
Built-in List Type In-Class Activity #08 Other Type Constructors Question?
1 / 27

Lec 8: List (2)
CS220: Programming Principles

Sang Kil Cha

Built-in List Type In-Class Activity #08 Other Type Constructors Question?
2 / 27

Recap

• List is a chain of cons cells.
• List is a recursive data structure.
• We use a type constructor to define a generic list type.

Built-in List Type In-Class Activity #08 Other Type Constructors Question?
3 / 27

Attendance Check

Note:
1. This slide appears at random time during the class.
2. This link is only valid for a few minutes.
3. We don’t accept late responses.

https://forms.gle/DUBqUrKjtUFkL7Ly7

Built-in List Type In-Class Activity #08 Other Type Constructors Question?
4 / 27

Built-in List Type

Built-in List Type In-Class Activity #08 Other Type Constructors Question?
5 / 27

No Need to Define Our Own List

• F# has a built-in list type: ’a list.
• The cons operator is ::.
• The empty list is [].
• The car and cdr operators are List.head and List.tail.

• There are many built-in functions for lists in the List module, e.g.,
- List.length
- List.append
- etc.

Built-in List Type In-Class Activity #08 Other Type Constructors Question?
5 / 27

No Need to Define Our Own List

• F# has a built-in list type: ’a list.
• The cons operator is ::.
• The empty list is [].
• The car and cdr operators are List.head and List.tail.
• There are many built-in functions for lists in the List module, e.g.,

- List.length
- List.append
- etc.

Built-in List Type In-Class Activity #08 Other Type Constructors Question?
6 / 27

Length of a List

let rec length lst =
match lst with
| [] -> 0
| _ :: tl -> 1 + length tl

Can you make it tail-recursive?

Built-in List Type In-Class Activity #08 Other Type Constructors Question?
6 / 27

Length of a List

let rec length lst =
match lst with
| [] -> 0
| _ :: tl -> 1 + length tl

Can you make it tail-recursive?

Built-in List Type In-Class Activity #08 Other Type Constructors Question?
7 / 27

Tail-recursive length

let length lst =
let rec loop cnt = function

| [] -> cnt
| _ :: tl -> loop (cnt + 1) tl

loop 0 lst

Built-in List Type In-Class Activity #08 Other Type Constructors Question?
8 / 27

In-Class Activity #08

Built-in List Type In-Class Activity #08 Other Type Constructors Question?
9 / 27

Preparation

We are going to use the same git repository as before. Just in case you don’t have it,
clone the repository using the following command.

1. Clone the repository to your machine.
- git clone https://github.com/KAIST-CS220/CS220-Main.git

2. Move in to the directory CS220-Main/Activities
- cd CS220-Main
- cd Activities

Built-in List Type In-Class Activity #08 Other Type Constructors Question?
10 / 27

Problem 1: Checking List of List

Given a list of lists, write a function countEmptyList that returns the number of
empty lists in the given list.

Built-in List Type In-Class Activity #08 Other Type Constructors Question?
11 / 27

Problem 2: Equivalence of Lists

Write a function equal that takes in two lists as input and returns a boolean
indicating whether the two lists have the same sequence of elements or not.

Built-in List Type In-Class Activity #08 Other Type Constructors Question?
12 / 27

Structural Equality vs. Physical Equality

F# uses structural equality by default. This means that two types are equal if they
have the same structure. For example, let a = [1; 2; 3] and let b = [1; 2;
3] are structurally equal.

On the other hand, physical equality means that two types are equal if they are the
same object in the memory. For example, let a = [1; 2; 3] and let b = [1;
2; 3] are not physically equal.

Built-in List Type In-Class Activity #08 Other Type Constructors Question?
12 / 27

Structural Equality vs. Physical Equality

F# uses structural equality by default. This means that two types are equal if they
have the same structure. For example, let a = [1; 2; 3] and let b = [1; 2;
3] are structurally equal.

On the other hand, physical equality means that two types are equal if they are the
same object in the memory. For example, let a = [1; 2; 3] and let b = [1;
2; 3] are not physically equal.

Built-in List Type In-Class Activity #08 Other Type Constructors Question?
13 / 27

Physical Equality in F#?

