CHA, SANG KIL

KAIST N5 #2319, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea

└ +82-(0)42-350-3569 | ⊠ sangkilc@kaist.ac.kr | **○** sangkilc

A https://softsec.kaist.ac.kr/~sangkilc

Executive Summary

Sang Kil Cha is an experimental computer scientist whose research is at the intersection of computer security and software engineering. His research mainly involves building and evaluating systems that can analyze programs for enhancing their security. He has received several awards from top-tier conferences by developing such systems. He received his Ph.D. in Electrical and Computer Engineering from Carnegie Mellon University in 2015. He is currently an associate professor at KAIST, where he leads the Software Security Lab. He is also the director of the Cyber Security Research Center at KAIST. He is currently an editorial board member of IEEE Transactions on Dependable and Secure Computing (TDSC).

Education

2010–2015	Ph.D. in Electrical and Computer Engineering Carnegie Mellon University, Pittsburgh, PA
	Advisor: David Brumley Thesis Title: Towards Resource-Aware Security Testing of Software Thesis Committee: Lujo Bauer, David Molnar, and Vyas Sekar
2008–2009	M.S. in Electrical and Computer Engineering <i>Carnegie Mellon University, Pittsburgh, PA</i>
2001–2008	B.S. in Electrical and Computer Engineering Korea University, Seoul, Korea

Research Interests

Software security. systems security, software engineering, and program analysis.

Professional Experience

2023-Present	Chief Professor of Graduate School of Information Security	Daejeon, Korea
2020-Present	Director of Cyber Security Research Center, KAIST	Daejeon, Korea
2020-Present	Associate Professor, KAIST	Daejeon, Korea
2015-2020	Assistant Professor, KAIST	Daejeon, Korea
Summer 2013	Research Intern, Microsoft Research	Redmond, WA
Summer 2011	Research Intern, Microsoft Research	Redmond, WA

Honors and Awards

2023	USENIX Security Distinguished Paper Award	Anaheim, CA
2022	TSE Best Paper Award	IEEE Computer Society
2022	ACM Distinguished Paper Award (ASE 2022)	Oakland Center, MI
2022	Test-of-Time Award (IEEE Security & Privacy)	San Francisco, CA
2021	Technology Innovation Award (College of Engineering)	Daejeon, Korea
2021	MSIT Minister Prize (Cybersecurity Education)	Seoul, Korea
2020	ACM Distinguished Paper Award (FSE 2020)	Sacramento, CA
2019	Best Paper Award (NDSS BAR 2019)	San Diego, CA
2018, 2019	MSIT Minister Prize (Data Challenge 2018, 2019)	Seoul, Korea
2018	Best Paper Award (WISA 2018)	Jeju, Korea
2014	ACM Distinguished Paper Award (ICSE 2014)	Hyderabad, India
2013	Student Travel Grant Award (CCS 2013)	Berlin, Germany
2011	Ann and Martin McGuinn Graduate Fellowship (CMU)	Pittsburgh, PA
2010	Student Travel Grant Award (CCS 2010)	Chicago, IL
2010	Moon-Jung Chung Scholarship (KOCSEA 2010)	Vienna, VA
2010	Carnegie Institute of Technology Dean's Tuition Fellowshi	p Pittsburgh, PA

Publications

Refereed Conference and Workshop Papers

[1] Soomin Kim, Hyungseok Kim, and Sang Kil Cha. FunProbe: Probing Functions from Binary Code through Probabilistic Analysis. In *Proceedings of the International Symposium on Foundations of Software Engineering*, pages 1419–1430, 2023

