
How’d Security Benefit Reverse Engineers?
The Implication of Intel CET on Function Identification

Hyungseok Kim∗†, Junoh Lee†, Soomin Kim†, SeungIl Jung‡, Sang Kil Cha†
∗The Affiliated Institute of ETRI, †KAIST, ‡KAIST CSRC

hskim@nsr.re.kr, junoh@kaist.ac.kr, soomink@kaist.ac.kr, sijung@kaist.ac.kr, sangkilc@kaist.ac.kr

Abstract—As CPU vendors introduce various hardware-
assisted security features, modern compilers have started to
produce binaries containing security-related instructions. Inter-
estingly, such instructions tend to alter the shape of resulting
binaries, which can potentially affect the effectiveness of binary
analysis. This paper presents the first systematic study on
the implication of the Intel CET (Control-flow Enforcement
Technology) instructions on function identification. Our study
finds that CET-relevant instructions provide useful, although
limited, hints for function entries. Therefore, we devise a novel
function identification algorithm that utilizes the usage patterns
of CET instructions, and demonstrate a tool named FunSeeker
that implements the idea. Our evaluation shows that FunSeeker
significantly outperforms current state-of-the-art function iden-
tification tools in terms of both correctness and speed.

Index Terms—function identification, binary analysis, Intel
CET, reverse engineering

I. INTRODUCTION

Memory corruption bugs have been existed for about a half
century. Yet, they pose a significant security threat, allowing
an attacker to take full control over the victim machines.

Although there have been a variety of research attempts
to mitigate memory-based exploits [1], [10], [18], [25], [27],
[34], [34], [47], those techniques suffer from significant perfor-
mance overhead, making them difficult to be used in practice.

Hardware vendors attempt to address the performance chal-
lenge by introducing various security features as well as
new instruction sets. For example, Intel CET (Control-flow
Enforcement Technology) [22], which is designed to enforce
the Control-Flow Integrity (CFI) [1] at a hardware level,
employs a set of new instructions to protect indirect branches
with negligible performance overhead [45]. In particular, po-
tential jump targets are marked with a special instruction
(ENDBR32 or ENDBR64), indicating a valid destination of
an indirect jump. We call such a marker instruction as end-
branch instruction. ARM (ARMv8-A) also supports CFI by
introducing an end-branch instruction named BTI (Branch
Target Identification) [5], which behaves similarly to Intel’s
ENDBR32 (or ENDBR64).

Recently, major compilers, such as GCC and Clang, have
been adapted to emit such end-branch instructions by default.
In an ideal scenario, compilers should place an end-branch
instruction only at a target of an indirect branch. In practice,
however, compilers often regard most function entries as a
potential jump target as it is difficult to statically resolve all
indirect jump targets.

Thus, the natural questions arise: Can an end-branch instruc-
tion exist at a program point other than a function entry? How

many functions in a CET-enabled binary start with an end-
branch instruction? Can CPU-based security features, such as
CET, benefit reverse engineers?

To answer these questions, we perform a systematic study
that analyzes the distribution and the characteristics of end-
branch instructions in CET-enabled binaries. In our study,
we find that (1) there are several program points other than
function entries where an end-branch instruction is used, and
(2) not every function contains an end-branch instruction. That
is, one cannot simply identify functions by solely relying on
the locations of end-branch instructions.

However, our study also reveals two syntactic properties
in CET-enabled binaries, which can indeed help identify
functions in them. First, there are several program points
other than a function entry at which compilers place an end-
branch instruction, and they share a common syntactic pattern.
Therefore, one can exploit such a pattern to discern whether
an end-branch instruction represents a function entry or not.
Second, functions that do not include an end-branch instruction
are mostly a static function that is only accessed through a
direct reference. Therefore, one can recursively follow direct
call targets to identify them.

Based on the observed properties, we devise a novel func-
tion entry identification algorithm, which does not rely on
any complex algorithms nor machine-learning techniques, and
demonstrate a tool, named FunSeeker, implementing the
algorithm. Our tool achieves significantly better performance
than the current state-of-the-art tools in terms of both correct-
ness and speed. Specifically, FunSeeker achieves over 99%
precision and recall rates on a large dataset of CET-enabled
binaries, while being significantly faster than existing tools.

In summary, the key contributions of this paper are:
1) We present the first systematic study on the distribution

of Intel CET instructions in real-world binaries.
2) We design and implement FunSeeker, a function

identification tool that outperforms the current state-of-
the-art tools in terms of both correctness and speed.

3) We publicize our tool (anonymized for submission)
as well as our large-scale benchmark to boost future
research in the field.

II. INTEL CET BACKGROUND

Intel Control-flow Enforcement Technology (CET) is de-
signed to enforce Control-Flow Integrity (CFI) at a hardware
level. Particularly, Intel CET includes two different mem-
ory protection mechanisms—Shadow Stack (SS) and Indirect

1 void foo() { ... }
2

3 int main() {
4 // ..
5 void (*fp)();
6 fp = &fun;
7

8 switch(input)
9 {

10 case ’1’:
11 // ..
12 }
13

14 fp();
15 // ..
16 }

(a) Example in C.

1 foo:
2 endbr64
3 push rbp
4 # ...
5 main:
6 endbr64
7 # ...
8 lea rcx, [rip + foo]
9 mov [rbp - 16], rcx

10 # ...
11 add rdx, rax
12 notrack jmp rdx
13 .LBB1_1:
14 mov ...
15 # ...
16 call qword ptr [rbp - 16]

(b) Corresponding assembly code.

Fig. 1: Example for Intel CET’s IBT protection.

Branch Tracking (IBT)—to protect forward and backward
indirect control flows, respectively.

First, SS is a hardware-based shadow stack implementation,
which aims to store redundant copies of return addresses to
protect backward indirect control flows, i.e., return edges with
ret instructions. Those shadow copies can be used to detect
stack-based buffer overflows [1], [36].