LanguagePrimitives.PhysicalEquality is a function that checks physical equality
of two values.

let (==) = LanguagePrimitives . PhysicalEquality

Built-in List Type In-Class Activity #08 Other Type Constructors Question?
14 / 27

Physical Equality → Structural Equality

In functional world:
• Physical equality implies structural equality.
• Structural equality does not imply physical equality.

This means, one can efficiently check equality of two values by checking physical
equality first. This allows us to write an extremely efficient data structure, e.g., hash
consing.

Built-in List Type In-Class Activity #08 Other Type Constructors Question?
15 / 27

Recursion is the Key to Handle Lists

When writing a function that handles a list, you should think recursively.

Built-in List Type In-Class Activity #08 Other Type Constructors Question?
16 / 27

Pattern Matching vs. Built-in Functions

Which one is better?
1. Using car/cdr (List.head and List.tail).
2. Using pattern matching.

Built-in List Type In-Class Activity #08 Other Type Constructors Question?
17 / 27

Other Type Constructors

Built-in List Type In-Class Activity #08 Other Type Constructors Question?
18 / 27

Another Type Constructor: Option

Option type is a built-in union type that represents either a valid value or an invalid
(or missing) value.

Something or nothing.

type IntOrNothing =
| Int of int
| NoInt

type StringOrNothing =
| Str of string
| NoStr

Built-in List Type In-Class Activity #08 Other Type Constructors Question?
19 / 27

Option Type Constructor

Something or nothing (generic type).

/// This is a built -int type: no need to define this.
type Option <'T> = // We often write this as 'a option

| Some of 'T
| None

let validInt = Some 42
let invalidInt = None

Built-in List Type In-Class Activity #08 Other Type Constructors Question?
20 / 27

Option Type Example

Suppose you have a database of movies. You want to develop an API (findMovie)
that takes in a title as input and returns information about a movie that matches the
given title. What would be the signature of the function?

val findMovie: string -> Movie option

Built-in List Type In-Class Activity #08 Other Type Constructors Question?
21 / 27

’a option vs. Option<’a>

For historical reasons, we prefer ’a option than Option<’a>, and prefer ’a list
than list<’a>. However, other than these two cases, we prefer to put type
parameters after type constructors.

Built-in List Type In-Class Activity #08 Other Type Constructors Question?
22 / 27

List of List & Option of Option

[[1]; [2; 3]; [4; 5]] // A list of integer lists
Some (Some 42) // An option of an integer option

Built-in List Type In-Class Activity #08 Other Type Constructors Question?
23 / 27

Result Type Constructor

type Result <'T, 'TError > =
| Ok of 'T
| Error of 'TError

Built-in List Type In-Class Activity #08 Other Type Constructors Question?
24 / 27

Result Type vs. Option Type

• Option type is useful when you want to represent a missing value.
• Result type is useful when you want to represent an error.

Built-in List Type In-Class Activity #08 Other Type Constructors Question?
25 / 27

Usage of Result Type

type Request = { Name: string ; Email : string }

let validateName req =
match req.Name with
| "" -> Error "Name is empty "
| " bananas " -> Error " Bananas is not a name."
| _ -> Ok req

let validateEmail req =
match req. Email with
| "" -> Error " Email is empty "
| s when s. EndsWith (" bananas .com") -> Error " bananas .com is not allowed ."
| _ -> Ok req

let validateRequest reqResult =
reqResult |> Result .bind validateName |> Result .bind validateEmail

Built-in List Type In-Class Activity #08 Other Type Constructors Question?
26 / 27

Question?

Built-in List Type In-Class Activity #08 Other Type Constructors Question?
27 / 27

Further Reading

• Do more exercises here: http://www.fssnip.net/an/title/
NinetyNine-F-Problems-Problems-1-10-Lists.

• Read: https://learn.microsoft.com/en-us/dotnet/fsharp/
language-reference/results.

http://www.fssnip.net/an/title/NinetyNine-F-Problems-Problems-1-10-Lists
http://www.fssnip.net/an/title/NinetyNine-F-Problems-Problems-1-10-Lists
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/results
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/results

	Built-in List Type
	In-Class Activity #08
	Other Type Constructors
	Question?

