
Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
1 / 40

Lec 9: Higher-Order
Functions

CS220: Programming Principles

Sang Kil Cha

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
2 / 40

Higher-Order Functions

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
3 / 40

Motivation

We want to make our code concise, thereby “easy to read”.

• We already learned how to abstract our ideas by writing a function.
• But what if we want to express complex algorithms?

Writing a single function for a complex algorithm is not desirable because it is not
easy to read. Instead, we should split our ideas into smaller pieces (i.e., functions)
and combine them.

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
3 / 40

Motivation

We want to make our code concise, thereby “easy to read”.
• We already learned how to abstract our ideas by writing a function.

• But what if we want to express complex algorithms?

Writing a single function for a complex algorithm is not desirable because it is not
easy to read. Instead, we should split our ideas into smaller pieces (i.e., functions)
and combine them.

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
3 / 40

Motivation

We want to make our code concise, thereby “easy to read”.
• We already learned how to abstract our ideas by writing a function.
• But what if we want to express complex algorithms?

Writing a single function for a complex algorithm is not desirable because it is not
easy to read. Instead, we should split our ideas into smaller pieces (i.e., functions)
and combine them.

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
3 / 40

Motivation

We want to make our code concise, thereby “easy to read”.
• We already learned how to abstract our ideas by writing a function.
• But what if we want to express complex algorithms?

Writing a single function for a complex algorithm is not desirable because it is not
easy to read. Instead, we should split our ideas into smaller pieces (i.e., functions)
and combine them.

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
4 / 40

Decomposition

Decomposition (a.k.a. factoring) is breaking a complex problem or system into parts
that are easier to conceive, understand, program, and maintain1.

Higher-order functions help in factoring your code.

1Wikipedia: https://en.wikipedia.org/wiki/Decomposition_(computer_science)

https://en.wikipedia.org/wiki/Decomposition_(computer_science)

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
4 / 40

Decomposition

Decomposition (a.k.a. factoring) is breaking a complex problem or system into parts
that are easier to conceive, understand, program, and maintain1.

Higher-order functions help in factoring your code.

1Wikipedia: https://en.wikipedia.org/wiki/Decomposition_(computer_science)

https://en.wikipedia.org/wiki/Decomposition_(computer_science)

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
5 / 40

What is a Higher-Order Function?

A function that manipulates functions: takes in a function as input, or returns a
function as output.

This is naturally possible because functions are a value anyways!

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
6 / 40

Why Higher-Order Functions?

We can enhance our expressive power in programming!

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
7 / 40

Attendance Check

Note:
1. This slide appears at random time during the class.
2. This link is only valid for a few minutes.
3. We don’t accept late responses.

https://forms.gle/eY18bAQLZQuTDssA6

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
8 / 40

Can You Find a Common Pattern?

let rec sumNum a b =
if a > b then 0
else a + sumNum (a + 1) b

let rec sumCubes a b =
if a > b then 0
else cube a + subCubes (a + 1) b

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
9 / 40

Sigma Notation in Math

b∑
n=a

f(n) = f(a) + · · ·+ f(b)

Regardless of the series being summed, we can formulate general results about
sums with

∑
. Can we do the same with F#?

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
10 / 40

A function representing a sum of a series.

let rec sum term a next b =
if a > b then 0
else term a + sum term (next a) next b

Rewriting sumNum and sumCube with sum.

let inc n = n + 1
let sumNum a b = sum id a inc b
let sumCube a b = sum cube a inc b

id is an identity function defined in F#.

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
11 / 40

Using Anonymous Functions

sumNum without inc.

let sumNum a b = sum id a (fun n -> n + 1) b

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
12 / 40

Example: Half-Interval Method

A root-finding method that repeatedly bisects an
interval and then selects a subinterval in which a
root must lie for further processinga. This method
is applicable for a continuous function f defined on
an interval [a, b], where f(a) and f(b) have
opposite signs.

aExcerpt from Wikipedia.

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
13 / 40

Half-interval search.

let threshold = 0.001
let closeEnough x y = abs (x - y) < threshold
let avg x y = (x + y) / 2.0

let rec search f negPoint posPoint =
let midPoint = avg negPoint posPoint
if closeEnough negPoint posPoint then midPoint
else

let testValue = f midPoint
if testValue > 0.0 then search f negPoint midPoint
elif testValue < 0.0 then search f midPoint posPoint
else midPoint

We cannot directly use this function because we don’t know the sign of f(x).

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
14 / 40

The final wrapper function for half-interval method.

let halfIntervalMethod f a b =
let aValue = f a
let bValue = f b
if aValue > 0.0 && bValue < 0.0 then

search f b a
elif aValue < 0.0 && bValue > 0.0 then

search f a b
else

failwith " Values are not of opposite sign"

halfIntervalMethod sin 2.0 4.0 // Returns 3.14 ...

