
Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
1 / 46

Lec 6: Data Abstraction
CS220: Programming Principles

Sang Kil Cha

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
2 / 46

Compound Data

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
3 / 46

Motivation

Can we combine primitive data types that we learned so far to represent more
complex data types?

What’s the glue?

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
3 / 46

Motivation

Can we combine primitive data types that we learned so far to represent more
complex data types?

What’s the glue?

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
4 / 46

Motivating Example: Rational Numbers

A rational number is any number that can be expressed as the quotient of two
integers: p/q, where p is a numerator and q is a denominator.

Assume that we have the following three functions:
• Constructor: a function that takes in two integers and returns a rational number

(makeRat).
• Numerator Selector: a function that takes in a rational number and returns the

numerator of the rational number (numer).
• Denominator Selector: a function that takes in a rational number and returns

the denominator of the rational number (denom).

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
4 / 46

Motivating Example: Rational Numbers

A rational number is any number that can be expressed as the quotient of two
integers: p/q, where p is a numerator and q is a denominator.

Assume that we have the following three functions:

• Constructor: a function that takes in two integers and returns a rational number
(makeRat).

• Numerator Selector: a function that takes in a rational number and returns the
numerator of the rational number (numer).

• Denominator Selector: a function that takes in a rational number and returns
the denominator of the rational number (denom).

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
4 / 46

Motivating Example: Rational Numbers

A rational number is any number that can be expressed as the quotient of two
integers: p/q, where p is a numerator and q is a denominator.

Assume that we have the following three functions:
• Constructor: a function that takes in two integers and returns a rational number

(makeRat).

• Numerator Selector: a function that takes in a rational number and returns the
numerator of the rational number (numer).

• Denominator Selector: a function that takes in a rational number and returns
the denominator of the rational number (denom).

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
4 / 46

Motivating Example: Rational Numbers

A rational number is any number that can be expressed as the quotient of two
integers: p/q, where p is a numerator and q is a denominator.

Assume that we have the following three functions:
• Constructor: a function that takes in two integers and returns a rational number

(makeRat).
• Numerator Selector: a function that takes in a rational number and returns the

numerator of the rational number (numer).

• Denominator Selector: a function that takes in a rational number and returns
the denominator of the rational number (denom).

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
4 / 46

Motivating Example: Rational Numbers

A rational number is any number that can be expressed as the quotient of two
integers: p/q, where p is a numerator and q is a denominator.

Assume that we have the following three functions:
• Constructor: a function that takes in two integers and returns a rational number

(makeRat).
• Numerator Selector: a function that takes in a rational number and returns the

numerator of the rational number (numer).
• Denominator Selector: a function that takes in a rational number and returns

the denominator of the rational number (denom).

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
5 / 46

Writing Basic Operators for Rational Numbers

Addition (n1/d1 + n2/d2 = n1d2+n2d1

d1d2
).

let addRat x y =
makeRat (((numer x) * (denom y)) + ((numer y) * (denom x)))

(denom x * denom y)

Subtraction (n1/d1 − n2/d2 = n1d2−n2d1

d1d2
).

let subRat x y =
makeRat (((numer x) * (denom y)) - ((numer y) * (denom x)))

(denom x * denom y)

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
6 / 46

Writing Basic Operators for Rational Numbers

Multiplication (n1/d1 × n2/d2 = n1n2

d1d2
).

let mulRat x y =
makeRat (numer x * numer y) (denom x * denom y)

Division (n1/d1

n2/d2
= n1d2

d1n2
).

let divRat x y =
makeRat (numer x * denom y) (denom x * numer y)

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
7 / 46

Our First Glue: Tuples

A tuple is a grouping of unnamed but ordered values, possibly of different types.

Tuples.

(1, 2) // (int * int)
("a", "b", "c") // (string * string * string)
(1, "abc") // (int * string)

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
8 / 46

Define a Type

You can explicitly define a type using the type keyword.

type Point = int * int

let p = (1, 2) // This is compatible with Point.
let p: Point = (1, 2) // Can even specify the type.

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
9 / 46

Accessing Elements in Tuples

let x = (1, 2)
fst x // returns 1
snd x // returns 2
// thr x <- this doesn 't exist
let y = (1, 2, 3)
let _, _, third = y // we can get the third value.
let fst (e, _) = e // matching a tuple as arg.

