
Concurrency Streams In-Class Activity #17 Conclusion Question?
1 / 27

Lec 17: Lazy Computation
CS220: Programming Principles

Sang Kil Cha

Concurrency Streams In-Class Activity #17 Conclusion Question?
2 / 27

Concurrency

Concurrency Streams In-Class Activity #17 Conclusion Question?
3 / 27

Considering the Physical World

Objects in the world do not change one at a time. All the objects in the world act
concurrently. To model the physical world, it is natural to consider computational
processes that execute concurrently.

Concurrency Streams In-Class Activity #17 Conclusion Question?
4 / 27

Price of Mutability = Additional Dimension

An expression of the same symbolic name can have different values at different
points in time.

OOP and imperative programming force us to confront time as an
essential concept in programming.

Concurrency Streams In-Class Activity #17 Conclusion Question?
4 / 27

Price of Mutability = Additional Dimension

An expression of the same symbolic name can have different values at different
points in time.

OOP and imperative programming force us to confront time as an
essential concept in programming.

Concurrency Streams In-Class Activity #17 Conclusion Question?
5 / 27

Bank Account Example

Suppose A and B share the same bank account containing 10,000 won. Assume A
withdraws 1,500 won, and B withdraws 500 won from the account. What’s the
expected balance after the two operations?

What if A and B access the same bank account through a network?

Concurrency Streams In-Class Activity #17 Conclusion Question?
5 / 27

Bank Account Example

Suppose A and B share the same bank account containing 10,000 won. Assume A
withdraws 1,500 won, and B withdraws 500 won from the account. What’s the
expected balance after the two operations?

What if A and B access the same bank account through a network?

Concurrency Streams In-Class Activity #17 Conclusion Question?
6 / 27

Bank Account Implementation

type BankAccount (initial) =
member val Balance = initial with get , set
member __. WithDraw amount =

if __. Balance > amount then // 1
let newBalance = __. Balance - amount // 2
__. Balance <- newBalance // 3
printfn "%d won out" amount

else ()

Concurrency Streams In-Class Activity #17 Conclusion Question?
7 / 27

What is Shared?

Suppose there were two function calls to (__.WithDraw) at the same time. Each
function call will create its own calling context, and local (in-function) variables will be
stored in its calling context, but the property Balance will be shared across the two
function calls.

Concurrency Streams In-Class Activity #17 Conclusion Question?
8 / 27

Timing Really Matters

A wants to withdraw 1,500 won.
1. if __.Balance > 1500
2. __.Balance - 1500
3. __.Balance = ?

B wants to withdraw 500 won.
4. if __.Balance > 500
5. __.Balance - 500
6. __.Balance = ?

Assume that the initial balance is 1,500 won. What’s the balance after?
• 1 → 2 → 3 → 4 → 5 → 6

• 1 → 4 → 2 → 5 → 3 → 6

• 4 → 1 → 2 → 3 → 5 → 6

• ...

Concurrency Streams In-Class Activity #17 Conclusion Question?
9 / 27

Streams

Concurrency Streams In-Class Activity #17 Conclusion Question?
10 / 27

Attendance Check

Note:
1. This slide appears at random time during the class.
2. This link is only valid for a few minutes.
3. We don’t accept late responses.

https://forms.gle/jB5obNPY2qmMX4e78

Concurrency Streams In-Class Activity #17 Conclusion Question?
11 / 27

Back to the Functional World

We’ve learned that OOP and imperative language features are a good tool for
modeling real world, but it is at the same time a poor way of handling concurrency.
Let’s now go back to our functional world by introducing a new data structure, called
streams.

Concurrency Streams In-Class Activity #17 Conclusion Question?
12 / 27

Values Changing Over Time

Why did we need to model a value as an object? Because it changes over time. But,
can we model a varying value in a pure functional world?

Yes. Think of a function f of time t: f(t).

Concurrency Streams In-Class Activity #17 Conclusion Question?
12 / 27

Values Changing Over Time

Why did we need to model a value as an object? Because it changes over time. But,
can we model a varying value in a pure functional world?