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
15 / 40

Example: Function Composition

Function composition is applying one function to the result of another. For example,
(f ◦ g)(x) = f(g(x)).

let compose f g = fun x -> f (g x)
let compose f g x = f (g x) // simpler

let squarePlusOne = compose inc square
squarePlusOne 10 // Returns 101

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
16 / 40

Built-in Function Composition Operator

Function composition operator (»).

let squarePlusOne = compose inc square
let squarePlusOne = square >> inc // order matters

How would you implement the operator (»)?

let (>>) f g x = g (f x)

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
17 / 40

Playing with Function Composition

Example: composition with partial application.

let add x y = x + y
let times x y = x * y
let addOneTimesFive = add 1 >> times 5

Example: applying a function twice.

let twice f = f >> f
let addTenTwice = twice (add 10)
addTenTwice 1 // Returns 21

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
18 / 40

Further Reading on Function Composition

See more examples from
https://fsharpforfunandprofit.com/posts/function-composition/.

https://fsharpforfunandprofit.com/posts/function-composition/

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
19 / 40

failwith?

It is a special function that takes in a string and raises an exception, called Failure.

failwith

failwith : string -> 'a

Here, the type ’a means that the resulting value type-checks with any type.

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
20 / 40

Function and Let-bindings

Function is a powerful abstraction mechanism, and it can even replace let-bindings!

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
21 / 40

Example

Let us write a function:

f(x, y) = x(1 + xy)2 + y(1− y) + (1 + xy)(1− y)

We can simplify the function by letting a = 1 + xy and b = 1− y:

f(x, y) = xa2 + yb+ ab

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
22 / 40

Example (cont’d)

let f x y =
let a = 1 + x * y
let b = 1 - y
x * square a + y * b + a * b

With anonymous functions:

let f x y =
(fun a b -> x * square a + y * b + a * b)

(1 + x * y) (1 - y)

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
23 / 40

Functions as First-Class Citizens

• Functions are the most crucial component of functional programming.
• Functions are values.
• Functions can be passed as arguments to other functions.
• Functions can be returned as results from other functions.

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
24 / 40

Higher-Order Functions and Its
Applications

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
25 / 40

Google’s MapReduce

MapReduce is a patented software framework introduced by Google to support
distributed computing on large data sets on clusters of computers.

“Our abstraction is inspired by the map and reduce primitives present in Lisp and
many other functional languages2.”

2See the original paper appeared in OSDI 2004 by Dean et al.

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
26 / 40

Map

val map: (’T -> ’U) -> ’T list -> ’U list

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
27 / 40

Map Example

type Hero =
| SuperMan
| BatMan
| SpiderMan

let heroes = [SuperMan ; BatMan ; SpiderMan] // Hero list

map isWearingMask heroes // [false; true; true]
map (fun h -> isWearingMask h) heroes // bad style
map shirtColor heroes // [Blue; Black; Red]

First, try to write functions without high-order functions (without using map). For example, write a
function checkWearingMask that takes in a list of heroes, and returns a list of booleans.

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
28 / 40

Implementing Map

let rec map f = function
| [] -> []
| hd :: tl -> (f hd) :: (map f tl)

Is it tail-recursive?

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
29 / 40

In-Class Activity #09

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
30 / 40

Preparation

We are going to use the same git repository as before. Just in case you don’t have it,
clone the repository using the following command.

1. Clone the repository to your machine.
- git clone https://github.com/KAIST-CS220/CS220-Main.git

2. Move in to the directory CS220-Main/Activities
- cd CS220-Main
- cd Activities

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
31 / 40

Tail-Recursive map

• Implement isWearingMask and shirtColor functions.
• Write your own map function that is tail-recursive.

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
32 / 40

Exception

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
33 / 40

Defining Exceptions

exception MyException
let f x =

if x > 0 then x - 1
else raise MyException

exception AnotherException of string
let g x =

if x > 0 then x - 1
else raise (AnotherException " message ")

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
34 / 40

How about failwith?

failwith is a function that raises a predefined exception (System.Exception).
There are several other error handling functions in F#:

• failwith
• invalidArg
• nullArg
• invalidOp

See https://fsharpforfunandprofit.com/posts/exceptions/ for more
information.

https://fsharpforfunandprofit.com/posts/exceptions/

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
35 / 40

Handling Exceptions

Use a try .. with statement.

let x =
try f (-1)
with MyException -> // do something here.

let y =
try g (-1)
with AnotherException s -> // do something here with s.

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
36 / 40

Handling Exceptions (cont’d)

When a function raises multiple exceptions.

let z =
try someFunction 10
with

| MyException -> // case 1.
| AnotherException s -> // case 2.

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
37 / 40

Exception vs. Option

It is preferred to use the Option (or Error) type over Exception. Why? because
exceptions are slow in F#. Use exception only when you are dealing with a fatal
case: cases where you don’t need to recover from the error.

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
38 / 40

Conclusion

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
39 / 40

1. Higher-order functions expand our expressive power.
2. Functions are first-class citizens in F# and many other functional languages.

Higher-Order Functions Higher-Order Functions and Its Applications In-Class Activity #09 Exception Conclusion Question?
40 / 40

Question?

	Higher-Order Functions
	Higher-Order Functions and Its Applications
	In-Class Activity #09
	Exception
	Conclusion
	Question?

