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Abstract—In this paper we present MAYHEM, a new sys-
tem for automatically finding exploitable bugs in binary (i.e.,
executable) programs. Every bug reported by MAYHEM is
accompanied by a working shell-spawning exploit. The working
exploits ensure soundness and that each bug report is security-
critical and actionable. MAYHEM works on raw binary code
without debugging information. To make exploit generation
possible at the binary-level, MAYHEM addresses two major
technical challenges: actively managing execution paths without
exhausting memory, and reasoning about symbolic memory
indices, where a load or a store address depends on user
input. To this end, we propose two novel techniques: 1) hybrid
symbolic execution for combining online and offline (concolic)
execution to maximize the benefits of both techniques, and
2) index-based memory modeling, a technique that allows
MAYHEM to efficiently reason about symbolic memory at
the binary level. We used MAYHEM to find and demonstrate
29 exploitable vulnerabilities in both Linux and Windows
programs, 2 of which were previously undocumented.

Keywords-hybrid execution, symbolic memory, index-based
memory modeling, exploit generation

I. INTRODUCTION

Bugs are plentiful. For example, the Ubuntu Linux bug

management database currently lists over 90,000 open

bugs [17]. However, bugs that can be exploited by attackers

are typically the most serious, and should be patched first.

Thus, a central question is not whether a program has bugs,

but which bugs are exploitable.

In this paper we present MAYHEM, a sound system

for automatically finding exploitable bugs in binary (i.e.,

executable) programs. MAYHEM produces a working control-

hijack exploit for each bug it reports, thus guaranteeing each

bug report is actionable and security-critical. By working

with binary code MAYHEM enables even those without source

code access to check the (in)security of their software.

MAYHEM detects and generates exploits based on the

basic principles introduced in our previous work on AEG [2].

At a high-level, MAYHEM finds exploitable paths by aug-

menting symbolic execution [16] with additional constraints

at potentially vulnerable program points. The constraints

include details such as whether an instruction pointer can be

redirected, whether we can position attack code in memory,

and ultimately, whether we can execute attacker’s code. If the

resulting formula is satisfiable, then an exploit is possible.

A main challenge in exploit generation is exploring enough

of the state space of an application to find exploitable paths.

In order to tackle this problem, MAYHEM’s design is based

on four main principles: 1) the system should be able to

make forward progress for arbitrarily long times—ideally run

“forever”—without exceeding the given resources (especially

memory), 2) in order to maximize performance, the system

should not repeat work, 3) the system should not throw away

any work—previous analysis results of the system should

be reusable on subsequent runs, and 4) the system should

be able to reason about symbolic memory where a load

or store address depends on user input. Handling memory

addresses is essential to exploit real-world bugs. Principle #1

is necessary for running complex applications, since most

non-trivial programs will contain a potentially infinite number

of paths to explore.

Current approaches to symbolic execution, e.g., CUTE [26],

BitBlaze [5], KLEE [9], SAGE [13], McVeto [27], AEG [2],

S2E [28], and others [3], [21], do not satisfy all the

above design points. Conceptually, current executors can be

divided into two main categories: offline executors — which

concretely run a single execution path and then symbolically

execute it (also known as trace-based or concolic executors,

e.g., SAGE), and online executors — which try to execute

all possible paths in a single run of the system (e.g., S2E).

Neither online nor offline executors satisfy principles #1-#3.

In addition, most symbolic execution engines do not reason

about symbolic memory, thus do not meet principle #4.

Offline symbolic executors [5], [13] reason about a single

execution path at a time. Principle #1 is satisfied by iteratively

picking new paths to explore. Further, every run of the

system is independent from the others and thus results of

previous runs can be immediately reused, satisfying principle

#3. However, offline does not satisfy principle #2. Every

run of the system needs to restart execution of the program

from the very beginning. Conceptually, the same instructions

need to be executed repeatedly for every execution trace. Our

experimental results show that this re-execution can be very

expensive (see §VIII).

Online symbolic execution [9], [28] forks at each branch

point. Previous instructions are never re-executed, but the

continued forking puts a strain on memory, slowing down

the execution engine as the number of branches increase.

