
In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
1 / 41

Lec 10: Higher-Order
Functions (2)

CS220: Programming Principles

Sang Kil Cha

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
2 / 41

Attendance Check

Note:
1. This slide appears at random time during the class.
2. This link is only valid for a few minutes.
3. We don’t accept late responses.

https://forms.gle/pAynNBv1hfzLLvcd8

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
3 / 41

Higher-Order Functions

In functional programming languages, functions are first-class values. This means
that functions can be passed as arguments to other functions, returned as values
from other functions, etc.

There are common patterns of using higher-order functions. We will learn some of
them in this lecture.

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
3 / 41

Higher-Order Functions

In functional programming languages, functions are first-class values. This means
that functions can be passed as arguments to other functions, returned as values
from other functions, etc.

There are common patterns of using higher-order functions. We will learn some of
them in this lecture.

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
4 / 41

Recap: Map

val map: (’T -> ’U) -> ’T list -> ’U list

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
5 / 41

Fold

val fold: (’State -> ’T -> ’State) -> ’State -> ’T list -> ’State

• The ’State is often called accumulator (or acc).
• Evaluate elements from left to right.

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
6 / 41

Fold Example

// List of heroes
let heroes = [SuperMan ; BatMan; SpiderMan]

fold sumOfCapes 0 heroes // 2

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
7 / 41

Implementing Fold

let rec fold f acc = function
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
8 / 41

FoldBack: Folding from Right

val foldBack:
(’T -> ’State -> ’State) -> ’T list -> ’State -> ’State

• Evaluate elements from right to left.
• Often called foldr (fold right).

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
9 / 41

FoldBack Example

// List of heroes
let heroes = [SuperMan ; BatMan; SpiderMan]

fold sumOfCapes 0 heroes // 2
foldBack sumOfCapes heroes 0 // 2

Does the order matter?

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
10 / 41

Folding Order

let lst = [1; 2; 3; 4; 5]

fold (+) 0 lst // 15
foldBack (+) lst 0 // 15

fold (-) 15 lst // 0
foldBack (-) lst 15 // -12 Why?

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
11 / 41

Reduce

val reduce: (’T -> ’T -> ’T) -> ’T list -> ’T

• Somewhat similar to fold.
• Evaluate pairs of elements from left to right: f(... f (f i0 i1) i2...) iN .
• For example, reduce (+) [1; 2; 3] // Should return 6

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
12 / 41

Map and Reduce

Two steps:
• Map: Apply a function f in parallel to a list of some data.
• Reduce: Reduce all the results with a function g to obtain a final result.

data // a list or sequence
|> map f
|> reduce g

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
13 / 41

In-Class Activity #10

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
14 / 41

Preparation

We are going to use the same git repository as before. Just in case you don’t have it,
clone the repository using the following command.

1. Clone the repository to your machine.
- git clone https://github.com/KAIST-CS220/CS220-Main.git

2. Move in to the directory CS220-Main/Activities
- cd CS220-Main
- cd Activities

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
15 / 41

Problem 1: FoldBack

Implement both sumOfCape and foldBack function.

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
16 / 41

Performance: Fold vs. FoldBack

Which one is more efficient? and Why?

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
17 / 41

Problem 2: Reduce

Implement the reduce function. Raise an exception (with failwith) if the given list
is empty.

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
18 / 41

Built-in Higher-Order Functions

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
19 / 41

More Examples

• map: (’T -> ’U) -> ’T list -> ’U list
• fold: (’State -> ’T -> ’State) -> ’State -> ’T list -> ’State
• foldBack: (’T -> ’State -> ’State) -> ’T list -> ’State -> ’State
• reduce: (’T -> ’T -> ’T) -> ’T list -> ’T
• filter: (’T -> bool) -> ’T list -> ’T list
• forall: (’T -> bool) -> ’T list -> bool
• exists: (’T -> bool) -> ’T list -> bool
• And many more.

These functions take in an action (a function) as input.

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
20 / 41

Built-in Support!