- [2] Haeun Lee, Hee Dong Yang, Su Geun Ji, and Sang Kil Cha. On the Effectiveness of Synthetic Benchmarks for Evaluating Directed Grey-box Fuzzers. In *Proceedings of the Asia-Pacific Software Engineering Conference*, pages 11–20, 2023
- [3] Hyungseok Kim, Soomin Kim, Junoh Lee, Kangkook Jee, and **Sang Kil Cha**. Reassembly is Hard: A Reflection on Challenges and Strategies. In *Proceedings of the USENIX Security Symposium*, pages 1469–1486, 2023
- [4] Tae Eun Kim, Jaeseung Choi, Kihong Heo, and Sang Kil Cha. DAFL: Directed Grey-box Fuzzing Guided by Data Dependency. In *Proceedings of the USENIX Security Symposium*, pages 4931– 4948, 2023
- [5] Minyeop Choi, Gihyuk Ko, and **Sang Kil Cha**. BotScreen: Trust Everybody, but Cut the Aimbots Yourself. In *Proceedings of the USENIX Security Symposium*, pages 481–498, 2023
- [6] Haeun Lee, Soomin Kim, and Sang Kil Cha. Fuzzle: Making a Puzzle for Fuzzers. In Proceedings of the IEEE/ACM International Conference on Automated Software Engineering, pages 1–12, 2022
- [7] Hyungseok Kim, Junoh Lee, Soomin Kim, Seungll Jung, and Sang Kil Cha. How'd Security Benefit Reverse Engineers? The Implication of Intel CET on Function Identification. In *Proceedings of the International Conference on Dependable Systems and Networks*, pages 559–566, 2022
- [8] Jaeseung Choi, Doyeon Kim, Soomin Kim, Gustavo Grieco, Alex Groce, and Sang Kil Cha. Smartian: Enhancing Smart Contract Fuzzing with Static and Dynamic Data-Flow Analyses. In Proceedings of the IEEE/ACM International Conference on Automated Software Engineering, pages 227–239, 2021
- [9] Jaeseung Choi, Kangsu Kim, Daejin Lee, and Sang Kil Cha. NTFuzz: Enabling Type-Aware Kernel Fuzzing on Windows with Static Binary Analysis. In *Proceedings of the IEEE Symposium* on Security and Privacy, pages 1973–1989, 2021
- [10] Marcel Böhme, Valentin J. M. Manès, and Sang Kil Cha. Boosting Fuzzer Efficiency: An Information Theoretic Perspective. In *Proceedings of the International Symposium on Foundations* of Software Engineering, pages 678–689, 2020
- [11] Valentin J. M. Manès, Soomin Kim, and Sang Kil Cha. Ankou: Guiding Grey-box Fuzzing towards Combinatorial Difference. In *Proceedings of the International Conference on Software Engineering*, pages 1024–1036, 2020
- [12] Suyoung Lee, HyungSeok Han, Sang Kil Cha, and Sooel Son. Montage: A Neural Network Language Model-Guided JavaScript Engine Fuzzer. In *Proceedings of the USENIX Security Symposium*, pages 2613–2630, 2020
- [13] Jaeseung Choi, Joonun Jang, Choongwoo Han, and Sang Kil Cha. Grey-box Concolic Testing on Binary Code. In Proceedings of the International Conference on Software Engineering, pages 736–747, 2019
- [14] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. CodeAlchemist: Semantics-Aware Code Generation to Find Vulnerabilities in JavaScript Engines. In *Proceedings of the Network and Distributed System Security Symposium*, 2019