The result is no forward progress and thus principles #1

and #3 are not met. Some online executors such as KLEE

stop forking to avoid being slowed down by their memory
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use. Such executors satisfy principle #1 but not principle #3

(interesting paths are potentially eliminated).

MAYHEM combines the best of both worlds by introduc-

ing hybrid symbolic execution, where execution alternates

between online and offline symbolic execution runs. Hybrid

execution acts like a memory manager in an OS, except

that it is designed to efficiently swap out symbolic execution

engines. When memory is under pressure, the hybrid engine

picks a running executor, and saves the current execution

state, and path formula. The thread is restored by restoring the

formula, concretely running the program up to the previous

execution state, and then continuing. Caching the path

formulas prevents the symbolic re-execution of instructions,

which is the bottleneck in offline, while managing memory

more efficiently than online execution.

MAYHEM also proposes techniques for efficiently reason-

ing about symbolic memory. A symbolic memory access

occurs when a load or store address depends on input. Sym-

bolic pointers are very common at the binary level, and being

able to reason about them is necessary to generate control-

hijack exploits. In fact, our experiments show that 40% of

the generated exploits would have been impossible due to

concretization constraints (§VIII). To overcome this problem,

MAYHEM employs an index-based memory model (§V) to

avoid constraining the index whenever possible.

Results are encouraging. While there is ample room for

new research, MAYHEM currently generates exploits for

several security vulnerabilities: buffer overflows, function

pointer overwrites, and format string vulnerabilities for

29 different programs. MAYHEM also demonstrates 2-10×
speedup over offline symbolic execution without having the

memory constraints of online symbolic execution.

Overall, MAYHEM makes the following contributions:

1) Hybrid execution. We introduce a new scheme for sym-

bolic execution—which we call hybrid symbolic execution—

that allows us to find a better balance between speed and

memory requirements. Hybrid execution enables MAYHEM

to explore multiple paths faster than existing approaches

(see §IV).

2) Index-based memory modeling. We propose index-based

memory model as a practical approach to dealing with

symbolic indices at the binary-level. (see §V).

3) Binary-only exploit generation. We present the first

end-to-end binary-only exploitable bug finding system that

demonstrates exploitability by outputting working control

hijack exploits.

II. OVERVIEW OF MAYHEM

In this section we describe the overall architecture, usage

scenario, and challenges for finding exploitable bugs. We use

an HTTP server, orzHttpd [1]—shown in Figure 1a—as

an example to highlight the main challenges and present how

MAYHEM works. Note that we show source for clarity and

simplicity; MAYHEM runs on binary code.

1 # d e f i n e BUFSIZE 4096
2
3 t y p e d e f s t r u c t {
4 char buf [ BUFSIZE ] ;
5 i n t used ;
6 } STATIC BUFFER t ;
7
8 t y p e d e f s t r u c t conn {
9 STATIC BUFFER t r e a d b u f ;

10 . . . / / o m i t t e d
11 } CONN t ;
12
13 s t a t i c vo id s e r v e r l o g ( LOG TYPE t type ,
14 c o n s t char ∗ fo rmat , . . . )
15 {
16 . . . / / o m i t t e d
17 i f ( f o r m a t != NULL) {
18 v a s t a r t ( ap , f o r m a t ) ;
19 v s p r i n t f ( buf , fo rmat , ap ) ;
20 va end ( ap ) ;
21 }
22 f p r i n t f ( log , buf ) ; / / v u l n e r a b l e p o i n t
23 f f l u s h ( l o g ) ;
24 }
25
26 HTTP STATE t h t t p r e a d r e q u e s t ( CONN t ∗conn )
27 {
28 . . . / / o m i t t e d
29 whi le ( conn−>r e a d b u f . used < BUFSIZE ) {
30 sz = s t a t i c b u f f e r r e a d ( conn , &conn−>

r e a d b u f ) ;
31 i f ( s z < 0) {
32 . . .
33 conn−>r e a d b u f . used += sz ;
34 i f (memcmp(&conn−>r e a d b u f . buf [ conn−>

r e a d b u f . used ] − 4 , ”\ r \n\ r \n ” , 4 ) ==
0)