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
10 / 46

Representing Rational Numbers w/ Tuples

let makeRat n d = (n, d)
let numer x = fst x
let denom x = snd x

Can this definition handle negative rational numbers? What is the problem?

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
11 / 46

Normalization is Required

makeRat (-1) 2 // -0.5
makeRat 1 (-2) // -0.5
(-1, 2) = (1, -2) // false

Can you fix the makeRat function so that the same rational numbers can always have
the same tuple?

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
12 / 46

Attendance Check

Note:
1. This slide appears at random time during the class.
2. This link is only valid for a few minutes.
3. We don’t accept late responses.

https://forms.gle/1BL4tRwMT4nGj2eGA

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
13 / 46

In-Class Activity #04

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
14 / 46

Preparation

We are going to use the same git repository as before. Just in case you don’t have it,
clone the repository using the following command.

1. Clone the repository to your machine.
- git clone https://github.com/KAIST-CS220/CS220-Main.git

2. Move in to the directory CS220-Main/Activities
- cd CS220-Main
- cd Activities

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
15 / 46

The Problem

Modify the makeRat function so that the RationalNumber type is comparable.

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
16 / 46

Data Abstraction

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
17 / 46

Data Abstraction

A methodology that enables us to isolate how a compound data object is used from
the details of how it is constructed from more primitive data objects.

For example, we don’t need to know how rational numbers are constructed in order
to write addRat, subRat, etc.

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
18 / 46

Our Second Glue: Records

Records aggregate “named values”.

Records.

type RationalNumber = { // Type definition .
Numerator : int
Denominator : int

}

let n = { Numerator = 2; Denominator = 3 }
n. Numerator // returns 2
n. Denominator // returns 3

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
19 / 46

Type Ambiguity

type Point = { X: float; Y: float; Z: float }
type XXXXX = { X: float; Y: float; Z: float }
let x = { X = 1.0; Y = 1.0; Z = 1.0 } // Point or XXXXX?
let x = { Point.X = 1.0; Y = 1.0; Z = 1.0 } // Be explicit .

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
20 / 46

Making New Record from an Existing Record

We cannot update fields of a record, but we can create a new one.

type Point = { X: float; Y: float; Z: float }
let p = { X = 1.0; Y = 1.0; Z = 1.0 } // (1.0, 1.0, 1.0)
let q = { p with Y = 2.0 } // (1.0, 2.0, 1.0)
let r = { p with X = 3.0; Z = 3.0 } // (3.0, 1.0, 3.0)
// p, q, r are all alive here.

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
21 / 46

Immutability

Data types in F# are immutable by default (thus, no side-effects). Meaning that you
cannot change the value once a data object is constructed.

The fact that objects will never be mutated helps write “reasonable” code.

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
22 / 46

Our Third Glue: Discriminated Unions

Both records and tuples create a new type by “multiplying” types together. But what if
we want to “sum” multiple types together to create a new one?

The (int * Bool) type can have 232 ∗ 2 = 233 possible values. And we want to
create a type that accepts only 232 + 2 possible values.

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
22 / 46

Our Third Glue: Discriminated Unions

Both records and tuples create a new type by “multiplying” types together. But what if
we want to “sum” multiple types together to create a new one?

The (int * Bool) type can have 232 ∗ 2 = 233 possible values. And we want to
create a type that accepts only 232 + 2 possible values.

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
23 / 46

Discriminated Unions

IntOrBool.

type IntOrBool =
| Int of int
| Bool of bool

Int 42 // constructs IntOrBool
Bool false // constructs IntOrBool

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
24 / 46

Discriminated Unions (cont’d)

Days.

type Day =
| Sun
| Mon
| Tue
| Wed
| Thu
| Fri
| Sat

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
25 / 46

Selector for Discriminated Unions

How can we extract values from a discriminated union?

Pattern Matching!

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
26 / 46

Pattern Matching

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
27 / 46

Patterns

Each type in F# mostly has its own pattern.
• _: underscore for matching “any” type.
• (_, _, _): tuples.
• { X = x }: records.
• LabelName _: discriminated unions.
• ...

We will see more patterns as we learn more data types.

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
28 / 46

let-Bindings for Patterns

let (Int x) = Int 42 // x has a value 42
let (a, b) = (1, "hello") // a = 1 and b = "hello"
type Point = { X: int; Y: int }
let { X = x } = { X = 1; Y = 2 } // x = 1
let _ = Int 42 // We effectively ignore the value.

