
Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
1 / 44

Lec 14: Object-Oriented
Programming

CS220: Programming Principles

Sang Kil Cha

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
2 / 44

Object-Oriented Programming

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
3 / 44

Attendance Check

Note:
1. This slide appears at random time during the class.
2. This link is only valid for a few minutes.
3. We don’t accept late responses.

https://forms.gle/aq4F25mTjjeWMoXy5

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
4 / 44

OOP (Object-Oriented Programming)

OOP is a crucial programming paradigm in modern software development, especially
when building a large and complex system. It considers a program as a collection of
objects that interact with each other, which is similar to how we view the world.

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
5 / 44

OOP Example: Car

Car consists of several parts: engine, wheels, and etc. Each part can be considered
as an object, and they interact with each other to make the car work.

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
6 / 44

OOP Advantages

By separating a program into objects, we can:
1. Intuitively model the real world.
2. Modularize the program: each object can be developed independently.
3. Easily identify where to fix a bug or add a new feature.

(Only if you have well designed objects).

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
7 / 44

Why Learn OOP with F#?

Is F# a functional programming language? Yes, and no. It is indeed a hybrid
language, and we often call it “functional-first” language.

When developing a large system, I recommend you write your code in an OOP
manner with functional programming principles in mind. Follow F#’s philosophy of
“functional-first” programming.

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
8 / 44

What is an Object?

An object is a data structure encapsulating some internal states, named properties,
and offering access to the states to users with a collection of methods1.

1In OOP, we call a function attached to an object a method.

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
9 / 44

Object vs. Class

An object is an instance of a class.

Instantiation of a class is the creation of a new instance of the class.

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
10 / 44

Example

Consider a Car class. We can define several operations (methods) for a car:
1. Start.
2. Stop.
3. Accelerate.
4. ...

A car also has its own states (properties):
1. Fuel amount.
2. Current speed.
3. ...

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
11 / 44

OOP Key Concepts

There are several key concepts to understand OOP:
1. Encapsulation.
2. Inheritance.
3. Polymorphism.

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
12 / 44

Encapsulation

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
13 / 44

Encapsulation

Bundle data (properties) with functions (methods), while making the data hidden.

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
14 / 44

Functional Data Abstraction

type BankAccount = {
Balance : int

}
module BankAccount =

let create () = { Balance = 0 }
let getBalance account = account . Balance
let deposit account amount =

{ account with Balance = account . Balance + amount }

In OOP, we want a data object to have its own state, and we want to have the state
and functions altogether.

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
15 / 44

Records with Mutable States

type BankAccount = {
mutable Balance : int // in Won
GetBalance : unit -> int // Function encapsulated

}

Data accesses are transparent : we can always directly access the Balance field.
Can we hide the data?

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
16 / 44

Another Attempt

type BankAccount = private {
mutable Balance : int // in Won
GetBalance : unit -> int // Function encapsulated

}
let myAccount = { Balance = 0; GetBalance = (* ? *) }

Two problems remain:

1. GetBalance function is also not accessible! We want to expose only the functions (methods).

2. It is not straightforward how to instantiate a BankAccount record, because GetBalance function
cannot directly access the current balance of the instance.

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
17 / 44

Using a Closure

type BankAccount = {
GetBalance : unit -> int
Deposit : int -> unit

}
module BankAccount =

let create () =
let mutable balance = 0
{ GetBalance = fun () -> balance

Deposit = fun m -> balance <- balance + m }

The function is well attached (encapsulated) to the data object, but create?

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
18 / 44

Class Definition in F#

type BankAccount () =
let mutable balance = 0
member __. GetBalance () = balance
member __. Deposit amount =

balance <- balance + amount

1. __ is a self identifier, referencing the class instance itself, and can be used with
other names. Historically, __, this, or self is preferred.

2. Member functions can be called as usual: instance.GetBalance ()

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
19 / 44

Class Signature

type BankAccount =
class

new : unit -> BankAccount
member Deposit : amount:int -> unit
member GetBalance : unit -> int

end

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
20 / 44

Primary Constructor

The previous class definition automatically creates a primary constructor, which is a
function that creates the object instance. We can create an object instance by:

let x = BankAccount ().

Or, we can use the new keyword explicitly to call the constructor:

let x = new BankAccount ().

But, it is recommended not to use the new keyword for simplicity.

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
21 / 44

Constructor with Parameters

Constructors can take in parameters.

type Student (firstName : string , lastName : string) =
member __. FirstName = firstName
member __. LastName = lastName

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
22 / 44

Attaching Values to Objects

Properties are members that represent values associated with an object2.

type MyObject () =
let mutable myValue = 42
member __. MyReadOnlyProperty = myValue
member __. MyWriteOnlyProperty with set(v) = myValue <- v
member __. MyProperty

with get () = myValue
and set(v) = myValue <- v

2https:
//docs.microsoft.com/en-us/dotnet/fsharp/language-reference/members/properties

https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/members/properties
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/members/properties

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
23 / 44

Automatically Implemented Properties

We always love simplicity.

type MyObject () =
member val MyProperty = 42 with get , set

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
24 / 44

Summary: Encapsulation

Encapsulation is a way of bundling the data with the methods that operate on the
data, while hiding the data from direct access.