35 {
36 break ;
37 }
38 }
39 i f ( conn−>r e a d b u f . used >= BUFSIZE ) {
40 conn−>s t a t u s . s t = HTTP STATUS 400 ;
41 re turn HTTP STATE ERROR ;
42 }
43 . . .
44 s e r v e r l o g (ERROR LOG,
45 ”%s\n ” ,
46 conn−>r e a d b u f . buf ) ;
47 . . .
48 }

(a) Code snippet.

...

buf ptr

log (file pointer)

fprintf frame pointerreturn addr to serverlog

...

buf (in serverlog)

serverlog frame pointerold ebp

...

an exploit generated by 
Mayhem:

\x5c\xca\xff\xbf\x5e\xca\xff
\xbf%51832c%17$hn

%62847c%18$hn
\x90\x90 ... shellcodead

dr
es

s

High

Low

(b) Stack diagram of the vulnerable program.

Figure 1: orzHttpd vulnerability
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In orzHttpd, each HTTP connection is passed

to http_read_request. This routine in turn calls

static_buffer_read as part of the loop on line 29 to

get the user request string. The user input is placed into the

4096-byte buffer conn->read_buf.buf on line 30. Each

read increments the variable conn->read_buf.used by

the number of bytes read so far in order to prevent a buffer

overflow. The read loop continues until \r\n\r\n is found,

checked on line 34. If the user passes in more than 4096 bytes

without an HTTP end-of-line character, the read loop aborts

and the server returns a 400 error status message on line

41. Each non-error request gets logged via the serverlog
function.

The vulnerability itself is in serverlog, which calls

fprintf with a user specified format string (an HTTP

request). Variadic functions such as fprintf use a format

string specifier to determine how to walk the stack looking

for arguments. An exploit for this vulnerability works by

supplying format strings that cause fprintf to walk the

stack to user-controlled data. The exploit then uses additional

format specifiers to write to the desired location [22].

Figure 1b shows the stack layout of orzHttpd when the

format string vulnerability is detected. There is a call to

fprintf and the formatting argument is a string of user-

controlled bytes.

We highlight several key points for finding exploitable

bugs:

Low-level details matter: Determining exploitability re-

quires that we reason about low-level details like return

addresses and stack pointers. This is our motivation for

focusing on binary-level techniques.

There are an enormous number of paths: In the example,

there is a new path on every encounter of an if statement,

which can lead to an exponential path explosion. Additionally,

the number of paths in many portions of the code is related to

the size of the input. For example, memcmp unfolds a loop,

creating a new path for symbolic execution on each iteration.

Longer inputs mean more conditions, more forks, and harder

scalability challenges. Unfortunately most exploits are not

short strings, e.g., in a buffer overflow typical exploits are

hundreds or thousands of bytes long.

The more checked paths, the better: To reach the ex-

ploitable fprintf bug in the example, MAYHEM needs to

reason through the loop, read input, fork a new interpreter

for every possible path and check for errors. Without careful

resource management, an engine can get bogged down with

too many symbolic execution threads because of the huge

number of possible execution paths.

Execute as much natively as possible: Symbolic execution

is slow compared to concrete execution since the semantics

of an instruction are simulated in software. In orzHttpd,

millions of instructions set up the basic server before an

attacker can even connect to a socket. We want to execute

these instructions concretely and then switch to symbolic
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Figure 2: MAYHEM architecture

execution.

The MAYHEM architecture for finding exploitable bugs is

shown in Figure 2. The user starts MAYHEM by running:

mayhem -sym-net 80 400 ./orzhttpd

The command-line tells MAYHEM to symbolically execute

orzHttpd, and open sockets on port 80 to receive symbolic

400-byte long packets. All remaining steps to create an exploit

are performed automatically.

MAYHEM consists of two concurrently running processes:

a Concrete Executor Client (CEC), which executes code

natively on a CPU, and a Symbolic Executor Server (SES).