Second, IBT protects forward indirect branches, such as
jmp and call instructions. IBT checks for every indirect
branch instruction if it jumps to a pre-defined code location
marked via an end-branch (ENDBR32 or ENDBR64) instruc-
tion. Figure 1 shows (a) an example C program containing
a switch case statement, and (b) the CET-enabled x86-64
binary counterpart. Note that every function in the binary
starts with ENDBR64, which indicates that every function
can potentially be a jump target of an indirect branch. In
Line 12 of Figure 1b, there is an indirect jump prefixed with
NOTRACK. The instruction represents the switch statement in
Figure 1a, and the prefix is used to mean that the instruction
does not need to advance to an end-branch instruction because
compilers typically put an input range checking before the
indirect jump instruction. Thus, compilers do not insert an
end-branch instruction for switch-case clauses [28].

In this paper, we are mainly interested in the IBT fea-
ture of CET, which utilizes end-branch instructions. We
note that major compilers provide a command-line option
(-fcf-protection) to control the level of security to
be enforced by CET. By default, compilers turn on the full
protection (i.e., -fcf-protection=full) even though we
do not give any relevant option [15]. Therefore, in the rest of
the paper, when we say a CET-enabled binary, it means the
binary is compiled with both SS and IBT features turned on.

III. ANALYSIS OF END-BRANCH INSTRUCTIONS

To study the impact of end-branch instructions, we first col-
lect CET-enabled binaries by compiling real-world packages
including 108 programs in GNU Coreutils (v9.0), 15 programs
in GNU Binutils (v2.37), and 47 programs in SPEC CPU 2017
benchmark (§III-A). We then linearly disassemble every binary
in our dataset to understand the usage patterns of end-branch

TABLE I: Distribution of end-branch instruction locations.

Func. Entry Indirect Ret. Exception

GCC
Coreutils 99.98% 0.02% 0.00%
Binutils 99.99% 0.01% 0.00%
SPEC CPU 2017 79.60% 0.02% 20.38%

Clang
Coreutils 99.98% 0.02% 0.00%
Binutils 99.99% 0.01% 0.00%
SPEC CPU 2017 72.10% 0.02% 27.88%

instructions. Specifically, we analyze where each end-branch
instruction is located to see if it can be placed at another
place other than a function entry (§III-B). Next, we examine
the syntactic properties of all the functions, which may or
may not include an end-branch instruction (§III-C). Finally,
we summarize our findings and discuss the implication of end-
branch instructions in terms of function identification (§III-D).

A. Our Dataset

We used two major compilers (GCC and Clang) to produce
our dataset with varying compiler flags, architectures, opti-
mization levels in order to obtain a diverse set of CET-enabled
binaries. Since both GCC (v10.0) and Clang (v13.0) emit
CET-enabled binaries by default, we did not have to specify
the -fcf-protection option. We consider both Position-
Independent Executables (PIEs) and non-PIEs because they
often result in significantly different shapes. We target two
different Intel architectures (x86 and x86-64), and six different
optimization levels (O0, O1, O2, O3, Os, and Ofast). This
gives us 24 (= 2× 2× 6) different configurations per binary.
We obtained a total of 8,136 CET-enabled binaries. Note that
Clang did not produce setbuf binary from GNU Coreutils
due to a package configuration error.

All the binaries were compiled with debugging information
enabled (with the -g option) in order to extract precise ground
truths. However, we stripped all the binaries when evaluating
function identification algorithms. We publicize both original
and stripped binary datasets.

B. End-Branch Locations

We first examined our dataset to find out where the end-
branch instructions are. As a result, we found three different
locations: (1) at a function entry, (2) after an indirect-return
function call, and (3) at an exception catch block. Table I
shows the distribution of end-branch instruction locations in
each different set of binaries in our dataset. While the majority
of end-branch instructions were found at a function entry,
more than 20% of the cases were found in an exception
handling (catch) block for the SPEC binaries. Note that the
SPEC benchmark includes C++ programs, while Coreutils and
Binutils do not. This result highlights that simply regarding
an end-branch instruction as a function entry would produce
a considerable amount of false positives for C++ binaries.

1) End-Branch at a Function Entry: Compilers tend to add
an end-branch instruction at every non-static function entry
because one cannot decide whether a non-static function will

1 sort_files:
2 # ...
3 0x40a9f4: lea edi, failed_strcoll
4 0x40a9f9: call setjmp
5 0x40a9fe: endbr64
6 0x40aa02: test eax, eax
7 0x40aa04: jne 0x40aa0c
8 # ...
9

10 __longjmp_chk:
11 # ...
12 # get saved return address
13 0x13299c: mov rdx, QWORD PTR [rdi+0x38]
14 # ... restore shadow stack ...
15 # perform indirect return
16 0x132a6e: jmp rdx

(a) setjmp example from ls (Coreutils).

1 _ZN8MoleculeC2Ev:
2 # ...
3 0x10981e: pop r12
4 0x109820: ret
5 # This is where a catch block starts.
6 0x109821: endbr64
7 0x109825: mov r12, rax
8 0x109828: jmp _ZN8MoleculeC2Ev_cold
9 # ...

(b) Exception handling example from 508.namd (SPEC CPU 2017).

Fig. 2: Usage patterns of end-branch instructions.

be referenced by a function pointer before linking.1 Indeed,
most of the end-branch instructions in our dataset are located
at a function entry. However, this does not mean that every
function starts with an end-branch instruction. For example,
static functions do not have an end-branch instruction unless
they are referenced by a function pointer. We also found that
there are many other cases where functions do not include an
end-branch instruction (see §III-C).

2) End-Branch at an Indirect-Return Function Call: Func-
tions may return via an indirect jump instruction instead
of a ret. Such functions have the indirect-return
attribute [13], and an end-branch instruction is inserted right
after the call site [12], [14] to protect the return edge. For
example, setjmp is used to save the current execution context
in a dedicated buffer, and the context can be restored by
longjmp. Figure 2a illustrates this case, where an end-
branch instruction is placed right after the call instruction
at 0x40a9f9. At the end of the longjmp call, the indirect
jump instruction at 0x132a6e will transfer the control flow
of the program to 0x40a9fe. We also found that compilers
predefined a list of indirect-return functions, such as setjmp,
sigsetjmp, and vfork [11]. Therefore, we can easily
decide whether an end-branch instruction is for handling an
indirect-return function call or not.

