
Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
1 / 43

Lec 15: Polymorphism
CS220: Programming Principles

Sang Kil Cha

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
2 / 43

Recap: Subtype Polymorphism

Subtype polymorphism is achieved by defining a virtual function in a base class and
then overriding it in a derived class.

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
3 / 43

Polymorphism

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
4 / 43

Polymorphism

Polymorphism is the provision of a single interface to entities of different types or the
use of a single symbol to represent multiple different types.

- From Wikipedia

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
5 / 43

Attendance Check

Note:
1. This slide appears at random time during the class.
2. This link is only valid for a few minutes.
3. We don’t accept late responses.

https://forms.gle/McvFsi2WoYPcyDV6A

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
6 / 43

Other Kinds of Polymorphism?

Can we create a function, which takes in parameters of two different types that do
not have any subtype relationship?

Indeed, we have seen such functions!

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
7 / 43

Method Overloading1

type Arithmetic () =
member __.Add (n1: int , n2: int) = n1 + n2
member __.Add (s1: string , s2: string) = $"{s1}{s2}"

let a = Arithmetic ()
a.Add (10, 20) |> printfn "%d"
a.Add ("a", "b") |> printfn "%s"

1Should not be confused with method overriding.

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
8 / 43

Ad-hoc Polymorphism

Overloaded functions can be applied to arguments of different types, but behave
differently depending on the type of the argument to which they are applied. This is
called ad-hoc polymorphism.

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
9 / 43

Method Overloading with Static Members

We don’t really want to instantiate the MyOp object to invoke Add functions. To avoid
that, we can use static member functions. Static members can be statically
accessed without instantiating the object.

type MyOp () =
static member Add (n1: int , n2: int) = n1 + n2
static member Add (s1: string , s2: string) = $"{s1}{s2}"

MyOp.Add (10, 20) |> printfn "%d"
MyOp.Add ("a", "b") |> printfn "%s"

Static members look similar to functions in a module.

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
10 / 43

Operator Overloading

Operator overloading is extremely useful when dealing with user-defined types.

type Point (x: float , y: float) =
member __.X = x
member __.Y = y
static member (+) (lhs: Point , rhs: Point) =

Point (lhs.X + rhs.X, lhs.Y + rhs.Y)

let a = Point (1.0, 2.0)
let b = Point (3.0, 4.0)
let c = a + b // Simple and easy to understand

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
11 / 43

Polymorphism in Functional Programming

Polymorphic functions are everywhere in functional programming languages. This is
often referred to as parametric polymorphism.

let id x = x

val id: 'a -> 'a

Polymorphism is not specific to OOP.

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
11 / 43

Polymorphism in Functional Programming

Polymorphic functions are everywhere in functional programming languages. This is
often referred to as parametric polymorphism.

let id x = x

val id: 'a -> 'a

Polymorphism is not specific to OOP.

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
12 / 43

Polymorphism with Type Constructors

Parametric polymorphism applies to types as well. We have learned how to create a
generic type with type constructor. For example, List, Set, and Map data types can
take any types to construct a new type. We can then define functions that work with
these generic types.

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
13 / 43

Limitation of Parametric Polymorphism

• A polymorphic function can only perform operations that are valid for all types.
• A polymorphic function cannot access the contents of the parameter.

But this is not always true if we consider dynamic typing. F# provides a way to
achieve this.

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
14 / 43

Boxing

In OOP’s perspective, every expression is derived from an Object (obj) type.

box 1
"hello" :> System.Object is the same as box "hello"
[box "hello"; box 1]

This is how dynamically typed languages (e.g., Python) view the world.

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
15 / 43

Unboxing

Unboxing is the process of converting a boxed value to its original type. Thus, we
should know the original type of the boxed value.

let lst = [box "hello"; box 1]
List.head lst |> unbox <string >

With boxing and unboxing (and with the help of reflection2), we can emulate dynamic
typing in F#. This is why dynamically typed languages are inherently slower than
statically typed languages.

2https:
//learn.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/reflection

https://learn.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/reflection
https://learn.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/reflection

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
16 / 43

Duck Typing

Duck typing is a way of achieving polymorphism in dynamically typed languages.
With duck typing, we only care about the methods and properties of the object, not
the type of the object.

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
17 / 43

Duck Typing in Python

class Duck :
def quack (s e l f) :

pr in t ("Quack , quack ")

class Person :
def quack (s e l f) :

pr in t (" I ’m quacking l i k e a duck ")

for ob j in [Duck () , Person ()] :
ob j . quack ()

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
18 / 43

Duck Typing in F#

type Duck () =
member _.Quack () = printfn "Quack"

type Person () =
member _.Quack () = printfn "I'm quacking like a duck"

[box (Duck ()); box (Person ())]
|> List.iter (function

| :? Duck as duck -> duck.Quack ()
| :? Person as person -> person .Quack ()
| _ -> failwith "Bad type")

N.B. ‘:?’ is a type test pattern. It checks if the object is of the specified type.

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
19 / 43

Can We Do Better?

We could achieve duck typing in F# with boxing and unboxing, but can we do it in a
more elegant (and efficient) way?

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
20 / 43

Type Constraints

We can impose constraints on generic types in F# with when keyword. For example,
when we look at the type signature of = operator, we see the equality constraint as
follows:

val (=): (’a -> ’a -> bool) when ’a : equality

This means that ’a should support equality operations.

