
Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
1 / 48

Lec 16: Interfaces
CS220: Programming Principles

Sang Kil Cha

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
2 / 48

Multi-Inheritance

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
3 / 48

Multiple Class Inheritance

There are cases where we want to create an object inherited from multiple parents.

Animal

Mammal WingedAnimal

Bat

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
4 / 48

In F#?

[< AbstractClass >]
type Animal () =

abstract Breathe : unit -> unit

[< AbstractClass >]
type Mammal () =

inherit Animal ()
abstract MakeSound : unit -> unit

[< AbstractClass >]
type WingedAnimal () =

inherit Animal ()
abstract Fly: unit -> unit

type Bat () =
inherit Mammal ()
inherit WingedAnimal ()
override __. Breathe () = ()
override __. MakeSound () = ()
override __.Fly () = ()

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
5 / 48

Can’t Compile?

Types cannot inherit from multiple concrete types.

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
6 / 48

Attendance Check

Note:
1. This slide appears at random time during the class.
2. This link is only valid for a few minutes.
3. We don’t accept late responses.

https://forms.gle/ZYPtmPQR8QtQzqzg9

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
7 / 48

The Diamond Problem

Suppose both Mammal and WingedAnimal implemented Breathe:

[< AbstractClass >]
type Animal () =

abstract Breathe : unit -> unit

[< AbstractClass >]
type Mammal () =

inherit Animal ()
abstract MakeSound : unit -> unit
override __. Breathe () = printfn " Mammal breathe "

[< AbstractClass >]
type WingedAnimal () =

inherit Animal ()
abstract Fly: unit -> unit
override __. Breathe () = printfn " WingedAnimal breathe "

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
8 / 48

The Diamond Problem (cont’d)

If Bat can inherit from both classes, which Breathe function should we invoke?

(Bat ()).Breathe ().

Can we avoid the diamond problem?

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
9 / 48

Does F# Have the Diamond Problem?

No. Because multiple inheritance is not allowed in F#. But what if we need multiple
inheritance?

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
10 / 48

Interfaces

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
11 / 48

Interfaces

Interfaces are similar to abstract classes, but it is possible to create a class extended
from multiple interfaces.

How can we avoid the diamond problem then?

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
12 / 48

Interface?

Interface is a point where two systems, subjects, organizations, etc. meet and
interact.

For example,
1. FSI (FSharp Interface) file provides an interface.
2. API (Application Programming Interface) provides an interface.

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
13 / 48

F#’s Interface

Does not have a constructor : we cannot instantiate it! It purely provides an
interface1.

Abstract Class

[< AbstractClass >]
type MyAbstractClass () =

abstract Foo: int -> int
// Can have a concrete member .
member _.Bar = 42

Interface

type IMyInterface =
abstract Member Foo: int -> int
// This is not allowed .
// member _.Bar = 42

1We often use a prefix ’I’ for interfaces.

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
14 / 48

Implementing Interfaces

We say we “implement” an interface (instead of saying “inherit from”).

type MyClass () =
interface IMyInterface with

member __.Foo n = n + 1

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
15 / 48

Implementing Multiple Interfaces

type IMammal =
abstract MakeSound : unit -> unit

type IWingedAnimal =
abstract Fly: unit -> unit

type Bat () =
interface IMammal with

member __. MakeSound () = printfn " sound "

interface IWingedAnimal with
member __.Fly () = printfn "I'm flying "

member __. BatSpecificMember () = ()

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
16 / 48

Interfaces in Practice

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
17 / 48

Example: Set of Student Objects

Suppose we have the following student object definition.

type Student (id) =
member __.ID = id

Can we create a set of students using the above object?

The Student type does not support the comparison constraint.

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
18 / 48

Comparison Type Constraint?

What’s the type of a comparison operator?

val (>): ’a -> ’a -> bool when ’a: comparison

If the type implements the IComparable interface then it can be compared.

