
Recap: Recursion Scope Question?
1 / 26

Lec 5: Closures
CS220: Programming Principles

Sang Kil Cha

Recap: Recursion Scope Question?
2 / 26

Attendance Check

Note:
1. This slide appears at random time during the class.
2. This link is only valid for a few minutes.
3. We don’t accept late responses.

https://forms.gle/msoaRGkbh1fTodw2A

Recap: Recursion Scope Question?
3 / 26

Recap: Recursion

Recap: Recursion Scope Question?
4 / 26

Another Example: Exponentiation

Compute the exponential of a given number.

Simple linear recursion.

let exp b n =
if n = 0 then 1
else b * exp (n - 1)

Recap: Recursion Scope Question?
5 / 26

Tail-recursion.

let exp b n =
let rec iter b counter product =

if counter = 0 then product
else iter b (counter - 1) (b * product)

iter b n 1

Can we make it faster?

Recap: Recursion Scope Question?
5 / 26

Tail-recursion.

let exp b n =
let rec iter b counter product =

if counter = 0 then product
else iter b (counter - 1) (b * product)

iter b n 1

Can we make it faster?

Recap: Recursion Scope Question?
6 / 26

Faster Algorithm

No need to multiply n times.

bn =

{
(bn/2)2 if n is even.
b · bn−1 if n is odd.

Recap: Recursion Scope Question?
7 / 26

Fast exp algorithm.

let isEven n = n % 2 = 0
let square n = n * n

let rec fastExp b n =
if n = 0 then 1
elif isEven n then square (fastExp b (n/2))
else b * fastExp b (n - 1)

elif is equivalent to else if.

Recap: Recursion Scope Question?
8 / 26

Measure Execution Time in REPL

#time
exp 2 1000000

#time
fastExp 2 1000000

Caveat: the result will be invalid due to integer overflow.

Recap: Recursion Scope Question?
9 / 26

Scope

Recap: Recursion Scope Question?
10 / 26

Locally Declared Identifiers

We learned from the previous lecture that let-bindings can be nested, but with a
careful indentation.

let x = 1
let f x = x + x
f 10 // ?
let g a =

let x = 10
a + x

g 10 // ?
x // ?

Recap: Recursion Scope Question?
11 / 26

Dynamic Environment

To understand the semantics of a program, we need to understand the environment
in which the program is executed. The environment is a mapping from identifiers to
values, and it changes through the execution of the program.

Example

(* A *) let x = 42
(* B *) let y = x + 1
(* C *) x + y

• At A, the environment is {·}.
• At B, the environment is {x 7→ 42}.
• At C, the environment is {x 7→ 42, y 7→ 43}.

Recap: Recursion Scope Question?
12 / 26

Is Initial Environment Empty?

Although, it is not really empty, we represent it as an empty set for simplicity.

Recap: Recursion Scope Question?
12 / 26

Is Initial Environment Empty?

Although, it is not really empty, we represent it as an empty set for simplicity.

Recap: Recursion Scope Question?
13 / 26

Scope

The environment is effective only in a certain region of the program.

let myfunc x = // z is not in scope
let y = x + 1
y + y

let z = myfunc 10 // x is not in scope

Recap: Recursion Scope Question?
14 / 26

Question

What’s the value?

let x x =
(let x = 10 in x + x) + x

x 10 // here?

Recap: Recursion Scope Question?
15 / 26

Shadowing

Shadowing means that a binding in an inner scope hides a binding in an outer scope.
Shadowing does not affect the outer binding.

Recap: Recursion Scope Question?
16 / 26

Question

What’s the value?

let pi = 3.14
let area r = pi * r * r
let myarea =

let pi = 6.0
area 10.0 // here?

Let’s assume that the body of a function is evaluated in the current dynamic
environment (i.e., the environment at the time of the function call), what’s the
expected value?

Recap: Recursion Scope Question?
17 / 26

What about F#?
What’s the value of myarea? Why different?

An example function area.

let pi = 3.14
let area r = pi * r * r
let myarea =

let pi = 6.0
area 10.0 // ?

Recap: Recursion Scope Question?
18 / 26

Static (Lexical) Scoping vs. Dynamic Scoping

Most programming languages use static scoping, meaning that name resolution
depends on the lexical context. In dynamic scoping, however, name resolution
depends on the (dynamic) execution context.

Only a few languages support dynamic scoping, e.g., Emacs Lisp and LATEX.

Why?

Recap: Recursion Scope Question?
19 / 26

Static Scoping is Preferred

Because it is easier to understand and reason about. Programmers can easily
determine the scope of a variable by looking at the source code.

Recap: Recursion Scope Question?
20 / 26

How Do We Implement Static Scoping?

Each function declaration should remember the environment in which it is defined.

A closure is a data structure that stores a function body (the code) and the
environment in which the function is defined.

Recap: Recursion Scope Question?
21 / 26

Closure

We can evaluate functions into a value by means of a closure. A closure is a triple:

(arg, body, env)

where arg is the argument expression, body is the function body expression, and the
env is an environment.

Recap: Recursion Scope Question?
22 / 26

Closure Example

An example function area.

let pi = 3.14
let area r = pi * r * r
let myarea =

let pi = 6.0
area 10.0 // ?

We can represent the closure of area as follows:

• arg: r

• body: pi * r * r

• env: {pi 7→ 3.14}

Recap: Recursion Scope Question?
23 / 26

Excercise

What’s the value z?

let x = 42
let y = 24
let f x = x + y
let z =

let y = 10
f (x + y)

1. With lexical scoping?
2. With dynamic scoping?

Recap: Recursion Scope Question?
24 / 26

Quiz #2

• The problem is publicly available at
https://github.com/KAIST-CS220/Quiz2.

• This will be auto-graded (unlike the previous in-class activities).
• You can even see all the tests:

https://github.com/KAIST-CS220/Quiz2/blob/main/Tests/Tests.fs.
• First, you should accept the assignment invitation.
• Then you wait for a minute or two until your own private repository is created.
• Finally, you can clone your own repository and start working on the quiz.

https://github.com/KAIST-CS220/Quiz2
https://github.com/KAIST-CS220/Quiz2/blob/main/Tests/Tests.fs

Recap: Recursion Scope Question?
25 / 26

Quiz #2 (cont’d)

In this problem, you should write a function collatz that computes the number of
steps required to reach 1, following the Collatz conjecture. The Collatz conjecture is
a conjecture in mathematics that concerns a sequence defined as follows: start with
any positive integer n. Then each term is obtained from the previous term as follows:
if the previous term is even, the next term is one half of the previous term. If the
previous term is odd, the next term is 3 times the previous term plus 1. The
conjecture is that no matter what value of n, the sequence will always reach 1. More
formally, the sequence can be represented as a function f as follows:

f(n) =

{
n/2 if n is even
3n+ 1 if n is odd

Recap: Recursion Scope Question?
26 / 26

Question?

	Recap: Recursion
	Scope
	Question?