3) End-Branch at an Exception Handling Block: C++
exceptions are handled by the libstdc++ library, which
uses an indirect jump to transfer the control to a catch
clause. Therefore, each catch clause starts with an end-branch
instruction. In our dataset, C++ binaries from SPEC CPU

1We observe that 99.85% of non-static functions have an end-branch
instruction at its entry. Also the remaining 0.15% of functions are mostly
intrinsic functions that are referenced via a direct call.

All Functions

DirCallTarget EndBrAtHead

DirJmpTarget

10.01% 48.85%

0.23%

1.44%

37.79%

0.44% 1.23%

0.01

Fig. 3: Relation between syntactic properties of all the func-
tions in our dataset.

2017 show end-branch instructions at an exception handling
block. Figure 2b presents an example of catch block located
at 0x109821 of the 508.namd binary.

C. Functions without an End-Branch Instruction

Now that we know end-branch instructions can be placed
at several different places other than a function entry, we
now study how many functions indeed start with an end-
branch instruction. To this end, we first extracted 11,209,121
functions from our dataset using the debugging symbols. We
then linearly disassembled the entire code section of each
binary to check if the following three properties hold for each
of the functions:

• EndBrAtHead: there is an end-branch at the entry.
• DirJmpTarget: there is a direct jump to the function.
• DirCallTarget: there is a direct call to the function.
Figure 3 illustrates how each of the properties holds and

how they overlap with each other. Note that about 89.3% (≈
48.85+37.79+1.44+1.23) of the functions start with an end-
branch instruction (EndBrAtHead). This means one cannot
completely retrieve function entries by simply looking at end-
branch instructions.

For the 11% of the functions without an end-branch in-
struction, we found most of them are referenced by a direct
jump or a direct call instruction. In other words, we found
that at least one of the three properties holds for 99.99%
of the functions. The last two properties (DirJmpTarget and
DirCallTarget) are useful to make up for the lack of end-
branch instructions because one can easily obtain the target
address of direct branches. We further analyzed the rest 0.01%
of the functions that do not satisfy any of the properties, and
found that they are all dead code that is never referenced by
any other instruction.

D. Implication of End-Branch Instructions

Recall from §III-B and §III-C, end-branch instructions have
a limited application in detecting functions: (1) it can be placed
to non-function locations, and (2) not every function has an
end-branch instruction.

Algorithm 1: FunSeeker overview.
1 function FunSeeker (bin)
2 txt, exn ← PARSE(bin)
3 E , C, J ← DISASSEMBLE(txt) // §IV-B
4 E ′ ← FILTERENDBR(E , exn) // §IV-C
5 J ′ ← SELECTTAILCALL(J) // §IV-D
6 return E ′ ∪ C ∪ J ′

However, our study also reveals that there are potentially
exploitable patterns for both cases. First, there are only two
possible locations where end-branch instructions can be placed
other than a function entry, and both the locations are a callee
of a special function, such as longjmp. Therefore, the chal-
lenge is in distinguishing whether an end-branch instruction
is a call target of such a special function (§IV-C). Second,
most of the functions without an end-branch instruction are
referenced by one or more direct branch instruction. Therefore,
we should be able to identify those functions by analyzing
targets of direct branches. The key challenge is to determine
which of the targets represents a function entry (§IV-D).

IV. SYSTEM DESIGN

This section introduces FunSeeker, a lightweight and
efficient function identification tool. FunSeeker leverages
syntactic patterns we found from CET-enabled binaries (in
§III) to achieve efficient function identification.

A. Main Algorithm

Algorithm 1 presents the steps taken by FunSeeker to
identify functions from a given binary. At a high level,
FunSeeker takes in a binary bin as input, and returns a
set of function start addresses as output.

PARSE (in Line 2) first analyzes the given binary bin to
extract the .text section (txt) and the C++ exception infor-
mation (exn) from it. Note exn only exists for C++ binaries,
and thus, it does not affect C binaries. Next, DISASSEMBLE
(in Line 3) linearly disassembles txt, and examines every
direct branch instruction to return a 3-tuple (E , C,J), where
E is a set of end-branch instruction addresses found in txt,
and C and J are a set of direct call targets and a set of direct
jump targets, respectively.

FILTERENDBR (in Line 4) then tries to remove end-branch
instructions that are not relevant to a function entry to obtain
E ′ (§IV-C). Next, SELECTTAILCALL (in Line 5) identifies tail
calls from a set of direct jump targets J to get J ′ (§IV-D).
Finally, Line 6 combines E ′, C, and J ′ to get the final set of
function addresses.

B. Disassembly

DISASSEMBLE performs traditional linear-sweep disassem-
bly from the start address of the given .text section txt
until reaching the end of the section. In case there is a
disassembly error, we increase the program counter by one,
and resume the disassembly process. The primary goal here is
to find all the end-branch instructions as well as direct jump

instructions. Linear-sweep disassembly is known to be effec-
tive in recovering instructions from regular binaries generated
by a compiler, especially because both major compilers (GCC
and Clang) for x86 and x86-64 do not insert data inside the
.text section [3], [32]. Although linear-sweep disassembly
suits our needs, it may cause errors when dealing with binaries
that contain data within a .text section, e.g., hand-written
assembly code. Distinguishing between code and data in an
arbitrary binary is a well-known undecidable challenge, and
handling the issue is beyond the scope of this paper.

C. Filtering out End-Branch Instructions

Recall from §III-B, end-branch instructions can be placed at
two different locations other than a function entry. To reduce
false-positives in identifying functions, we need to filter out
end-branch instructions that are placed either after an indirect-
return function call or at an exception catch block.