- [15] Minkyu Jung, Soomin Kim, HyungSeok Han, Jaeseung Choi, and Sang Kil Cha. B2R2: Building an Efficient Front-End for Binary Analysis. In *Proceedings of the NDSS Workshop on Binary Analysis Research*, 2019
- [16] Jina Hong, JinKi Lee, HyunKyu Lee, YoonHa Chang, KwangHo Choi, and Sang Kil Cha. AlertVision: Visualizing Security Alerts. In *Proceedings of the World Conference on Information Security*, 2018
- [17] Chanhee Lee, Changhoon Yoon, Seungwon Shin, and **Sang Kil Cha**. INDAGO: A New Framework For Detecting Malicious SDN Applications. pages 220–230, 2018
- [18] Seongll Wi, Jaeseung Choi, and Sang Kil Cha. Git-based CTF: A Simple and Effective Approach to Organizing In-Course Attack-and-Defense Security Competition. In Proceedings of the USENIX Workshop on Advances in Security Education, 2018
- [19] HyungSeok Han and **Sang Kil Cha**. IMF: Inferred Model-based Fuzzer. In *Proceedings of the ACM Conference on Computer and Communications Security*, pages 2345–2358, 2017
- [20] Soomin Kim, Markus Faerevaag, Minkyu Jung, Seungll Jung, DongYeop Oh, JongHyup Lee, and Sang Kil Cha. Testing Intermediate Representations for Binary Analysis. In Proceedings of the IEEE/ACM International Conference on Automated Software Engineering, pages 353–364, 2017
- [21] Weidong Cui, Marcus Peinado, Sang Kil Cha, Yanick Fratantonio, and Vasileios P. Kemerlis. RETracer: Triaging Crashes by Reverse Execution from Partial Memory Dumps. In *Proceedings* of the International Conference on Software Engineering, pages 820–831, 2016
- [22] Sang Kil Cha, Maverick Woo, and David Brumley. Program-Adaptive Mutational Fuzzing. In Proceedings of the IEEE Symposium on Security and Privacy, pages 725–741, 2015
- [23] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David Warren, Gustavo Grieco, and David Brumley. Optimizing Seed Selection for Fuzzing. In *Proceedings of the* USENIX Security Symposium, pages 861–875, 2014
- [24] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley. Enhancing Symbolic Execution with Veritesting. In *Proceedings of the International Conference on Software Engineering*, pages 1083–1094, 2014
- [25] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley. Scheduling Black-box Mutational Fuzzing. In Proceedings of the ACM Conference on Computer and Communications Security, pages 511–522, 2013
- [26] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. Unleashing Mayhem on Binary Code. In Proceedings of the IEEE Symposium on Security and Privacy, pages 380–394, 2012
- [27] Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze Hao, and David Brumley. AEG: Automatic Exploit Generation. In Proceedings of the Network and Distributed System Security Symposium, pages 283–300, 2011
- [28] Sang Kil Cha, Brian Pak, David Brumley, and Richard J. Lipton. Platform-Independent Programs. In Proceedings of the ACM Conference on Computer and Communications Security, pages 547–558, 2010

[29] Sang Kil Cha, Iulian Moraru, Jiyong Jang, John Truelove, David Brumley, and David G. Andersen. SplitScreen: Enabling Efficient, Distributed Malware Detection. In Proceedings of the USENIX Symposium on Networked Systems Design and Implementation, pages 377–390, 2010

Refereed Journal Papers

- [30] Marcel Böhme, Valentin J. M. Manès, and **Sang Kil Cha**. Boosting Fuzzer Efficiency: An Information Theoretic Perspective. *Communications of the ACM*, 66(11):89–97, 2023
- [31] Dongkwan Kim, Eunsoo Kim, **Sang Kil Cha**, Sooel Son, and Yongdae Kim. Revisiting Binary Code Similarity Analysis Using Interpretable Feature Engineering and Lessons Learned. *IEEE Transactions on Software Engineering*, 49(4):1661–1682, 2023
- [32] Valentin J. M. Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel Egele, Edward J. Schwartz, and Maverick Woo. The Art, Science, and Engineering of Fuzzing: A Survey. IEEE Transactions on Software Engineering, 47(11):2312–2331, 2021
- [33] Sang-Ok Park, Ohmin Kwon, Yonggon Kim, Sang Kil Cha, and Hyunsoo Yoon. Mind Control Attack: Undermining Deep Learning with GPU Memory Exploitation. *Computers & Security*, 102 (102115):1–16, 2021
- [34] **Sang Kil Cha** and Zhenkai Liang. Asia's Surging Interest in Binary Analysis. *Communications of the ACM*, 63(4):86–88, 2020
- [35] Thanassis Avgerinos, Alexandre Rebert, **Sang Kil Cha**, and David Brumley. Enhancing Symbolic Execution with Veritesting. *Communications of the ACM*, 59(6):93–100, 2016
- [36] Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert, Edward J. Schwartz, Maverick Woo, and David Brumley. Automatic Exploit Generation. *Communications of the ACM*, 57(2):74–84, 2014
- [37] Sang Kil Cha, Iulian Moraru, Jiyong Jang, John Truelove, David Brumley, and David G. Andersen. SplitScreen: Enabling Efficient, Distributed Malware Detection. *Journal of Communications* and Networks, 13(2):187–200, 2011

