
List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
1 / 35

Lec 7: List
CS220: Programming Principles

Sang Kil Cha

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
2 / 35

List

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
3 / 35

Motivation

Can we represent a sequence of values whose size is unknown at compile time?

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
4 / 35

List

List is a finite sequence of values.

Extremely useful data type for functional languages!

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
5 / 35

List by Examples

Example Lists.

[] // Empty list
[1; 2; 3] // A list of three integers .
["a"; "b"; "c"; "d"] // A list of four strings .
[1; 2; "abc"] // ?

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
6 / 35

Cons

1. Cons constructs a value, which is often referred to as a cons cell, holding a
pair of values. We say, “cons x onto y” when we construct a new pair where y is
followed by x.

2. The first element of a cons cell is car.
3. The second element of a cons cell is cdr1.

1Why car and cdr? See: https://en.wikipedia.org/wiki/CAR_and_CDR

https://en.wikipedia.org/wiki/CAR_and_CDR

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
7 / 35

List = a Sequence of Cons Cells

• There is a value that represents an empty list (often called as nil).
• A singleton list is a cons cell of a value and an empty list.
• A list with two elements can be constructed by consing two cons cells.
• ...

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
8 / 35

List Consing Operator (::)

let (::) a b = // Prepend a to the list b.

1 :: [2] // Returns [1; 2]
2 :: [4; 6] // Returns [2; 4; 6]
"abc" :: [] // Returns [" abc "]

1 :: 2 :: 3 :: 4 :: [] // [1; 2; 3; 4]

Note: [1; 2; 3; 4] is just syntactic sugar for 1 :: 2 :: 3 :: 4 :: [].

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
9 / 35

List car and cdr.

let car lst =
match lst with
| hd :: _ -> hd
| _ -> failwith "Empty list is given."

let cdr lst =
match lst with
| _ :: tl -> tl
| _ -> failwith "Empty list is given."

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
10 / 35

List Range Expressions

A convenient way to construct lists.

Example list range expressions.

[1 .. 5] // Returns [1; 2; 3; 4; 5]
[-1 .. 1] // Returns [-1; 0; 1]
[1 .. 2 .. 5] // Returns [1; 3; 5]
[1.0 .. 3.2] // Returns [1.0; 2.0; 3.0]
[1 .. -2 .. 5] // ?

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
11 / 35

Attendance Check

Note:
1. This slide appears at random time during the class.
2. This link is only valid for a few minutes.
3. We don’t accept late responses.

https://forms.gle/gCJ4yF7PSi5mTdqu5

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
12 / 35

Prepending/Appending an Element to a List

Can we prepend/append an element to a list? What does it mean to prepend/append
an element to a list?

Values are immutable in F#!

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
13 / 35

In-Class Activity #06

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
14 / 35

Preparation

We are going to use the same git repository as before. Just in case you don’t have it,
clone the repository using the following command.

1. Clone the repository to your machine.
- git clone https://github.com/KAIST-CS220/CS220-Main.git

2. Move in to the directory CS220-Main/Activities
- cd CS220-Main
- cd Activities

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
15 / 35

Problem 1

Modify the function last, which takes in an arbitrary list as input and returns the last
element of the list as output. When the given list is empty, the function will raise an
exception with the “failwith” function2.

2https://docs.microsoft.com/dotnet/fsharp/language-reference/
exception-handling/the-failwith-function

https://docs.microsoft.com/dotnet/fsharp/language-reference/exception-handling/the-failwith-function
https://docs.microsoft.com/dotnet/fsharp/language-reference/exception-handling/the-failwith-function

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
16 / 35

Problem 2

Modify the function lastButOne in such a way that it takes in an arbitrary list as input
and returns the last but one element of the given list. For example, given [1; 2; 3;
4], the function should return 3. When the input list is empty or is a singleton list,
then the function should simply raise an exception with failwith.

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
17 / 35

Write Your Own List Type

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
18 / 35

Let’s Define a Cons Cell Type for Integers

IntList can only be either a nil or a cons of two elements.

How would you combine two seemingly different types?

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
19 / 35

Let’s Define a Cons Cell Type for Integers
(cont’d)

Integer list type.

type IntList =
| Nil
| Cons of int * IntList

Can you now construct a list [1; 2; 3] with the newly defined type?

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
20 / 35

Write basic operators.

let empty =
// ?

let cons elt lst =
// ?

let car lst =
// ?

let cdr lst =
// ?

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
21 / 35

Write infix operator.

Using cons for constructing large lists is inconvenient.

Infix operator for consing.

let (::) elt lst = ... // Error!

let (++) elt lst = Cons (elt , lst) // First trial.

let (^+^) elt lst = Cons (elt , lst) // Second trial.

Read:
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/
symbol-and-operator-reference/index#operator-precedence

https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/symbol-and-operator-reference/index#operator-precedence
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/symbol-and-operator-reference/index#operator-precedence

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
22 / 35

Difference between IntList vs. ’a list?

There is a space in the ’a list type! ⌣ Ours can only take integers, whereas ’a
list can take any types.

Can we make our list implementation generic?