First, FILTERENDBR checks for every end-branch instruc-
tion to see if there is a preceding call instruction that
refers to a Procedure Linkage Table (PLT) entry. If so, it
retrieves the target function name and compares it with a
list of predefined indirect-return function names. Specifically,
we use a total of five known indirect-return functions defined
by GCC [11], which includes setjmp and vfork. When
the target function name matches with one from the list,
FILTERENDBR simply removes the corresponding end-branch
instruction address from E because it represents a return target
of the indirect-return function.

Second, FILTERENDBR analyzes every Language-Specific
Data Area (LSDA) of the .gcc_except_table section
to see if there is any end-branch instruction that belongs
to a landing pad, i,.e., an exception catch block. The
.gcc_except_table section is essential in handling C++
exceptions, and cannot be stripped.

Our approach is orthogonal to the one of FETCH [33],
which uses the PC begin values in a Frame Description Entry
(FDE) located at the .eh_frame section. Strictly speaking,
the FDE records are not essential for x86 binaries as long
as they do not include exception handling code. For this
reason, Clang indeed does not create an FDE record for every
function when the x86 binary is purely written in C, which
makes FETCH suffers in dealing with x86 binaries compiled
with Clang. However, FunSeeker uses LSDAs stored in the
.gcc_except_table section, which cannot be stripped
off. Thus, our system is robust against varying compilers.

D. Tail Call Selection

SELECTTAILCALL selects a subset of J because not every
direct jump target represents a function: A direct jump target
is a function only when the jump is a tail call. Therefore,
existing binary analysis frameworks employ several heuristics
to detect tail calls [32].
FunSeeker regards a direct jump as a tail call when the

following two conditions are met: (1) if the target address
is beyond the boundary of the current function that the
jump instruction belongs to, and (2) if the target address

is referenced by multiple functions other than the current
function. The first condition is suggested by Qiao et al. [39]
and the second condition is inspired by FETCH [33]. Note
that checking both conditions does not require any complex
analysis technique. The main benefit of SELECTTAILCALL is
to reduce false positives of FunSeeker, and our experimental
results show that SELECTTAILCALL indeed helps increase
precision by 73.18%.

E. Implementation

To parse ELF exception handling information and disassem-
ble binaries, we used B2R2 [23], which has an efficient and
precise binary analysis frontend [24]. In total, we wrote 377
source lines of F# code to implement FunSeeker. We make
our tool as well as our datasets public to support open science:
https://github.com/B2R2-org/FunSeeker.

V. EVALUATION

In this section, we evaluate our tool, FunSeeker, to
answer the following research questions.

RQ1. How effective are the methods FunSeeker em-
ployed in terms of identifying functions? (§V-B)

RQ2. How does FunSeeker compare to current identifi-
cation tools in terms of correctness? (§V-C)

RQ3. How does FunSeeker compare to current identifi-
cation tools in terms of speed? (§V-D)

A. Experimental Setup

1) Obtaining the Ground Truth: We obtain the ground truth
about function entry addresses by referring to the DWARF
symbols. However, there are some corner cases. During com-
pilation, GCC sometimes extracts several code blocks from
a function and makes them a separate function: those newly
generated functions are often located far from the original
function and have a name with a suffix, such as .cold or
.part. Although compilers put a function symbol to them,
they are not a function per se, but a “part” of a function
in a strict sense. Thus, we exclude them from our ground
truth. Additionally, we observed that compilers sometimes
miss out a function symbol for the compiler intrinsic function
__x86.get_pc_thunk. This happens specifically when the
function is called by the _start function. Thus, we manually
included it in our ground truth.

2) Comparison Targets: We chose three state-of-the-art
tools for comparison: IDA Pro [17] (v7.6), Ghidra [30]
(v10.0.4), and FETCH [33] (commit efe138). IDA Pro is a
well-known commercial off-the-shelf reverse engineering tool,
which employs proprietary heuristics as well as FLIRT [16], a
signature-based function identification approach. Ghidra is the
most actively developed open-source binary analysis platform.
Ghidra aggressively utilizes .eh_frame information [26],
[32] to recognize function entries. FETCH is a state-of-the-art
function identification tool that leverages exception handling
information to detect functions. We wrote a script for IDA Pro
and Ghidra to extract functions they found. While running our
experiments, we found that Ghidra and FETCH sometimes get

TABLE II: Precision and recall rates (%) of FunSeeker with
different configurations.

1⃝ 2⃝ 3⃝ 4⃝

Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

G
C

C Binutils 98.946 99.515 98.954 99.515 26.928 100.0 98.947 99.784
Coreutils 99.377 99.157 99.396 99.157 40.520 99.997 99.380 99.652
SPEC 81.439 99.783 99.665 99.783 27.184 99.986 98.925 99.889

C
la

ng

Binutils 99.992 99.506 100.0 99.506 23.901 99.931 100.0 99.652
Coreutils 99.979 99.230 100.0 99.230 33.036 100.0 100.0 99.250
SPEC 71.059 99.884 99.976 99.866 23.057 99.999 99.975 99.923

Total 80.623 99.734 99.745 99.734 26.295 99.988 99.475 99.828

stuck in an infinite loop or crash due to out of memory when
analyzing some binaries in our dataset. Therefore, a total of
115 binaries were excluded from our dataset.

3) Running Environments: We ran our experiments on an
Intel Core i9-11900K processor. To make fair comparisons, we
set up a VM with VMWare Pro 15.5.7, and allocated a single
core and 8 GB of RAM to each VM. We used Windows 10
for IDA Pro, and Ubuntu 20.04 for the others.

B. Effectiveness of FunSeeker

To understand the effectiveness of FILTERENDBR and SE-
LECTTAILCALL, we measured how the precision and recall
scores change with or without them. Specifically, we ran
FunSeeker under the following four different configurations.

1⃝ We turn off both FILTERENDBR and SELECTTAILCALL,
and simply use the end-branch instructions (E) and direct
call targets (C) found by DISASSEMBLE (∴ E ∪ C).