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
19 / 48

IComparable Interface

Has a single abstract method: CompareTo2.

member IComparable.CompareTo: obj -> int

The return value indicates the relative order of the objects being compared. The
return value has these meanings:

1. (Less than zero): this instance precedes obj in the order.
2. (Zero): this instance occurs in the same order as obj.
3. (Greater than zero): this instance follows obj in the order.

2https://docs.microsoft.com/en-us/dotnet/api/system.icomparable.compareto

https://docs.microsoft.com/en-us/dotnet/api/system.icomparable.compareto

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
20 / 48

Make Student Object Comparable

type Student (id) =
member __.ID = id

interface IComparable with
member __. CompareTo obj =

match obj with
| :? Student as s -> compare s.ID __.ID
| _ -> failwith "Can 't compare "

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
21 / 48

Warnings after Implementing CompareTo

warning FS0343: The type ‘Student’ implements ‘System.IComparable’
explicitly but provides no corresponding override for
‘Object.Equals’. An implementation of ‘Object.Equals’ has been
automatically provided, implemented via ‘System.IComparable’.
Consider implementing the override ‘Object.Equals’ explicitly.

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
22 / 48

Equality?

type Student (name) =
member _.Name with get (): string = name

let a = Student "Alice"
let b = Student "Bob"
let c = Student "Alice" // is this same as a?
a = c // true or false?

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
23 / 48

GetHashCode?

Every object has this method, which is a hash function used to map data of arbitrary
size to a fixed-size value. This is particularly useful when we use our object as a key
in a hash table.

It is important to make sure that if two objects are equal, then their hash values must
be equal as well.

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
24 / 48

Full Implementation

open System

type Student (id) =
member __.ID = id
override __. Equals obj =

match obj with
| :? Student as s -> s.ID = __.ID
| _ -> false

override __. GetHashCode () = hash __.ID
interface IComparable with

member __. CompareTo obj =
match obj with
| :? Student as s -> compare s.ID __.ID
| _ -> failwith "Can 't compare "

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
25 / 48

F#’s Functional Data Types are Comparable

Records, Discriminated Unions, Tuples, etc. use structural equality by default. It uses
a lexicographic left-to-right comparison. This is naturally possible because functional
data types are immutable and transparent.

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
26 / 48

In-Class Activity #16

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
27 / 48

Preparation

We are going to use the same git repository as before. Just in case you don’t have it,
clone the repository using the following command.

1. Clone the repository to your machine.
- git clone https://github.com/KAIST-CS220/CS220-Main.git

2. Move in to the directory CS220-Main/Activities
- cd CS220-Main
- cd Activities

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
28 / 48

Problem

Modify the isCircleLargerThanRectangle function to check if the given Circle
object is larger than the given Rectangle object.

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
29 / 48

OOP Design Guidelines

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
30 / 48

How to Design a Program Using OOP?

It is not always clear how to properly design a program using OOP. How do we
design class hierarchies? How do we decide which class should inherit from which
class? When do we need to use interfaces?

There is no definitive answer to these questions, but there are some general
design guidelines that we can follow.

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
31 / 48

SOLID Principles

1. Single Responsibility Principle
2. Open/Closed Principle
3. Liskov Substitution Principle
4. Interface Segregation Principle
5. Dependency Inversion Principle

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
32 / 48

(1) Single Responsibility Principle

A class should have only one reason to change. In other words, a class should have
only one job.

For example, a class that is responsible for both reading and writing to a file violates
this principle.

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
33 / 48

SRP Violation Example

Suppose we have a class that is responsible for representing invoices.

type Invoice () =
member __. InvoiceNumber = // ...
member __. IssueDate = // ...
member __. Amount = // ...
member __. Customer = // ...
member __.Save () = // save this invoice to DB

This class violates the SRP because it has two responsibilities: representing an
invoice and saving it to the database.

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
34 / 48

SRP Example (Refactored)

// Represents an invoice in a transparent way.
type Invoice = {

InvoiceNumber : int
IssueDate : DateTime
Amount : int
Customer : Customer

}

// Responsible for saving invoices to the database .
type InvoiceRepository () =

member __.Save (invoice : Invoice) = // save this invoice to DB

N.B. Understanding a way to mix functional and OOP design is important.