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
23 / 35

Generic Types

A type constructor is a function that takes in a type as input and returns a type as
output. For example, list is a type constructor that takes in ’a as input. For the int
type, it returns the int list type. We sometimes call a type constructor as generic.

/// One way to define a generic type.
type 'a MyList =

| Nil
| Cons of 'a * 'a MyList

/// Another way to define a generic type.
type MyList <'T> =

| Nil
| Cons of 'T * MyList <'T>

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
24 / 35

In-Class Activity #07

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
25 / 35

Preparation

We are going to use the same git repository as before. Just in case you don’t have it,
clone the repository using the following command.

1. Clone the repository to your machine.
- git clone https://github.com/KAIST-CS220/CS220-Main.git

2. Move in to the directory CS220-Main/Activities
- cd CS220-Main
- cd Activities

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
26 / 35

Problem 1: Modify the list type

Convert the MyList type into a generic type so that it can represent an arbitrary list
of values. Uncomment the code in the file and show that the newly defined type can
represent both integer lists and string lists.

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
27 / 35

Problem 2: Length

Write a function length that returns the length of the given list.

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
28 / 35

Problem 3: Membership Test Function

Write a function isMember that takes in an element (of type ’T) and a list
(MyList<’T>) and returns a boolean indicating whether the element is a member of
the given list or not.

1. It is obvious that the function will return false for an empty list.
2. For a given cons cell, we can recursively compare the equality between the

given value and the car of the list, and then recurse into the cdr of the list.

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
29 / 35

Problem 4: List Append

The infix operator (@) joins two lists. For example, [1; 2] @ [3; 4] returns [1; 2;
3; 4]. Write your own append operator over MyList<’T>!

1. append [1; 2] [3; 4]

2. 1 :: (append [2] [3; 4])
3. 1 :: 2 :: (append [] [3; 4])
4. 1 :: 2 :: [3; 4]
5. 1 :: [2; 3; 4]
6. [1; 2; 3; 4]

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
29 / 35

Problem 4: List Append

The infix operator (@) joins two lists. For example, [1; 2] @ [3; 4] returns [1; 2;
3; 4]. Write your own append operator over MyList<’T>!

1. append [1; 2] [3; 4]
2. 1 :: (append [2] [3; 4])

3. 1 :: 2 :: (append [] [3; 4])
4. 1 :: 2 :: [3; 4]
5. 1 :: [2; 3; 4]
6. [1; 2; 3; 4]

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
29 / 35

Problem 4: List Append

The infix operator (@) joins two lists. For example, [1; 2] @ [3; 4] returns [1; 2;
3; 4]. Write your own append operator over MyList<’T>!

1. append [1; 2] [3; 4]
2. 1 :: (append [2] [3; 4])
3. 1 :: 2 :: (append [] [3; 4])

4. 1 :: 2 :: [3; 4]
5. 1 :: [2; 3; 4]
6. [1; 2; 3; 4]

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
29 / 35

Problem 4: List Append

The infix operator (@) joins two lists. For example, [1; 2] @ [3; 4] returns [1; 2;
3; 4]. Write your own append operator over MyList<’T>!

1. append [1; 2] [3; 4]
2. 1 :: (append [2] [3; 4])
3. 1 :: 2 :: (append [] [3; 4])
4. 1 :: 2 :: [3; 4]

5. 1 :: [2; 3; 4]
6. [1; 2; 3; 4]

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
29 / 35

Problem 4: List Append

The infix operator (@) joins two lists. For example, [1; 2] @ [3; 4] returns [1; 2;
3; 4]. Write your own append operator over MyList<’T>!

1. append [1; 2] [3; 4]
2. 1 :: (append [2] [3; 4])
3. 1 :: 2 :: (append [] [3; 4])
4. 1 :: 2 :: [3; 4]
5. 1 :: [2; 3; 4]

6. [1; 2; 3; 4]

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
29 / 35

Problem 4: List Append

The infix operator (@) joins two lists. For example, [1; 2] @ [3; 4] returns [1; 2;
3; 4]. Write your own append operator over MyList<’T>!

1. append [1; 2] [3; 4]
2. 1 :: (append [2] [3; 4])
3. 1 :: 2 :: (append [] [3; 4])
4. 1 :: 2 :: [3; 4]
5. 1 :: [2; 3; 4]
6. [1; 2; 3; 4]

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
30 / 35

Make it Tail-Recursive!

Previous example was not tail-recursive. Why?

Can you make them tail-recursive?

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
31 / 35

Another Problem

The append method we defined is not efficient. Why? Why is it slower than
prepending?

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
32 / 35

Problem 5: List Reverse

Write a function rev that takes in a list (MyList<’T>) and returns a reversed list.

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
33 / 35

Conclusion

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
34 / 35

1. We can create our own list datatype with data abstraction techniques we
learned so far.

2. List type is commonly used, and F# has a built-in support for lists.
3. List can be generic.
4. Type constructors is a function that takes in a type and returns a type. It is used

to construct generic types such as List<’T>.

List In-Class Activity #06 Write Your Own List Type In-Class Activity #07 Conclusion Question?
35 / 35

Question?

	List
	In-Class Activity #06
	Write Your Own List Type
	In-Class Activity #07
	Conclusion
	Question?