2⃝ We use the same configuration as in 1⃝, but turn on
FILTERENDBR to reduce false positives. (∴ E ′ ∪ C).

3⃝ We use the same configuration as in 2⃝, but consider jump
targets (J) to be more inclusive (∴ E ′ ∪ C ∪ J).

4⃝ We use the same configuration as in 3⃝, but turn on SE-
LECTTAILCALL to reduce false negatives (∴ E ′∪C∪J ′).

Table II describes the precision and recall scores of
FunSeeker with the four different configurations. The first
configuration 1⃝ achieved an over 99% recall rate, while the
precision was relatively low. Particularly, SPEC includes C++
binaries, which contain a significant amount of catch blocks
starting with an end-branch instruction (as discussed in §III-B).
Therefore, FunSeeker misidentified those catch blocks as a
function entry with 1⃝.

By turning on the FILTERENDBR module with the second
configuration 2⃝, FunSeeker achieved a precision rate of
over 99%. This is because FILTERENDBR can disregard end-
branch instructions located at exception catch blocks and
indirect-return function call sites. 2⃝ does not change
the recall rates, but only improves the precision rates. Thus,
we conclude that FILTERENDBR can reduce the false positive
rate of FunSeeker without affecting the false negative rate.

With the third configuration 3⃝, we additionally consider
every direct jump target J as a valid function entry. While
we can get the highest recall rates with 3⃝, FunSeeker

https://github.com/B2R2-org/FunSeeker

TABLE III: Function identification results compared to the state-of-the-art tools.

FunSeeker IDA Pro Ghidra FETCH

Prec. (%) Rec. (%) Time (s) Prec. (%) Rec. (%) Prec. (%) Rec. (%) Prec. (%) Rec. (%) Time (s)

x8
6 Binutils 99.482 99.775 0.934 91.099 72.136 91.213 74.337 98.897 49.997 13.193

Coreutils 99.690 99.268 0.318 96.004 60.091 70.136 73.512 99.285 51.787 0.502
SPEC CPU 2017 99.358 99.911 3.023 89.188 74.980 96.372 87.142 98.602 84.193 18.602

x6
4 Binutils 99.462 99.666 0.977 95.364 77.112 98.970 98.462 99.436 99.895 14.125

Coreutils 99.671 99.237 0.273 97.956 64.409 93.652 98.705 99.633 99.224 0.283
SPEC CPU 2017 99.379 99.897 3.742 93.885 80.416 97.967 98.758 99.554 99.970 15.552

Total 99.407 99.828 1.181 92.292 76.285 95.754 91.994 99.194 89.143 6.031

substantially loses the precision by misidentifying irrelevant
instruction as a function entry.

Finally, we turn on SELECTTAILCALL in the fourth con-
figuration 4⃝ to reduce the false positives by identifying tail
calls from J . Indeed, it significantly increases the precision
compared to 3⃝. When compared to 2⃝, though, SELECTTAIL-
CALL introduces extra false positives due to its imprecision.
However, we found that SELECTTAILCALL significantly ben-
efits the recall rate with negligible precision loss.

C. Correctness of FunSeeker

We compared FunSeeker against the state-of-the-art tools
we chose in §V-A2 in terms of both precision and recall
rates. The prec. and the rec. columns in Table III respectively
represent precision and recall for each tool. Note FunSeeker
significantly outperforms all the state-of-the-art tools in terms
of both precision and recall.

We further analyzed cases where FunSeeker failed to
correctly identify functions. Out of 15,935 false negative cases,
93.3% of them were a dead function, i.e., they were never used
in the program. The rest cases (6.7%) were a tail call target
that our SELECTTAILCALL misidentified. We also analyzed
the 55,045 false positives cases, and found that all of them
were referring to a .part block. Specifically, 57.1% of them
were a misidentified tail call, and 42.9% of them had a direct
call as if they were a function.

IDA Pro achieves the lowest recall rate. By further analyzing
the results, we found that 96% of the false negative cases were
due to the failure in identifying indirect branch targets.

Ghidra discovers more function entries than IDA Pro, but
achieves the lower recall rate for x86 binaries especially when
they do not have a relevant Frame Description Entry (FDE).
This implies that Ghidra largely relies on the .eh_frame
information (as also noted by [33]).

FETCH overall achieves high precision rates. However, it
disregards about a half of the functions in x86 C binaries as
its algorithm relies heavily on the .eh_frame as Ghidra. We
found that Clang does not emit FDEs for 32-bit binaries.

We conclude that FunSeeker achieves significantly better
precision and recall rates compared to the existing tools when
dealing with CET-enabled binaries. The results imply that
none of the exiting tools leverages end-branch instructions
when identifying functions, and we note that FunSeeker

is a highly compatible system that can be easily adopted by
those tools.

D. Run-time Overhead of FunSeeker

We also measured the average time required by each tool to
analyze a binary. The time columns of Table III illustrate the
results. The table does not include execution time for Ghidra
and IDA Pro because both tools perform various analyses other
than just function identification. Thus, for fair comparisons, we
omitted those two tools.

On average, FunSeeker and FETCH respectively spent
1.181 seconds and 6.031 seconds for analyzing a single binary
in our dataset. That is, FunSeeker was 5.1× faster than
FETCH on average. To analyze all the binaries in our dataset,
FETCH had to spend 10.8 more hours than FunSeeker.
We believe this is because FETCH employs more complicated
techniques, such as examining stack frame heights and calling
conventions, to precisely identify tail call targets. This result
confirms that FunSeeker is substantially faster than the
state-of-the-art tools while achieving the highest precision and
recall rates.

VI. LIMITATION AND FUTURE WORK

By design, FunSeeker operates only on CET-enabled
binaries. That is, it does not handle legacy binaries. However,
we note that CET is enabled by default on modern compilers
and OSes. Therefore, FunSeeker will eventually benefit
function identification and binary analysis.

