
Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
1 / 36

Lec 4: Recursion
CS220: Programming Principles

Sang Kil Cha

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
2 / 36

Recap: Function

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
3 / 36

Mathematical Functions

let addByOne x = x + 1

This function maps a domain (integers) onto a range (integers).

A function is a relation that associates each element of a set X to a single element of
another set Y 1:

f : X 7→ Y.

1A quote from Wikipedia.

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
4 / 36

Mathematical Function is Pure

We say a function is pure if it is a mathematical function. Particularly, we say a
function is pure if it satisfies the following properties:

1. Its return value is always determined by its argument.
2. Its evaluation has no side effects.

Q: What is a side effect?

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
4 / 36

Mathematical Function is Pure

We say a function is pure if it is a mathematical function. Particularly, we say a
function is pure if it satisfies the following properties:

1. Its return value is always determined by its argument.
2. Its evaluation has no side effects.

Q: What is a side effect?

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
5 / 36

How Can We Create Side Effects?

You don’t need to know! (yet). In fact, you already have seen one impure function:

printfn "Hello World"

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
6 / 36

The Power of Pure Functions

1. They are trivially parallelizable.
2. They only need to be evaluated once for a certain input. Thus, they can benefit

from caching.
3. And many more ... (we will see them later in this course)

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
7 / 36

Attendance Check

Note:
1. This slide appears at random time during the class.
2. This link is only valid for a few minutes.
3. We don’t accept late responses.

https://forms.gle/rvsfjBv1wLAVmKoj6

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
8 / 36

Recursion

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
9 / 36

Motivation

How can we make a control-flow (for-loop, while-loop, etc.) when there is no
side-effect?

f o r i i n range (0 , 10) :
p r i n t (i)

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
10 / 36

What is Recursion?

Recursion means a function calls itself.

In purely functional programming, we rely only on recursion instead of using loops
(e.g., for, while statements).

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
11 / 36

Square Roots

Write a square-root function.

√
x = y such that y ≥ 0 and y2 = x

Square root function in F#?

let sqrt x = // ?

What is the difference?

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
11 / 36

Square Roots

Write a square-root function.

√
x = y such that y ≥ 0 and y2 = x

Square root function in F#?

let sqrt x = // ?

What is the difference?

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
11 / 36

Square Roots

Write a square-root function.

√
x = y such that y ≥ 0 and y2 = x

Square root function in F#?

let sqrt x = // ?

What is the difference?

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
12 / 36

How to Compute Square Roots?

Newton’s Method: we start with a random guess, and iteratively improve our guess
until we reach a certain threshold.

Example: Computing the square root of 2.

Guess Quotient Average
1 (2 / 1) = 2 ((2 + 1) / 2) = 1.5
1.5 (2 / 1.5) = 1.3333 ((1.3333 + 1.5) / 2) = 1.4167
1.4167 (2 / 1.4167) = 1.4118 ((1.4167 + 1.4118) / 2) = 1.4142
1.4142

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
13 / 36

In Python?

t h resho ld = 0.001

def isGoodEnough (guess , x) :
return abs (guess * guess − x) < th resho ld

def improve (guess , x) :
return (guess + (x / guess)) / 2.0

def newton (i n i t i a l G u e s s , x) :
guess = i n i t i a l G u e s s
while not isGoodEnough (guess , x) :

guess = improve (guess , x)
return guess

def s q r t (x) :
return newton (1 . 0 , x)

Q: How do we avoid assignment?

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
14 / 36

Implementing Newton’s Method.

let threshold = 0.001

let square x = x * x

let isGoodEnough guess x =
abs (square guess - x) < threshold

let improve guess x = (guess + (x / guess)) / 2.0

let newton guess x = // Doesn 't compile
if isGoodEnough guess x then guess
else newton (improve guess x) x

let sqrt x = newton 1.0 x

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
15 / 36

Compile Error?

F# functions are not recursive by default. We should use the keyword rec to make a
function recursive. Below is the “diff”.

@@ -7,7 +7,7 @@

let improve guess x = (guess + (x / guess)) / 2.0

- let newton guess x = // Doesn 't compile
+ let rec newton guess x =

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
16 / 36

Why Not Recursive by Default?

This is basically a language design choice. F# gives the flexibility for users to choose
whether the name of a let-binding can be referenced within the scope of its own
body. SML, which is F#’s ancestor, uses recursion by default, for instance.

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
17 / 36

Revisiting Abstraction

At each function we don’t need to care how other functions are implemented
because functions provide abstraction about the procedures. For instance,

• Any implementation of sqaure works fine for isGoodEnough.
• Parameter names for a function does not matter for the caller of the function.

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
18 / 36

Hiding Details

The only function that is needed by a user would be sqrt. Can we hide the others
somehow?

One of the key aspects of abstraction is to hide the implementation details.

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
19 / 36

Hide with local definitions.

let sqrt x =
let threshold = 0.001
let square x = x * x
let isGoodEnough guess x =

abs (square guess - x) < threshold
let improve guess x =

(guess + (x / guess)) / 2.0
let rec newton guess x =

if isGoodEnough guess x then guess
else newton (improve guess x) x

newton 1.0 x

The variable x is accessible without parameter passing.

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
19 / 36

Hide with local definitions.

let sqrt x =
let threshold = 0.001
let square x = x * x
let isGoodEnough guess x =

abs (square guess - x) < threshold
let improve guess x =

(guess + (x / guess)) / 2.0
let rec newton guess x =

if isGoodEnough guess x then guess
else newton (improve guess x) x

newton 1.0 x

The variable x is accessible without parameter passing.

