37

Built-in Lazy Expression

let x = lazy 42

x.Force ()

let exp = lazy (printfn "hi"; 42)

exp.Force ()

exp.Force ()

The lazy expression uses memoization internally.

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
14 / 37

Built-in Stream: Sequence in F#

seq<’T> is a stream, we can create a stream with Seq.unfold function.

val Seq.unfold: (’State -> (’T * ’State) option) -> ’State -> seq<’T>

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
15 / 37

Infinite Sequence Example

let ones = Seq.unfold (fun () -> Some (1, ())) ()

let fibs =
Seq.unfold (fun (a, b) ->

Some (a, (b, a + b))) (0, 1)

let zeroToInf = Seq. initInfinite (fun n -> n)

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
16 / 37

Finite Sequence Example

let numbers =
0
|> Seq.unfold (fun state ->

if state > 20 then None
else Some(state , state + 1))

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
17 / 37

Unfold Exercise

Write a finite sequence of fibonacci numbers in int32 type, up to the point where the
number exceeds the maximum value of int32.

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
18 / 37

Seq.initInfinite

Write an infinite sequence of fibonacci numbers with Seq.initInfinite.

let rec fibs =
Seq. initInfinite (fun n ->

if n = 0 then 0
elif n = 1 then 1
else Seq.item (n - 1) fibs + Seq.item (n - 2)

fibs)

This is not efficient! Why?

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
18 / 37

Seq.initInfinite

Write an infinite sequence of fibonacci numbers with Seq.initInfinite.

let rec fibs =
Seq. initInfinite (fun n ->

if n = 0 then 0
elif n = 1 then 1
else Seq.item (n - 1) fibs + Seq.item (n - 2)

fibs)

This is not efficient! Why?

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
19 / 37

Laziness of Sequence

let mySeq = Seq. initInfinite id
let truncatedSeq = Seq. truncate 10 mySeq
let takenSeq 1 = Seq.take 10 mySeq
let takenSeq 2 = Seq.take 20 truncatedSeq
let printSeq sq = Seq.iter (printf "%d") sq; printfn ""

truncatedSeq |> printSeq
takenSeq 1 |> printSeq
takenSeq 2 |> printSeq // raise exception here

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
20 / 37

LazyList

What’s the difference between Seq and LazyList?
1. LazyList performs memoization, while Seq does not.
2. LazyList can be pattern-matched directly (with active patterns).
3. LazyList is not a built-in type in F#. It is defined in the FSharpx.Collections

library.

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
21 / 37

Example Usage of LazyList

open FSharpx . Collections

let ones =
LazyList . unfold (fun () -> Some (1, ())) ()

match ones with
| LazyList .Cons (n, _) -> printfn "The first element is %d" n
| _ -> printfn "The list is empty"

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
22 / 37

In-Class Activity #18

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
23 / 37

Preparation

We are going to use the same git repository as before. Just in case you don’t have it,
clone the repository using the following command.

1. Clone the repository to your machine.
- git clone https://github.com/KAIST-CS220/CS220-Main.git

2. Move in to the directory CS220-Main/Activities
- cd CS220-Main
- cd Activities

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
24 / 37

Problem

Convert the given an infinite LazyList into another LazyList that contains a
pairwise sequence of the original list. For example, when the given list is [1; 2; 3;
4], then the output should be [(1, 2); (3, 4)].

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
25 / 37

Locking

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
26 / 37

Concurrency Requirement

A concurrent system should produce the same result as if the processes had run
sequentially in a certain order. One way to achieve this is to leverage locking
primitives, such as mutex.

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
27 / 37

Mutex (Mutual Exclusion)

Mutex is an object that supports two operations: (1) the mutex can be acquired, and
(2) the mutex can be released. Once a mutex is acquired by someone, no other
acquire operations on the same mutex can proceed until the mutex is released by the
owner.

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
28 / 37

Mutex (Conceptual) Implementation

type Mutex () =
let mutable lock = false
member __. TestAndSet () = // This needs H/W support

if lock then true
else lock <- true; false

member __. Acquire () =
if __. TestAndSet () then __. Acquire () else ()

member __. Release () =
lock <- false

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
29 / 37

Making WithDraw Safe

let makeSerializer =
let m = Mutex ()
fun p (arg: int) ->

m. Acquire ()
p arg
m. Release ()

let acc = BankAccount (10000)
let safeWithdraw = acc. WithDraw |> makeSerializer
safeWithdraw 500 // A
safeWithdraw 1500 // B
// Safe even if A and B run concurrently

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
30 / 37

Advanced example.

type BankAccount (initial) =
let m = Mutex ()
member val Balance = initial with get , set
member __. WithDraw amount =

m. Acquire ()
let newBalance = __. Balance - amount
__. Balance <- newBalance
m. Release ()

member __. Deposit amount =
m. Acquire ()
let newBalance = __. Balance + amount
__. Balance <- newBalance
m. Release ()

member __. Transfer amount (account : BankAccount) =
m. Acquire ()
__. Balance <- __. Balance - amount
account . Deposit amount
m. Release ()

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
31 / 37

Deadlock

Suppose both A and B try to transfer money to each other at the same time.

let accA = BankAccount (1000) // A
let accB = BankAccount (500) // B

// Suppose the followings run concurrently
accA. Transfer 100 accB
accB. Transfer 200 accA

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
32 / 37

Locking is Error-Prone

1. When our program has two few locks: data race happens.
2. When our program has too many locks: likely to have deadlocks.

Writing a correct program is extremely difficult with locking!

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
33 / 37

Stream of Withdrawal

We model the withdrawal processes as a stream of events.

let balance = 1500

let amountStream = seq [1500; 500]

let withdrawStream =
Seq. unfold (fun (balance , events) ->

if Seq. isEmpty events then None
else

let amount = Seq.head events
if amount <= balance then

let newBalance = balance - Seq.head events
Some (newBalance , (newBalance , Seq.tail events))

else
Some (balance , (balance , Seq.tail events))) (balance , amountStream)

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
34 / 37

Conclusion

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
35 / 37

Streams in Practice

1. File I/O.
2. Network sockets.
3. Signal processing.
4. and many more.

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
36 / 37

Further Readings

• Wizard Book Chap. 3.4 and 3.5.

Streams Memoization In-Class Activity #18 Locking Conclusion Question?
37 / 37

Question?

	Streams
	Memoization
	In-Class Activity #18
	Locking
	Conclusion
	Question?