Although linear sweep disassembly can achieve nearly
100% instruction coverage for regular binaries as noted by
[3], it is not always the case when the binary code contains
hand-written assembly or inlined data, which can cause a false
positive for FunSeeker. Incorporating recursive disassembly
or superset disassembly [7], [29] with FunSeeker to improve
instruction coverage is promising future work.

GCC and Clang provide the -mmanual-endbr option
to disable automatic end-branch insertion. Instead, they allow
the users to manually control where to insert an end-branch
instruction through a function attribute. Although this option
can affect the precision of FunSeeker, the impact will be
marginal. First, all the indirect branch targets should still have
an end-branch instruction, because otherwise, the program will
crash. Second, since FunSeeker performs a linear-sweep

disassembly to detect direct call targets, it will still be able
to discover most of the regular functions as discussed in
§V-B. Finally, FunSeeker can only miss some direct tail
call targets and unreachable functions, but their portion is only
about 1.24% according to our study (Figure 3).

Although our main focus was on Intel CET, we believe
our algorithm can be easily extended to handle ARM BTI
instructions because end-branch instructions in both architec-
tures behave almost the same. It is indeed promising future
work to handle BTI-enabled ARM binaries.

VII. RELATED WORK

A. Hardware-assisted Defenses

Memory corruption bugs have been a significant threat to
computer security. Various defense mechanisms have been
proposed to date, but only a few of them are used in practice
due to their performance overhead. Control-Flow Integrity
(CFI) [1] is a representative defense technique that can effec-
tively mitigate control-flow hijack exploits, such as [8], [9],
[31], [41], [44].

Recently, modern CPUs are shipped with security features
to address the performance challenge. Pointer Authentication
(PA) of ARMv8-A [40] detects illicit modification of pointers.
PA generates a cryptographic message authentication code,
named Pointer Authentication Code (PAC), and embeds it
in the unused bits of the pointer. PAC is verified before
dereferencing the pointer to ensure its validity. Also, Branch
Target Identification (BTI) is a new instruction introduced by
ARMv8-A [5] to enforce CFI for forward indirect branches.

Memory Protection eXtension (MPX) of Intel provides
hardware-assisted bound checking [21]. MPX includes a set of
new instructions to create, propagate, store, and check pointer
bounds. In addition, Intel’s Memory Protection Key (MPK)
allows a user process to manage its own page table permission.
MPK enables a user to set up a non-readable code page, which
is called an execute-only code page. Control-flow Enforcement
Technology (CET) [22] is the most recent security feature
introduced by Intel. CET provides hardware-level CFI with
minimal performance overhead.

B. Function Identification

Function identification is the cornerstone of binary analysis
and reverse engineering because Control-Flow Graph (CFG)
recovery techniques often rely on the assumption that function
entries are known [43]. For this reason, mainstream binary
analysis tools [17], [30] often employ a set of heuristics to
identify functions. They often combine call graph traversal
with compiler-specific pattern matching to identify function
entries. However, pattern matching in general is not robust
against varying binary patterns.

Machine Learning (ML) based approaches [6], [35], [42],
[46], [49] have been proposed to address this challenge.
ByteWeight [6] builds a prefix tree model to compute the
probability of function start. Shin et al. [42] utilize a bidi-
rectional Recurrent Neural Network (RNN) model to detect
function boundaries. FID [46] extracts semantic features from

each basic block with symbolic execution, and leverages three
machine-learning algorithms to identify functions. XDA [35]
employs a deep learning-based language model to identify
functions. Recently, DeepDi [49] models different relations
between instructions and utilizes such relations to generate a
feature vector. As Koo et al. [26] recently reported, those ML-
based approaches are prone to errors when handling unseen
binary patterns as they are largely dependent on the training
dataset. On the other hand, FunSeeker does not require a
training phase.

Static-analysis-based approaches [4], [39] have also been
proposed to overcome the limitations of the pattern-based
approaches. Qiao et al. [39] examines the statically observable
properties of candidate functions to filter out spurious func-
tions. Nucleus [4] presents a compiler-agnostic function detec-
tion algorithm to find entry points through an intra-procedural
control flow analysis. All these approaches are orthogonal
to FunSeeker, and can benefit from FunSeeker. For
example, one could employ FunSeeker as a preprocessing
step for function identification.

Recently, researchers [2], [33], [37], [38], [48] have started
to pay specific attention to the .eh_frame section to identify
function entries. The .eh_frame section provides a way to
unwind the stack when an exception is raised. This is useful
because modern compilers use frame pointers, e.g., RBP, as a
general purpose register [19], [20]. FETCH [33] systematically
analyzes the .eh_frame section information to be able
to precisely identify functions. Interestingly, however, about
56.3% of the functions in our Clang binary dataset have no
corresponding call frame information (in the .eh_frame
section) and about 3.3% of the FDEs are related to .part or
.cold functions, which are not a real function. We believe both
FETCH and FunSeeker are complementary to each other.

VIII. CONCLUSION

In this paper, we demonstrated FunSeeker, a novel func-
tion identification tool that works on CET-enabled binaries.
To build our system, we first systematically analyzed how
Intel CET’s end-branch instructions are used in real-world
binaries. We then extracted several usage patterns to design an
efficient function identification algorithm, whose complexity
is linear in the size of the target binary. Even if the sim-
plistic design, FunSeeker was able to achieve significantly
higher performance compared to the existing state-of-the-art
tools. Furthermore, FunSeeker is highly compatible and
lightweight so that it can be easily adopted by existing tools.
Consequentially, our study confirms that CET can eventually
benefit binary analysis tools.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their feedback.
We also thank Erik van der Kouwe for shepherding our
paper. This work was supported by Institute of Information
& communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No.2021-0-
01332, Developing Next-Generation Binary Decompiler).

REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proc. of the ACM Conference on Computer and Commu-
nications Security, 2005, pp. 340–353.

