
Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
1 / 45

Lec 11: Modules and
Namespaces
CS220: Programming Principles

Sang Kil Cha

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
2 / 45

Modules and Namespaces

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
3 / 45

From a Single File to Multiple Files

So far, we have written a couple of functions within a single file. But what if we want
to implement a real-world system? Can we put everything to a single file?

An example: Linux kernel has 230k LoC (Lines of Code).

What are the problems?

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
4 / 45

fsproj File

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net8.0</TargetFramework>

</PropertyGroup>

<ItemGroup>
<Compile Include="MyFile.fs" />

</ItemGroup>

</Project>

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
5 / 45

Order of Items Matters

You can put as many items into ItemGroup, but you should be aware of their order.
Each item can only see the other items above, but not below.

<ItemGroup>
<Compile Include="A.fs" />
<Compile Include="B.fs" />

</ItemGroup>

If type Foo is defined in B.fs, A.fs would not be able to access the type.

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
6 / 45

Adding Items to fsproj

• Directly modify the fsproj file.
• Or, use Visual Studio GUI.

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
7 / 45

fs File Requirement

• Create an empty file, named MyType.fs.
• Add a line to including MyType.fs to fsproj file.
• Compile (dotnet build) and see what happens.

error FS0222: Files in libraries or multiple-file
applications must begin with a namespace or module
declaration ...

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
8 / 45

Attendance Check

Note:
1. This slide appears at random time during the class.
2. This link is only valid for a few minutes.
3. We don’t accept late responses.

https://forms.gle/FNHjF8CfrXWXV1BZ8

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
9 / 45

Modules

A module is a group of code, such as types, functions, and values.

• Help organize code into logical groups.
• Prevent name collisions.
• Modules can be inside a namespace.

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
10 / 45

Declaring a Module

We can declare a module at the top of a file using the module keyword.

module MyModule

type MyType =
| A
| B

let add x y = x + y

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
11 / 45

Accessing Names in a Module

To access types and functions declared within a module, you should use a fully
qualified name MyModule.add. However, if you have “opened” the module with the
open keyword, you can directly access the names without specifying module names.

open MyModule

let x = add 1 2 // No need to use the full name
let y = MyModule .add 1 2 // although still possible

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
12 / 45

Multiple Modules in a File

We can have multiple modules within a single file.

module ModuleA =
let add x y = x + y

module ModuleB =
let add x y = - ((-x) - y)

/// Nested module
module ModuleC =

let add x y = x + x + y - x

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
13 / 45

Nested Modules

Modules can be nested. We use dot (.) operator to access nested modules and their
types and values.

For example, ModuleB.ModuleC.add refers to the add function defined in the
ModuleC module, which is nested in the ModuleB module.

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
14 / 45

Namespaces

Namespaces are similar to modules, but they cannot directly contain values (and,
thus, functions).

namespace MyNameSpace
module MyModule =

let add x y = x + y // Indentation matters

let sub x y = x - y // Error. Why?

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
15 / 45

Implicit Declaration

Implicitly declare namespace.

// MyNameSpace is implicitly declared .
module MyNameSpace . MyModule

// Now we are in the MyModule module.
let add x y = x + y // No need to indent here.

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
16 / 45

Two Files in the Same Namespace

Unlike modules, multiple files can share the same namespace.

A.fs

namespace MyNameSpace

type OddOrEven =
| Odd
| Even

B.fs

module MyNameSpace . Checker

// No need to open MyNameSpace

let check n =
if n % 2 = 0 then Even
else Odd

Note: A.fs should appear earlier than B.fs.

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
17 / 45

Organizing Functions

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
18 / 45

Where Do I Put My Functions?

• Functions can be defined in another function.
• Functions can be grouped into modules.
• There are other ways (using different paradigm), but we will learn them later as

we would like to stick to the functional paradigm for now.

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
19 / 45

Nested Functions

let addThreeNumbers x y z =
// A nested helper function
let add a b = a + b
// Actual logic of the function .
x |> add y |> add z

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
20 / 45

Variable Scope

Nested functions can access its parent function’s parametes.

let addThreeNumbers x y z =
// A nested helper function
let addY n = n + y // y is within the scope of addY
let addZ n = n + z // z is within the scope of addZ
// Actual logic of the function .
x |> addY |> addZ

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
21 / 45

Function Nesting is Great, but ...

Do not nest functions more than once!
Guess what this function do?

let f x =
let a y =

let b z =
x * z

let c z =
let d z =

y * z
y * x

c y
x * a x // ???

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
22 / 45

Rule of Thumb

Avoid using nested functions unless necessary. For example, define your function in
a nested manner, if the function is not likely to be used by other functions. However,
there is another way to hide functions without function nesting: access control.

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
23 / 45

Access Control

Any values or types defined in a module can be exposed to other modules (i.e., files)
or not. There are three access control specifiers: public, internal, and private.

• public: the entity can be accessed by all callers.
• internal: the entity can be accessed only from the same assembly1.
• private: the entity can be accessed only from the enclosing module/file.

1An assembly is an executable binary that we can create by compiling a project (an fsproj file).
So this means that the entity can be accessed by any files within the same project.

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
24 / 45

Example: Access Control

module MyNameSpace .A

// This function is accessible only within this module
let private add x y = x + y

let addThreeNumbers x y z =
x |> add y |> add z

module MyNameSpace .B

let x = A.add 1 2 // Error.