Yes. Think of a function f of time t: f(t).

Concurrency Streams In-Class Activity #17 Conclusion Question?
13 / 27

Motivating Example

let f =
let mutable x = 0
fun () ->

x <- x + 1
x

let f t =
// " Infinite " list
let lst = [1; 2; 3; ...]
lst[t]

Concurrency Streams In-Class Activity #17 Conclusion Question?
14 / 27

Streams

Streams look similar to lists, but it evaluates in a lazy manner.

N.B. F# language provides built-in lazy expressions and features, but we will
implement our own first, as we did with List.

Concurrency Streams In-Class Activity #17 Conclusion Question?
15 / 27

Lazy Evaluation

Given an expression, we always eagerly evaluate it in F#. We say F# uses eager
evaluation.

let f _ =
printfn "body of f"
true

let g () =
printfn "body of g"
42

g () |> f // What do we see here as a side - effect ?
// What if F# was a lazy language ?

Concurrency Streams In-Class Activity #17 Conclusion Question?
16 / 27

Delaying Evaluation

Although F# is an eager language, we can pretend to be lazy by delaying evaluation
of an expression using thunks. A thunk is a function that takes in a unit as input, and
returns a value (with or without some side-effects).

let add a b = a + b
let normal = add 1 2 // 3
let delayed = fun () -> add 1 2 // delayed with thunk
delayed () // forcing the delayed expression

Concurrency Streams In-Class Activity #17 Conclusion Question?
17 / 27

Expressing Infinity

We can delay the evaluation of an expression using a function. Can we use this to
express an infinite sequence?

Concurrency Streams In-Class Activity #17 Conclusion Question?
18 / 27

Stream Implementation

List type.

type List <'a> =
| Nil
| Cons of 'a * List <'a>

Stream type: delayed list.

type Stream <'a> =
| Nil
| Cons of 'a * (unit -> Stream <'a>)

Concurrency Streams In-Class Activity #17 Conclusion Question?
19 / 27

In-Class Activity #17

Concurrency Streams In-Class Activity #17 Conclusion Question?
20 / 27

Preparation

We are going to use the same git repository as before. Just in case you don’t have it,
clone the repository using the following command.

1. Clone the repository to your machine.
- git clone https://github.com/KAIST-CS220/CS220-Main.git

2. Move in to the directory CS220-Main/Activities
- cd CS220-Main
- cd Activities

Concurrency Streams In-Class Activity #17 Conclusion Question?
21 / 27

Problem: Implement Basic Functions for
Stream

You can raise a failwith exception for error cases.

val car: Stream<’a> -> ’a

val cdr: Stream<’a> -> Stream<’a>

val take: int -> Stream<’a> -> Stream<’a> // taking n-first seq

val fromList: ’a list -> Stream<’a>

Concurrency Streams In-Class Activity #17 Conclusion Question?
22 / 27

Infinite Stream

Can we create an infinite stream of ones? [1; 1; 1; ...]

let rec ones =
Cons (1, fun () -> ones)

take 10 ones // ?

Concurrency Streams In-Class Activity #17 Conclusion Question?
23 / 27

Problem: Implement Higher-Order Functions

Implement map, fold, filter, etc. on Stream.

Concurrency Streams In-Class Activity #17 Conclusion Question?
24 / 27

Recursive Values

let rec myval = myval + 1 // error

type BankAccount =
{ mutable Balance : int

GetBalance : unit -> int }

let rec acc =
{ Balance = 0

GetBalance = fun () -> acc. Balance } // Delayed

Concurrency Streams In-Class Activity #17 Conclusion Question?
25 / 27

Conclusion

Concurrency Streams In-Class Activity #17 Conclusion Question?
26 / 27

1. Lazy evaluation is a way to delay the evaluation of an expression.
2. Streams are a way to model values that change over time.
3. Streams can be used to model infinite sequences.

Concurrency Streams In-Class Activity #17 Conclusion Question?
27 / 27

Question?

	Concurrency
	Streams
	In-Class Activity #17
	Conclusion
	Question?