[2] J. Alves-Foss and J. Song, “Function boundary detection in stripped
binaries,” in Proc. of the Annual Computer Security Applications Con-
ference, 2019, pp. 84–96.

[3] D. Andriesse, X. Chen, V. van der Veen, A. Slowinska, and H. Bos,
“An in-depth analysis of disassembly on full-scale x86/x64 binaries,” in
Proc. of the USENIX Security Symposium, 2016, pp. 583–600.

[4] D. Andriesse, A. Slowinska, and H. Bos, “Compiler-agnostic function
detection in binaries,” in Proc. of IEEE European Symposium on Security
and Privacy, 2017, pp. 177–189.

[5] ARM, “Branch target identification (BTI),” https://developer.
arm.com/documentation/ddi0596/2021-06/Base-Instructions/
BTI--Branch-Target-Identification-.

[6] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley, “BYTEWEIGHT:
Learning to recognize functions in binary code,” in Proc. of the USENIX
Security Symposium, 2014, pp. 845–860.

[7] E. Bauman, Z. Lin, and K. Hamlen, “Superset disassembly: Statically
rewriting x86 binaries without heuristics,” in Proc. of the Network and
Distributed System Security Symposium, 2018.

[8] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
programming: A new class of code-reuse attack,” in Proc. of the ACM
Symposium on Information, Computer and Communications Security,
2011, pp. 30–40.

[9] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and
M. Winandy, “Return-oriented programming without returns,” in Proc.
of the ACM Conference on Computer and Communications Security,
2010, pp. 559–572.

[10] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi,
S. Brunthaler, and M. Franz, “Readactor: Practical code randomization
resilient to memory disclosure,” in Proc. of the IEEE Symposium on
Security and Privacy, 2015, pp. 763–780.

[11] GCC, “gcc/calls.c,” https://github.com/gcc-mirror/gcc/blob/releases/
gcc-10/gcc/calls.c#L578.

[12] ——, “gcc/ChangeLog-2018,” https://github.com/gcc-mirror/gcc/blob/
master/gcc/ChangeLog-2018.

[13] ——, “gcc/doc/extend.texi,” https://github.com/gcc-mirror/gcc/blob/
master/gcc/doc/extend.texi#L7134.

[14] ——, “gcc/gcc/config/i386/i386-features.c,” https://github.com/
gcc-mirror/gcc/blob/master/gcc/config/i386/i386-features.c#L2056.

[15] ——, “x86: Default CET run-time support to auto,” https://github.com/
gcc-mirror/gcc/commit/8d286dd118a5bd16f7ae0fb9dfcdcfd020bea803.

[16] Hex-Rays SA., “FLIRT,” https://hex-rays.com/products/ida/tech/flirt/.
[17] ——, “IDA Pro,” https://www.hex-rays.com/products/ida/.
[18] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson, “ILR:

Where’d my gadgets go?” in Proc. of the IEEE Symposium on Security
and Privacy, 2012, pp. 571–585.

[19] H.J. Lu, “gcc/changelog-2010,” https://github.com/gcc-mirror/gcc/blob/
master/gcc/ChangeLog-2010.

[20] ——, “Turn on -fomit-frame-pointer by default for 32bit linux/x86,”
https://gcc.gnu.org/legacy-ml/gcc-patches/2010-08/msg00922.html.

[21] Intel, “Intel memory protection extensions enabling guide,”
https://www.intel.com/content/www/us/en/developer/articles/guide/
intel-memory-protection-extensions-enabling-guide.html.

[22] ——, “A technical look at intel’s control-flow enforcement technology,”
https://www.intel.com/content/www/us/en/developer/articles/technical/
technical-look-control-flow-enforcement-technology.html.

[23] M. Jung, S. Kim, H. Han, J. Choi, and S. K. Cha, “B2R2: Building an
efficient front-end for binary analysis,” in Proc. of the NDSS Workshop
on Binary Analysis Research, 2019.

[24] S. Kim, M. Faerevaag, M. Jung, S. Jung, D. Oh, J. Lee, and S. K. Cha,
“Testing intermediate representations for binary analysis,” in Proc. of the
International Conference on Automated Software Engineering, 2017, pp.
353–364.

[25] H. Koo, Y. Chen, L. Lu, V. P. Kemerlis, and M. Polychronakis,
“Compiler-assisted code randomization,” in Proc. of the ACM Confer-
ence on Computer and Communications Security, 2018, pp. 461–477.

[26] H. Koo, S. Park, and T. Kim, “A look back on a function identification
problem,” in Proc. of the Annual Computer Security Applications
Conference, 2021, pp. 158–168.

[27] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-pointer integrity,” in Proc. of the USENIX Symposium on Oper-
ating System Design and Implementation, 2014, pp. 147–163.

[28] LLVM, “[x86] added support for nocf check attribute for indirect branch
tracking,” https://reviews.llvm.org/D41879.

[29] K. Miller, Y. Kwon, Y. Sun, Z. Zhang, X. Zhang, and Z. Lin, “Probabilis-
tic disassembly,” in Proc. of the International Conference on Software
Engineering, 2019, pp. 1187–1198.

[30] National Security Agency, “Ghidra,” https://ghidra-sre.org.
[31] Nergal, “The advanced return-into-lib(c) exploits (pax case study),” http:

//phrack.org/issues/58/4.html.
[32] C. Pang, R. Yu, Y. Chen, E. Koskinen, G. Portokalidis, B. Mao, and

J. Xu, “SoK: All you ever wanted to know about x86/x64 binary
disassembly but were afraid to ask,” in Proc. of the IEEE Symposium
on Security and Privacy, 2021, pp. 833–851.

[33] C. Pang, R. Yu, D. Xu, E. Koskinen, G. Portokalidis, and J. Xu,
“Towards optimal use of exception handling information for function
detection,” in Proc. of the International Conference on Dependable
Systems Networks, 2021, pp. 338–349.

[34] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the
gadgets: Hindering return-oriented programming using in-place code
randomization,” in Proc. of the IEEE Symposium on Security and
Privacy, 2012, pp. 601–615.