All the previous functions are defined as List.xxx, where xxx is the name of a
higher-order function. See https://docs.microsoft.com/en-us/dotnet/fsharp/
language-reference/fsharp-collection-types for the complete list.

https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/fsharp-collection-types
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/fsharp-collection-types

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
21 / 41

Example Usage of Map and Reduce

Given a list of integers, return a sum of squares of all the elements.

let lst = [1; 2; 3; 4; 5]
lst
|> List.map (fun x -> x * x)
|> List.reduce (+)

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
22 / 41

Example Usage of Filter

Given a list of strings, return a list of strings that contains only strings whose length is
greater than 3.

let lst = ["a"; "ab"; "abc"; "abcd"; "abcde"]
lst
|> List.filter (fun s -> String.length s > 3)

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
23 / 41

Higher-Order Functions for String

• String.map: (char -> char) -> string -> string
• String.filter: (char -> bool) -> string -> string
• String.forall: (char -> bool) -> string -> bool
• etc.

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
24 / 41

Example Usage of String.map

Given a string, return a string that contains only lower-case characters.

let str = "Hello , World!"
str
|> String.map (fun c -> if Char. IsUpper c then Char.

ToLower c else c)

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
25 / 41

Example Usage of String and List

Given a list of strings, return a list of strings that contains only lower-case characters.

let lst = ["Hello"; "World"; "abc"]
lst
|> List.filter (String.forall Char. IsLower)

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
26 / 41

Set

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
27 / 41

Mathematical Set

A set is a collection of distinct objects.

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
28 / 41

Standard Set Operations

• Union (A ∪B).
• Intersection (A ∩B).
• Difference (A \B).

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
29 / 41

Implement your own set data type

Now that we know the concept of data abstraction, let’s first pretend that there is a
Set<’T> data type and we have three functions that operate on it.

val union: Set <'T> -> Set <'T> -> Set <'T>
val inter: Set <'T> -> Set <'T> -> Set <'T>
val minus: Set <'T> -> Set <'T> -> Set <'T>

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
30 / 41

Implementing Set with List

We can use List to implement Set!

type Set <'T> = List <'T>
val union: Set <'T> -> Set <'T> -> Set <'T>
val inter: Set <'T> -> Set <'T> -> Set <'T>
val minus: Set <'T> -> Set <'T> -> Set <'T>

® The expression “type A = <type name>” is called a “Type Abbreviation”. You
can give an alternative name for a type using this expression1.

1https:
//docs.microsoft.com/en-us/dotnet/fsharp/language-reference/type-abbreviations

https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/type-abbreviations
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/type-abbreviations

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
31 / 41

Implementing Set with List

What’s the problem?

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
32 / 41

Built-in Set

Implementing an efficient set data structure is beyond the scope of this course, but
we will learn how to use built-in data structures.

• Set.ofList
• Set.empty
• Set.add
• Set.remove
• Set.union
• Set.intersect
• Set.difference

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
33 / 41

Map and Fold

Built-in Set stores its elements in an order, and the mapping and folding will happen
in the order of the elements. Elements in Set should have a comparable types2.

• Set.map: (’T -> ’U) -> Set<’T> -> Set<’U>

• Set.fold: (’State -> ’T -> ’State) -> ’State -> Set<’T> -> ’State

2This is so-called type constraints in F# jargon.

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
34 / 41

Map

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
35 / 41

Map?

A map is a data structure composed of a collection of (key, value) pairs, such that
each possible key appears at most once in the collection.

Key Value
k1 "Beer"
k2 "Juice"
k3 "Soda"

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
36 / 41

Standard Map Operations

• Add: add a key-value pair to the map.
• Find: find a value associated with a particular key.

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
37 / 41

Built-in Map

• Map.ofList
• Map.empty
• Map.add
• Map.find
• Map.tryFind
• Map.containsKey

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
38 / 41

Map and Fold

Built-in Map stores its elements in an order, and the mapping and folding will happen
in the order of the elements.

• Map.map: (’K -> ’V -> ’U) -> Map<’K, ’V> -> Map<’K, ’U>

• Map.fold: (’State -> ’K -> ’V -> ’State) -> ’State -> Map<’K, ’V> -> ’State

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
39 / 41

Conclusion

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
40 / 41

1. Higher-order functions expand our expressive power.
2. Using higher-order functions is so common in functional languages, and F#

provides built-in higher-order functions for manipulating collections.

In-Class Activity #10 Built-in Higher-Order Functions Set Map Conclusion Question?
41 / 41

Question?

	In-Class Activity #10
	Built-in Higher-Order Functions
	Set
	Map
	Conclusion
	Question?