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
21 / 43

Example Type Constraints

// 'T should be a subtype of System . Exception .
type MyClass <'T when 'T :> System .Exception > = class end

// 'T should have a method named Method that takes an int
// and returns an int.
type MyClass <'T when 'T: (member Method : int -> int)> =

class end

There are many more. See https:
//learn.microsoft.com/en-us/dotnet/fsharp/language-reference/generics/constraints

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/generics/constraints
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/generics/constraints

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
22 / 43

Duck Typing Revisited

// Polymorphic function with a member type constraint .
let inline quack (obj: 'T when 'T: (member Quack : unit -> unit)) =

obj. Quack ()

Duck () |> quack
Person () |> quack

The inline keyword is necessary here because F# is statically typed and the
compiler cannot decide the type of obj at compile time. However, with inlining, the
compiler can statically infer the type of the parameter from the call site and emit the
appropriate code.

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
23 / 43

In-Class Activity #15

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
24 / 43

Preparation

We are going to use the same git repository as before. Just in case you don’t have it,
clone the repository using the following command.

1. Clone the repository to your machine.
- git clone https://github.com/KAIST-CS220/CS220-Main.git

2. Move in to the directory CS220-Main/Activities
- cd CS220-Main
- cd Activities

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
25 / 43

Problem

Modify the length function to take an object that has a Length property, and return
the value of the property. The function should be a polymorphic function.

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
26 / 43

Automatic Generalization

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
27 / 43

Type Inference and Automatic Generalization

F# infers the types of expressions. When it infers a function type, it determines
whether a given parameter can be generic.

Automatic Generalization

let max a b = if a > b then a else b

val max: a: 'a -> b: 'a -> 'a when 'a: comparison

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
28 / 43

Limitation

Automatic generalization is performed only on (1) complete function definitions that
have explicit arguments, and (2) simple immutable values. Other declarations cannot
have generic types. This is often referred to as value restriction.

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
29 / 43

Value Restriction Example

type T<'a> = { mutable V: 'a }
let x = { V = 1 } // compile
let y = { V = None } // does not compile

F# compiler infers the type of y as T<’a option>, which is a generic type. However,
y is not a function nor a simple immutable value. Thus, the compiler emits an error. If
the compiler accepts y as a generic type, the following code will type-check:

y.V <- Some 42 // in File A
y.V <- Some "hello" // in File B

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
30 / 43

Exceptional Cases

F# compiler is smart enough to handle some exceptional cases.

let x = ref None // this is inferred as int option ref
x.Value <- Some 42

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
31 / 43

Workarounds

Typically we can work around the value restriction by (1) annotating the type
explicitly, or (2) making a generic function.

let x = ref None // error
let x: int option ref = ref None // works

id >> id // error
let f = id >> id // error
let g x = (id >> id) x // works

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
32 / 43

Organizing Objects

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
33 / 43

Subtype vs. Subclass

In OOP, a subclass (child class) is a type that is derived from another type, and the
subclass is considered to be a subtype of its parent class.

However, being a subclass syntax-wise does not necessarily mean that the subclass
ia a true subtype of its parent, and this can lead to confusion.

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
34 / 43

True Subtype

When B is a true subtype of A, we can use B wherever A is expected.

For example, Integer is a true subtype of Number, and if we use an Integer value
wherever a Number is expected in a program, the program will well behave.

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
35 / 43

Is Square a Subtype of Rectangle?

• A square is a special kind of rectangle.
• A square has all the properties of a rectangle.

Can Square replace Rectangle in all contexts without breaking the program?

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
36 / 43

Example

type Rectangle () =
let mutable width = 0
let mutable height = 0
member _. SetWidthAndHeight (w, h) =

width <- w
height <- h

type Square () =
inherit Rectangle ()

let square = Square ()
square . SetWidthAndHeight (4, 2) // This should not be allowed

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
37 / 43

Square is Not a True Subtype of Rectangle

A square cannot replace a rectangle in all contexts! How about method overriding?

type Rectangle () =
let mutable width = 0
let mutable height = 0
abstract SetWidthAndHeight : int * int -> unit
default _. SetWidthAndHeight (w, h) =

width <- w
height <- h

type Square () =
inherit Rectangle ()
override _. SetWidthAndHeight (w, h) =

if w <> h then failwith "Bad size"
base. SetWidthAndHeight (w, h)

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
38 / 43

Throwing an Exception is Bad

• It confuses the client because Rectangle’s SetWidthAndHeight method is not
supposed to throw an exception.

• Throwing an exception is generally a bad practice.

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
39 / 43

Potential Solution?

Make Square a separate type. That is, use inheritance only when there Is a true
subtype relationship. This is often referred to as Liskov Substitution Principle.

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
40 / 43

Conclusion

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
41 / 43

1. Polymorphism is a powerful concept that allows us to write more general and
reusable code.

2. Polymorphism is not specific to OOP.
3. Value restriction is a limitation of F# type inference, but practically it is not a big

issue as we can easily work around it.

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
42 / 43

Further Readings

• https://docs.microsoft.com/en-us/dotnet/fsharp/
language-reference/flexible-types

• https://learn.microsoft.com/en-us/dotnet/fsharp/
language-reference/generics/statically-resolved-type-parameters

https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/flexible-types
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/flexible-types
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/generics/statically-resolved-type-parameters
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/generics/statically-resolved-type-parameters

Polymorphism In-Class Activity #15 Automatic Generalization Organizing Objects Conclusion Question?
43 / 43

Question?

	Polymorphism
	In-Class Activity #15
	Automatic Generalization
	Organizing Objects
	Conclusion
	Question?