[35] K. Pei, J. Guan, D. W. King, J. Yang, and S. Jana, “XDA: Accurate,
robust disassembly with transfer learning,” in Proc. of the Network and
Distributed System Security Symposium, 2021.

[36] M. Prasad and T.-c. Chiueh, “A binary rewriting defense against stack
based buffer overflow attacks,” in Proc. of the USENIX Annual Technical
Conference, 2005, pp. 211–224.

[37] S. Priyadarshan, H. Nguyen, and R. Sekar, “On the impact of exception
handling compatibility on binary instrumentation,” in Proc. of ACM
Workshop on Forming an Ecosystem Around Software Transformation,
2020, pp. 23–28.

[38] ——, “Practical fine-grained binary code randomization,” in Proc. of the
Annual Computer Security Applications Conference, 2020, pp. 401–414.

[39] R. Qiao and R. Sekar, “Function interface analysis: A principled
approach for function recognition in cots binaries,” in Proc. of the
International Conference on Dependable Systems Networks, 2017, pp.
201–212.

[40] Qualcomm Technologies, Inc., “Pointer authentication on ARMv8.3.”
https://tinyurl.com/yc575bb5.

[41] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proc. of the ACM Conference
on Computer and Communications Security, 2007, pp. 552–561.

[42] E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing functions
in binaries with neural networks,” in Proc. of the USENIX Security
Symposium, 2015, pp. 611–624.

[43] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“(state of) the art of war: Offensive techniques in binary analysis,” in
Proc. of the IEEE Symposium on Security and Privacy, 2016, pp. 138–
157.

[44] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-R.
Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-grained
address space layout randomization,” in Proc. of the IEEE Symposium
on Security and Privacy, 2013, pp. 574–588.

[45] M. Telesklav and S. Tauner, “Comparative analysis and enhancement of
cfg-based hardware-assisted cfi schemes,” Transactions on Embedded
Computing Systems, vol. 20, no. 5, pp. 1–25, 2021.

[46] S. Wang, P. Wang, and D. Wu, “Semantics-aware machine learning for
function recognition in binary code,” in Proc. of IEEE International
Conference on Software Maintenance and Evolution, 2017.

[47] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary stirring: Self-
randomizing instruction addresses of legacy x86 binary code,” in Proc.
of the ACM Conference on Computer and Communications Security,
2012, pp. 157–168.

[48] D. Williams-King, H. Kobayashi, K. Williams-King, G. Patterson,
F. Spano, Y. J. Wu, J. Yang, and V. P. Kemerlis, “Egalito: Layout-
agnostic binary recompilation,” in Proc. of the International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2020, pp. 133–147.

[49] S. Yu, Y. Qu, X. Hu, and H. Yin, “DeepDi: Learning a relational
graph convolutional network model on instructions for fast and accurate
disassembly,” in Proc. of the USENIX Security Symposium, 2022.

https://developer.arm.com/documentation/ddi0596/2021-06/Base-Instructions/BTI--Branch-Target-Identification-
https://developer.arm.com/documentation/ddi0596/2021-06/Base-Instructions/BTI--Branch-Target-Identification-
https://developer.arm.com/documentation/ddi0596/2021-06/Base-Instructions/BTI--Branch-Target-Identification-
https://github.com/gcc-mirror/gcc/blob/releases/gcc-10/gcc/calls.c#L578
https://github.com/gcc-mirror/gcc/blob/releases/gcc-10/gcc/calls.c#L578
https://github.com/gcc-mirror/gcc/blob/master/gcc/ChangeLog-2018
https://github.com/gcc-mirror/gcc/blob/master/gcc/ChangeLog-2018
https://github.com/gcc-mirror/gcc/blob/master/gcc/doc/extend.texi#L7134
https://github.com/gcc-mirror/gcc/blob/master/gcc/doc/extend.texi#L7134
https://github.com/gcc-mirror/gcc/blob/master/gcc/config/i386/i386-features.c#L2056
https://github.com/gcc-mirror/gcc/blob/master/gcc/config/i386/i386-features.c#L2056
https://github.com/gcc-mirror/gcc/commit/8d286dd118a5bd16f7ae0fb9dfcdcfd020bea803
https://github.com/gcc-mirror/gcc/commit/8d286dd118a5bd16f7ae0fb9dfcdcfd020bea803
https://hex-rays.com/products/ida/tech/flirt/
https://www.hex-rays.com/products/ida/
https://github.com/gcc-mirror/gcc/blob/master/gcc/ChangeLog-2010
https://github.com/gcc-mirror/gcc/blob/master/gcc/ChangeLog-2010
https://gcc.gnu.org/legacy-ml/gcc-patches/2010-08/msg00922.html
https://www.intel.com/content/www/us/en/developer/articles/guide/intel-memory-protection-extensions-enabling-guide.html
https://www.intel.com/content/www/us/en/developer/articles/guide/intel-memory-protection-extensions-enabling-guide.html
https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://reviews.llvm.org/D41879
https://ghidra-sre.org
http://phrack.org/issues/58/4.html
http://phrack.org/issues/58/4.html
https://tinyurl.com/yc575bb5

	Introduction
	Intel CET Background
	Analysis of End-branch Instructions
	Our Dataset
	End-Branch Locations
	End-Branch at a Function Entry
	End-Branch at an Indirect-Return Function Call
	End-Branch at an Exception Handling Block

	Functions without an End-Branch Instruction
	Implication of End-Branch Instructions

	System Design
	Main Algorithm
	Disassembly
	Filtering out End-Branch Instructions
	Tail Call Selection
	Implementation

	Evaluation
	Experimental Setup
	Obtaining the Ground Truth
	Comparison Targets
	Running Environments

	Effectiveness of FunSeeker
	Correctness of FunSeeker
	Run-time Overhead of FunSeeker

	Limitation and Future Work
	Related Work
	Hardware-assisted Defenses
	Function Identification

	Conclusion
	References