Encapsulation is an OOP’s way of achieving data abstraction.

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
25 / 44

Transparency vs. Encapsulation

In functional programming, we often prefer transparency over encapsulation
because every value is immutable and directly accessing the value is inherently safe.
In OOP, we prefer encapsulation because object states are often mutable and we
don’t want users to directly access/modify the states.

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
26 / 44

Inheritance

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
27 / 44

Code Reuse

Can we make new objects by combining existing objects? Thereby, we do not need
to write similar code over and over again.

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
28 / 44

Classifying Objects

Suppose we are writing a program dealing with animals: cat, dog, etc.

Animals

Mammal

Dog Cat

Reptile

Snake Turtle

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
29 / 44

Abstract Class

An abstract class is a class that cannot be instantiated, but it represents common
functionality of a diverse set of object types.

[< AbstractClass >]
type Animal () =

let mutable x = 0
let mutable y = 0
abstract Breathe : unit -> unit // Abstract method
member __.Move dx dy = // Normal method

x <- x + dx
y <- y + dy

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
30 / 44

Inheritance

A class can inherit from an existing class (both regular and abstract class).

[< AbstractClass >]
type Mammal () =

inherit Animal () // Inherit the functionalities of Animal
abstract MakeSound : unit -> unit

type Dog () =
inherit Mammal ()
member __.Run () = printfn "Dog runs"

No implementation was given for ’abstract member Mammal.MakeSound : unit -> unit’

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
30 / 44

Inheritance

A class can inherit from an existing class (both regular and abstract class).

[< AbstractClass >]
type Mammal () =

inherit Animal () // Inherit the functionalities of Animal
abstract MakeSound : unit -> unit

type Dog () =
inherit Mammal ()
member __.Run () = printfn "Dog runs"

No implementation was given for ’abstract member Mammal.MakeSound : unit -> unit’

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
31 / 44

Inheritance (cont’d)

We need to provide specific implementation for abstract members3! This is often
called “method overriding”.

override __.MakeSound () = ...

3N.B. Abstract functions are often referred to as virtual methods in OOP.

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
32 / 44

Inherited Object Instances

Dogs can move, and cats also. And they share the same code: Move in Animal.

Can we achieve the same with records?

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
33 / 44

Why Abstract Class?

A class can be inherited from a normal class too. What’s the difference? Why use
abstract members?

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
34 / 44

Polymorphism

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
35 / 44

Polymorphism

Polymorphism is the provision of a single interface to entities of different types or the
use of a single symbol to represent multiple different types.

- From Wikipedia

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
36 / 44

Subtype Polymorphism

In OOP, we are mostly interested in subtype polymorphism.

A is inherited from B. Then we say A is a subtype of B. For example, Dog is a
subtype of Animal, and Animal is a supertype of Dog.

Subtype polymorphism allows us to create a function that takes in a supertype, but
can operate with subtype values.

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
36 / 44

Subtype Polymorphism

In OOP, we are mostly interested in subtype polymorphism.

A is inherited from B. Then we say A is a subtype of B. For example, Dog is a
subtype of Animal, and Animal is a supertype of Dog.

Subtype polymorphism allows us to create a function that takes in a supertype, but
can operate with subtype values.

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
37 / 44

Subtype Polymorphism Example

let speak (m: Mammal) =
m. MakeSound ()

speak (Dog ()) // What will happen?
speak (Cat ()) // What will happen?

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
38 / 44

Polymorphic List

Can we create a list of Dog or Cat?

type DogOrCat =
| D of Dog
| C of Cat

[D (Dog ()); C (Cat ())]
// OR
[Dog () :> Animal ; Cat () :> Animal]

The :> operator upcast a type to its supertype.

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
39 / 44

In-Class Activity #14

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
40 / 44

Preparation

We are going to use the same git repository as before. Just in case you don’t have it,
clone the repository using the following command.

1. Clone the repository to your machine.
- git clone https://github.com/KAIST-CS220/CS220-Main.git

2. Move in to the directory CS220-Main/Activities
- cd CS220-Main
- cd Activities

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
41 / 44

Problem

Modify the sumAnimalAges function to compute the sum of ages of all animals in the
list.

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
42 / 44

Conclusion

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
43 / 44

Further Readings

• https://docs.microsoft.com/en-us/dotnet/fsharp/
language-reference/classes

• https://learn.microsoft.com/en-us/dotnet/fsharp/
language-reference/members/methods

https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/classes
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/classes
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/members/methods
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/members/methods

Object-Oriented Programming Encapsulation Inheritance Polymorphism In-Class Activity #14 Conclusion Question?
44 / 44

Question?

	Object-Oriented Programming
	Encapsulation
	Inheritance
	Polymorphism
	In-Class Activity #14
	Conclusion
	Question?