Patents

- [38] Sang Kil Cha, Homook Cho, Jungho Lee, and MyeongGeun Shin. Providing Method of Hacking Platform based on Open Community and Providing System Using the Same. Korea Patent 10-2384717-0000, 2022
- [39] **Sang Kil Cha**, Valentin J. M. Manès, and Soomin Kim. Method and Apparatus for Grey-box Fuzzing with Distance-based Fitness Function. Korea Patent 10-2289574-0000, 2021
- [40] **Sang Kil Cha** and Jiwon Choi. Technology and System for Improving the Accuracy of Binary Reassembly System with Lazy Symbolization. Korea Patent 10-2104198-0000, 2020
- [41] Sang Kil Cha, Soomin Kim, DongYeop Oh, Seungll Jung, and Minkyu Jung. Method and Apparatus For Testing Intermediate Language for Binary Analysis. Korea Patent 10-2117165-0000, 2020

- [42] Sang Kil Cha, Sang-Ok Park, Ohmin Kwon, and Yonggon Kim. Mechanisms for CUDA Code Memory Page Scanning and CUDA Function Scanning. Korea Patent 10-2112929-0000, 2020
- [43] Sang Kil Cha, Seongll Wi, Jaeseung Choi, and HyungSeok Han. Git-based System and Method for Providing Attack and Defense Hacking Contests. Korea Patent 10-2152989-0000, 2020
- [44] **Sang Kil Cha**, Soomin Kim, and Minsu Lee. System and Method for Visualizing Binary Structure. Korea Patent 10-1974069-0000, 2019
- [45] Seungwon Shin, Chanhee Lee, Changhoon Yoon, and Sang Kil Cha. Apparatus, Method, and Computer Program for Malware Detection of Software Defined Network. Patent App. US 15811248, 2017
- [46] David Brumley, **Sang Kil Cha**, Thanassis Avgerinos, and Alexandre Rebert. Detecting Exploitable Bugs in Binary Code. US Patent 9542559, 2017
- [47] David Brumley, Thanassis Avgerinos, and Sang Kil Cha. Automated Exploit Generation. US Patent 9135405, 2015
- [48] Weidong Cui, David Molnar, and **Sang Kil Cha**. Computer Memory Access Monitoring and Error Checking. Patent App. US 20130152053, 2013

Professional Services

Conference Program Committee

2022–2023	ACM CCS
2021–2024	USENIX Security
2024	ICSE
2024	NDSS
2020–2023	The Web Conference (WWW)
2021–2023	ACSAC
2018–2022	ACM ASIACCS
2022,2024	ISSTA
2022–2023	FUZZING
2022	FSE Artifact
2020	IEEE Euro S&P
2021–2023	SVCC
2021	ACNS
2020–2021	SoftEng
2021	CHECKMATE

2020	ISSTA Doctoral Symposium
2020	ICISS
2020	LCTES
2013–2021	WISA
2018	APSys
2018–2019, 2022–2023	NDSS BAR
2016, 2018	USENIX Enigma
2018	Netsec-KR

Selected Talks

2023	Evaluating Fuzzers: A Grand Challenge for Software Testing Research Invited Speaker at UNIST CSE Seminar	Ulsan, Korea
2022	Security Fundamentals Invited Speaker at Samsung MX Seminar	Suwon, Korea
2020	Cybersecurity in Contact-free Era Invited Speaker at Korea Council of CISO	Seoul, Korea
2020	AI-based Cyber Warfare: Its Present and Future Invited Speaker at GIST EECS Colloquium	Gwangju, Korea
2019	Binary Analysis and Vulnerability Discovery Invited Speaker at Korea University EE Seminar	Seoul, Korea
2019	Binary Analysis and Finding Security Vulnerabilities Invited Speaker at Korea University Seminar	Seoul, Korea
2019	Finding Vulnerabilities in Large and Complex COTS Software Invited Speaker at Qualcomm Seminar	San Diego, CA
2018	Git-based CTF and Automated Hacking Competition Invited Speaker at Cyber Conflict Exercise 2018	Jeju, Korea
2018	Binary-level Vulnerability Discovery: Past, Present, and Future Invited Speaker at POSTECH CS Seminar	Pohang, Korea
2017	Binary Analysis and Hacking Invited Speaker at Cyber Conflict Exercise 2017	Seoul, Korea
2017	Cyberwarfare and Artificial Intelligence Advisory Panel at KTV Science Talk Show	Sejong, Korea
2017	Automated Bug Finding Invited Speaker at Korea University Seminar	Seoul, Korea
2016	Towards Resource-Aware Fuzzing Invited Speaker at International Symposium on Mobile Security	Seoul, Korea
2016	AI & Security	Seoul, Korea