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
25 / 45

Private Module

We can hide the entire module from other files. This is useful when we want to hide
some helper functions that are not supposed to be used by other files.

A.fs

namespace MyNameSpace

module private A =
let myadd x y = x + y

module B =
let x = 42
let y = 24
let z = A.myadd x y // accessible only within the same file.

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
26 / 45

Signature Files

.fsi files can be used to access-control functions and types defined in a file. For
any .fs file, you can create a corresponding .fsi file in order to define the interface
for the .fs file.

A.fsi

module MyModule .A

val add: int -> int -> int

A.fs

module MyModule .A

let add x y = x + y

// Not accessible outside .
let sub x y = x - y

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
27 / 45

Why Signature Matters

One can easily understand the purpose of functions declared in a signature file
without looking at the implementation. This is useful when you are developing a
library and want to provide a documentation for the library.

A.fsi

/// Add two integers .
val add: int -> int -> int

/// Subtract two integers .
val sub: int -> int -> int

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
28 / 45

Documentation Comments in F#

Comments starting with three slashes (///) are documentation comments. We can
use them to document our code and your IDE will show the documentation when you
hover your mouse over a function/type2.

2https:
//learn.microsoft.com/en-us/dotnet/fsharp/language-reference/xml-documentation

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/xml-documentation
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/xml-documentation

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
29 / 45

Functional Design

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
30 / 45

Data vs. Behavior

Always separate behavior from types. In functional language, values are immutable,
and they should be just values. All you need to do is to define functions that act on
those data, and you group them into modules. You don’t need to use data
encapsulation (we will discuss this later) at all: just use transparent values.

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
31 / 45

Data vs. Behavior (cont’d)

• Data: [1; 2; 3; 4]
• Behavior: List.map, List.filter, ...

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
32 / 45

Attach Functions (Behavior) to Data

Consider we are writing a program for managing students for CS220. We represent
students with a Student datatype as follows:

type Student = {
FirstName : string
LastName : string
StudentID : int

}

module Student =
let create first last id =

{ FirstName = first ; LastName = last; StudentID = id }

// we can add more behaviors here.

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
33 / 45

Mixing Types and Functions

A common pattern in F# is to define your types in a namespace, and create a
module for each type to define functions associated with the types.

type OddNumber = OddNumber of int

module OddNumber =
let create n = ...

type EvenNumber = EvenNumber of int

module EvenNumber =
let create n = ...

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
34 / 45

In-Class Activity #11

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
35 / 45

Preparation

We are going to use the same git repository as before. Just in case you don’t have it,
clone the repository using the following command.

1. Clone the repository to your machine.
- git clone https://github.com/KAIST-CS220/CS220-Main.git

2. Move in to the directory CS220-Main/Activities
- cd CS220-Main
- cd Activities

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
36 / 45

Problem

Fix the convert function to make list1 and list2 the same. Try to use
higher-order functions defined the List module.

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
37 / 45

Common Modules and Namespaces

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
38 / 45

System

Sysname is a namespace that contains fundamental types and modules used by
.NET programs. For example, System.Char is a module that includes many useful
functions for manipulating characters.

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
39 / 45

System.Console

System.Console represents the standard input/output/error streams for console
applications. One can use Console.WriteLine to print a string to the standard
output stream.

open System
Console . WriteLine "Hello World"
printfn "Hello World" // same as above

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
40 / 45

printfn?

printfn is a function that prints a formatted string to the standard output stream3.

printfn "%d %s" 1 "ABC"
printfn "%f" 3.14

3See: https://fsharpforfunandprofit.com/posts/printf/

https://fsharpforfunandprofit.com/posts/printf/

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
41 / 45

Interpolated Strings

You can also embed F# expressions into a string using an interpolated string, which
is a string that starts with $4.

open System
let x = 42
Console . WriteLine $"Hello {x}"
Console . WriteLine $"Hello {x + x}"
Console . WriteLine $"Hello {{x}}" // escape
Console . WriteLine $"0x%08x{43962}" // formated

4https:
//learn.microsoft.com/en-us/dotnet/fsharp/language-reference/interpolated-strings

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/interpolated-strings
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/interpolated-strings

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
42 / 45

Cannot Open Some Modules?

You can open System as it is a namespace, but you cannot open System.Console!
This is because Console is actually not a module but a class (we will learn later).
The open expression is only applicable to F# modules. However, you can use open
type to open a static class, too.

open type System. Console
WriteLine "Hello World"

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
43 / 45

Conclusion

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
44 / 45

Further Readings

• https://learn.microsoft.com/en-us/dotnet/fsharp/
language-reference/functions/entry-point

• https://fsharpforfunandprofit.com/posts/function-signatures/
• https://docs.microsoft.com/en-us/dotnet/fsharp/

language-reference/access-control

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/functions/entry-point
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/functions/entry-point
https://fsharpforfunandprofit.com/posts/function-signatures/
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/access-control
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/access-control

Modules and Namespaces Organizing Functions Functional Design In-Class Activity #11 Common Modules and Namespaces Conclusion Question?
45 / 45

Question?

	Modules and Namespaces
	Organizing Functions
	Functional Design
	In-Class Activity #11
	Common Modules and Namespaces
	Conclusion
	Question?