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
20 / 36

Make it simpler without explicitly passing around the variable x.

let sqrt x =
let threshold = 0.001
let square x = x * x
let isGoodEnough guess =

abs (square guess - x) < threshold
let improve guess =

(guess + (x / guess)) / 2.0
let rec newton guess =

if isGoodEnough guess then guess
else newton (improve guess)

newton 1.0

Variables in a function are only usable within the function.

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
20 / 36

Make it simpler without explicitly passing around the variable x.

let sqrt x =
let threshold = 0.001
let square x = x * x
let isGoodEnough guess =

abs (square guess - x) < threshold
let improve guess =

(guess + (x / guess)) / 2.0
let rec newton guess =

if isGoodEnough guess then guess
else newton (improve guess)

newton 1.0

Variables in a function are only usable within the function.

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
21 / 36

In-Class Activity #03

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
22 / 36

Preparation

We are going to use the same git repository as before. Just in case you don’t have it,
clone the repository using the following command.

1. Clone the repository to your machine.
- git clone https://github.com/KAIST-CS220/CS220-Main.git

2. Move in to the directory CS220-Main/Activities
- cd CS220-Main
- cd Activities

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
23 / 36

The Problem

Modify the gcd function to compute GCD (Greatest Common Divisor) of two given
integers.

The algorithm formally looks like below.

gcd(a, 0) = a
gcd(a, b) = gcd(b, a mod b).

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
24 / 36

Recursive Patterns

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
25 / 36

Linear Recursive Functions

A function that makes a single call to itself each time the function runs.

Example: factorial function.

let rec factorialA n =
if n <= 1 then 1
else n * factorialA (n - 1)

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
26 / 36

Evaluation Process: factorialA 6
factorialA 6
6 * factorialA 5
6 * (5 * factorialA 4)
6 * (5 * (4 * factorialA 3))
6 * (5 * (4 * (3 * factorialA 2)))
6 * (5 * (4 * (3 * (2 * factorialA 1))))
6 * (5 * (4 * (3 * (2 * 1))))
6 * (5 * (4 * (3 * 2)))
6 * (5 * (4 * 6))
6 * (5 * 24)
6 * 120
720

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
27 / 36

Another Implementation

Let’s increment a counter, and multiply the counter value for each recursion.

Example: factorial function with a counter.

let factorialB n =
let rec iter product counter max =

if counter > max then product
else iter (counter * product) (counter + 1) max

iter 1 1 n

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
28 / 36

Evaluation Process: factorialB 6
factorialB 6
iter 1 1 6
iter 1 2 6
iter 2 3 6
iter 6 4 6
iter 24 5 6
iter 120 6 6
iter 720 7 6
720

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
29 / 36

Comparison

factorialA 6
6 * factorialA 5
6 * (5 * factorialA 4)
6 * (5 * (4 * factorialA 3))
6 * (5 * (4 * (3 * factorialA 2)))
6 * (5 * (4 * (3 * (2 * factorialA 1))))
6 * (5 * (4 * (3 * (2 * 1))))
6 * (5 * (4 * (3 * 2)))
6 * (5 * (4 * 6))
6 * (5 * 24)
6 * 120
720

factorialB 6
iter 1 1 6
iter 1 2 6
iter 2 3 6
iter 6 4 6
iter 24 5 6
iter 120 6 6
iter 720 7 6
720

factorialA defers multiplication operations per each recursion.

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
29 / 36

Comparison

factorialA 6
6 * factorialA 5
6 * (5 * factorialA 4)
6 * (5 * (4 * factorialA 3))
6 * (5 * (4 * (3 * factorialA 2)))
6 * (5 * (4 * (3 * (2 * factorialA 1))))
6 * (5 * (4 * (3 * (2 * 1))))
6 * (5 * (4 * (3 * 2)))
6 * (5 * (4 * 6))
6 * (5 * 24)
6 * 120
720

factorialB 6
iter 1 1 6
iter 1 2 6
iter 2 3 6
iter 6 4 6
iter 24 5 6
iter 120 6 6
iter 720 7 6
720

factorialA defers multiplication operations per each recursion.

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
30 / 36

Cost of Deferred Operations

factorialA needs memory to keep track of the operations to be performed later on,
the size of which grows linearly with n.

Therefore, we prefer the second pattern, i.e., factorialB, which is often
called iterative process, and the function is referred to be tail-recursive.

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
30 / 36

Cost of Deferred Operations

factorialA needs memory to keep track of the operations to be performed later on,
the size of which grows linearly with n.

Therefore, we prefer the second pattern, i.e., factorialB, which is often
called iterative process, and the function is referred to be tail-recursive.

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
31 / 36

Tail Recursion

A tail-recursive function is a function that calls itself at the end, i.e., the tail, of the
function without any computation after the return of recursive calls.

If there is no computation after the return of recursive calls, we don’t need to
defer operations!

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
32 / 36

Tree Recursion

When there are multiple recursive calls within a function.

Example: Write a function that computes Fibonacci numbers.

Fib(n) =

0 if n = 0

1 if n = 1

Fib(n− 1) + Fib(n− 2) otherwise

Can you write it in a tail-recursive manner?

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
33 / 36

Always Use Tail-Recursion?

Tail-recursive functions are efficient, but can be unintuitive!

The trade-off between readability (understandability) vs. efficiency.

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
34 / 36

Conclusion

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
35 / 36

• Functions in programming language represent a procedure, i.e., they show how
to operate.

• Recursion is a natural way to represent ideas. When humans perform repetitive
tasks, we do the same thing over and over again until we reach a terminating
condition.

• There are typical patterns in writing a recursive function.
• Tail recursion is important for performance-critical functions.

Recap: Function Recursion In-Class Activity #03 Recursive Patterns Conclusion Question?
36 / 36

Question?

	Recap: Function
	Recursion
	In-Class Activity #03
	Recursive Patterns
	Conclusion
	Question?