	Keynote Speaker at International Cyber Security Conference	ce
2016	Automatic Exploit Generation Keynote Speaker at SECUINSIDE	Seoul, Korea
2016	Towards Resource-Aware Fuzzing Invited Speaker at Samsung Seminar	Suwon, Korea
2016	Towards Resource-Aware Fuzzing Invited Speaker at KAIST CS Colloquium	Daejeon, Korea

Teaching

Spring 2022	CS492E - Introduction to Software Security	KAIST
Fall 2021	IS561 - Binary Code Analysis and Secure Software Systems	KAIST
Spring 2021	CS220 - Programming Principles	KAIST
Fall 2020	IS521 - Information Security Laboratory	KAIST
Spring 2020	IS521 - Information Security Laboratory CS220 - Programming Principles	KAIST KAIST
Fall 2019	IS561 - Binary Code Analysis and Secure Software Systems	KAIST
Spring 2019	IS521 - Information Security Laboratory IS511 - Introduction to Information Security (co-taught with 5 others) CS220 - Programming Principles	KAIST KAIST KAIST
Fall 2018	IS561 - Binary Code Analysis and Secure Software Systems	KAIST
Spring 2018	IS521 - Information Security Laboratory IS511 - Introduction to Information Security (co-taught with 5 others) CS408E - Computer Science Project (mentored 1 team)	KAIST KAIST KAIST
Fall 2017	IS561 - Binary Code Analysis and Secure Software Systems	KAIST
Spring 2017	IS521 - Information Security Laboratory IS511 - Introduction to Information Security (co-taught with 4 others)	KAIST KAIST
Fall 2016	IS893 - Advanced Software Security	KAIST
Spring 2016	IS561 - Binary Code Analysis and Secure Software Systems	KAIST

Advising

Current Students

2018.3– Soomin Kim

2019.9–	Hyungseok Kim	Ph.D.
2021.8-	JungHyun Kim	Ph.D.
2023.3–	HyungJoon Yoon	M.S.
2023.3–	Sanghyun Park	M.S.
2023.3–	Jungwoo Lee	M.S.
2023.8-	Steve Gustaman	M.S.
2023.8-	Geonwoo Park	M.S.

Selected Grants

2021–	Developing Next-Generation Binary Decompiler 2,325,000,000 KRW from IITP	ΡI
2018	Developing JavaScript Mutation Algorithm for Fuzzing 50,000,000 KRW from LIG	ΡI
2018–2019	Model-based Fuzzing for Finding Kernel Vulnerabilities 180,000 USD (90,000 USD from ONRG and 90,000 USD from ONR)	ΡI
2017	Binary Smart Fuzzing 98,000,000 KRW from Samsung	ΡI
2017	Next-Generation SIEM Development 60,000,000 KRW from AhnLab	ΡI
2017–2018	Cyber Immune System 225,000,000 KRW from IITP	ΡI
2017	Smart Fuzzing for Emerging Vehicle Platform 50,000 USD from Ford Motor Company	ΡI
2016	Search-based Fuzzing 37,000,000 KRW from KAIST	ΡI
2016–2018	Building a Platform for Automated Reverse Engineering and Vulnerability Detection with Binary Code Analysis 1,510,000,000 KRW from IITP	ΡI
2015–2018	Discovering Vulnerabilities with Binary Code Analysis 100,000,000 KRW from KAIST	ΡI