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
29 / 46

Matching Values

Pattern matching.

match e with
| PatternA -> eA
| PatternB -> eB
| ... // omitted

First evaluate e and match the evaluated value with the following patterns. If it
matches PatternA, then evaluate eA. Else, if it matches PatternB, then evaluate eB.
And so on and so forth.

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
30 / 46

Why not just use if then else?

You can do it, but pattern matching is much more elegant!

// With pattern matching .
match x with
| (0, 0) -> "a"
| (1, _) -> "b"
| (_, _) -> "c"

// With if -then -else
if fst x = 0 && snd x = 0 then "a"
elif fst x = 1 then "b"
else "c"

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
31 / 46

Q: What’s the Result?

let filter x =
match x with
| num -> "others"
| 1 | 2 | 3 -> "1 or 2 or 3"

filter 4 // ?

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
32 / 46

Pattern Matching with Guards

We can add a when clause right next to each pattern in a pattern matching
expression to specify an additional condition to match (a guard).

let rangeTest v =
match v with
| v when v >= 0 && v < 42 -> true
| _ -> false

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
33 / 46

Make it Simpler

The function keyword, which represents a function taking in only a single
argument, can be used for pattern matching with out the use of match keyword.

Rewriting the previous example rangeTest.

let rangeTest = function
| v when v >= 0 && v < 42 -> true
| _ -> false

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
34 / 46

Function vs. Pattern Match

• A pure function maps a value in a set to a value in another set.
• A match statement is the same!

You can always define a function with a pattern matching.

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
35 / 46

Should We Always Use Pattern Matching for
Defining Functions?

No. Consider the following case.

Example: addByOne

let addByOne = function
| 1 -> 2
| 2 -> 3
| ...

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
36 / 46

In Math ...

1

...

2

3
...

X

2

...

3

4
...

Y

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
37 / 46

Quick Exercise

let rec factorial n =
if n <= 1 then 1
else n * factorial (n - 1)

Re-write the factorial function using the function keyword. Do you think it is
better than the above one? Why or why not?

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
38 / 46

Function Arguments

A function that takes two integers as input:

let sumA a b = a + b
let sumB (a, b) = a + b

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
39 / 46

In-Class Activity #05

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
40 / 46

Preparation

We are going to use the same git repository as before. Just in case you don’t have it,
clone the repository using the following command.

1. Clone the repository to your machine.
- git clone https://github.com/KAIST-CS220/CS220-Main.git

2. Move in to the directory CS220-Main/Activities
- cd CS220-Main
- cd Activities

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
41 / 46

The Problem

Consider a world with only three shapes: circle, square, and triangle.

type Shape =
/// A circle of a radius .
| Circle of float
/// A square with a side length .
| Square of float
/// A triangle with side lengths .
| Triangle of float * float * float

Modify the area function, which computes the area of a given shape.
Hint: Heron’s Formula is

Area(a, b, c) =
√
p(p− a)(p− b)(p− c), where p =

a+ b+ c

2
.

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
42 / 46

Conclusion

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
43 / 46

Algebraic Data Types

We can “add” or “multiply” data types to combine them into a new data type.

Kind Our Glue Meaning

Product types tuples, records A and B and ...
Sum types discriminated unions A or B or ...

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
44 / 46

F# Naming Convention

Haven’t explicitly mentioned yet, but there is a common naming convention that you
want to follow in F#.

1. Use camelCase1 for values (including functions).
2. Use PascalCase for types (including modules and classes).

1We sometimes call camelCase as lower camel case, and PascalCase as upper camel case.

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
45 / 46

Question?

Compound Data In-Class Activity #04 Data Abstraction Pattern Matching In-Class Activity #05 Conclusion Question?
46 / 46

Further Reading

• The wizard book: Chapter 2.1.
• https://fsharpforfunandprofit.com/posts/discriminated-unions/
• https://learn.microsoft.com/en-us/dotnet/fsharp/

language-reference/pattern-matching

https://fsharpforfunandprofit.com/posts/discriminated-unions/
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/pattern-matching
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/pattern-matching

	Compound Data
	In-Class Activity #04
	Data Abstraction
	Pattern Matching
	In-Class Activity #05
	Conclusion
	Question?