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
35 / 48

(2) Open/Closed Principle

A class should be open for extension but closed for modification.

For example, we should be able to add new functionality to a class without changing
its source code.

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
36 / 48

OCP Violation Example

type ShapeType =
| Circle of radius : float
| Rectangle of width: float * height : float

let area = function
| Circle r -> Math.PI * r * r
| Rectangle (w, h) -> w * h

This example violates the OCP because we need to modify the area function
whenever we add a new shape.

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
37 / 48

OCP Example (Refactored)

type Shape =
abstract Area: unit -> float

type Circle (radius) =
member __.Area () = Math.PI * radius * radius

type Rectangle (width , height) =
member __.Area () = width * height

let area (shape : Shape) = shape .Area ()

We can add new shapes without modifying the area function.

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
38 / 48

(3) Liskov Substitution Principle

If S is a subtype of T, then objects of type T may be replaced with objects of type S
without altering any of the desirable properties of the program.

For example, one may consider a square as a subtype of a rectangle, but a square is
not a rectangle.

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
39 / 48

(4) Interface Segregation Principle

A client should never be forced to implement an interface that it doesn’t use or clients
shouldn’t be forced to depend on methods they do not use.

For example, a class that implements an interface with many methods that it does
not use violates this principle.

Try to create small, cohesive interfaces!

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
40 / 48

ISP Violation Example

type IVehicle =
abstract Run: unit -> unit
abstract Fly: unit -> unit

type Aircraft () =
interface IVehicle with

member __.Run () = ()
member __.Fly () = ()

type Car () =
interface IVehicle with

member __.Run () = ()
member __.Fly () = failwith "Can 't fly"

The Car class violates the ISP because it is forced to implement the Fly method.

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
41 / 48

ISP Example (Refactored)

type IRunnable =
abstract Run: unit -> unit

type IFlyable =
abstract Fly: unit -> unit

type Aircraft () =
interface IRunnable with

member __.Run () = ()

interface IFlyable with
member __.Fly () = ()

type Car () =
interface IRunnable with

member __.Run () = ()

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
42 / 48

(5) Dependency Inversion Principle

High-level modules should not depend on low-level modules. Both should depend on
abstractions.

For example, a class that depends on a concrete implementation of another class
violates this principle.

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
43 / 48

DIP Violation Example

type DBService () = // low - level
member __.Save (data: string) = // save data to DB

type Logger (db: DBService) = // high - level
member __.Log (message : string) =

db.Save message

The Logger class violates the DIP because it depends on a concrete implementation
of the DBService class. By modifying the DBService class, we may need to modify
the Logger class as well.

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
44 / 48

DIP Example (Refactored)

type IDBService =
abstract Save: string -> unit

type DBService () =
interface IDBService with

member __.Save data = // save data to DB

type Logger (db: IDBService) =
member __.Log (message : string) =

db.Save message

The Logger class now depends on an abstraction instead of a concrete
implementation.

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
45 / 48

Conclusion

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
46 / 48

1. Interfaces provide a way to avoid the diamond problem.
2. There are some design principles to follow to design a program using OOP,

although they do not provide definitive answers to SW design.
3. Always make your code easy to understand and maintain.
4. Mix functional and OOP design to get the best of both worlds.

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
47 / 48

Further Readings

• https://fsharpforfunandprofit.com/posts/interfaces/
• Clean Code: A Handbook of Agile Software Craftsmanship, Robert C. Martin

https://fsharpforfunandprofit.com/posts/interfaces/

Multi-Inheritance Interfaces Interfaces in Practice In-Class Activity #16 OOP Design Guidelines Conclusion Question?
48 / 48

Question?

	Multi-Inheritance
	Interfaces
	Interfaces in Practice
	In-Class Activity #16
	OOP Design Guidelines
	Conclusion
	Question?