Both are shown in Figure 2. At a high level, the CEC runs on

a target system, and the SES runs on any platform, waiting

for connections from the CEC. The CEC takes in a binary

program along with the potential symbolic sources (input

specification) as an input, and begins communication with

the SES. The SES then symbolically executes blocks that the

CEC sends, and outputs several types of test cases including

normal test cases, crashes, and exploits. The steps followed

by MAYHEM to find the vulnerable code and generate an

exploit are:

1) The --sym-net 80 400 argument tells MAYHEM to

perform symbolic execution on data read in from a socket

on port 80. Effectively this is specifying which input

sources are potentially under attacker control. MAYHEM

can handle attacker input from environment variables, files,

and the network.

2) The CEC loads the vulnerable program and connects to

the SES to initialize all symbolic input sources. After the

initialization, MAYHEM executes the binary concretely on

the CPU in the CEC. During execution, the CEC instru-

ments the code and performs dynamic taint analysis [23].

Our taint tracking engine checks if a block contains tainted

instructions, where a block is a sequence of instructions

that ends with a conditional jump or a call instruction.

3) When the CEC encounters a tainted branch condition or

jump target, it suspends concrete execution. A tainted

jump means that the target may be dependent on attacker
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input. The CEC sends the instructions to the SES and the

SES determines which branches are feasible. The CEC

will later receive the next branch target to explore from

the SES.

4) The SES, running in parallel with the CEC, receives a

stream of tainted instructions from the CEC. The SES

jits the instructions to an intermediate language (§III),
and symbolically executes the corresponding IL. The

CEC provides any concrete values whenever needed, e.g.,

when an instruction operates on a symbolic operand and

a concrete operand. The SES maintains two types of

formulas:

Path Formula: The path formula reflects the constraints to

reach a particular line of code. Each conditional jump adds

a new constraint on the input. For example, lines 32-33

create two new paths: one which is constrained so that the

read input ends in an \r\n\r\n and line 35 is executed,

and one where the input does not end in \r\n\r\n and

line 28 will be executed.

Exploitability Formula: The exploitability formula deter-

mines whether i) the attacker can gain control of the

instruction pointer, and ii) execute a payload.

5) When MAYHEM hits a tainted branch point, the SES

decides whether we need to fork execution by querying

the SMT solver. If we need to fork execution, all the

new forks are sent to the path selector to be prioritized.

Upon picking a path, the SES notifies the CEC about the

change and the corresponding execution state is restored.

If the system resource cap is reached, then the checkpoint

manager starts generating checkpoints instead of forking

new executors (§IV). At the end of the process, test cases

are generated for the terminated executors and the SES

informs the CEC about which checkpoint should continue

execution next.

6) During the execution, the SES switches context between

executors and the CEC checkpoints/restores the provided

execution state and continues execution. To do so, the CEC

maintains a virtualization layer to handle the program inter-

action with the underlying system and checkpoint/restore

between multiple program execution states (§IV-C).

7) When MAYHEM detects a tainted jump instruction, it

builds an exploitability formula, and queries an SMT

solver to see if it is satisfiable. A satisfying input will

be, by construction, an exploit. If no exploit is found on

the tainted branch instruction, the SES keeps exploring

execution paths.

8) The above steps are performed at each branch until an

exploitable bug is found, MAYHEM hits a user-specified

maximum runtime, or all paths are exhausted.

III. BACKGROUND

Binary Representation in our language. Basic symbolic

execution is performed on assembly instructions as they

execute. In the overall system the stream comes from the CEC

as explained earlier; here we assume they are simply given

to us. We leverage BAP [15], an open-source binary analysis

framework to convert x86 assembly to an intermediate

language suitable for symbolic execution. For each instruction

executed, the symbolic executor jits the instruction to the

BAP IL. The SES performs symbolic execution directly on

the IL, introduces additional constraints related to specific

attack payloads, and sends the formula to an SMT solver to

check satisfiability. For example, the IL for a ret instruction

consists of two statements: one that loads an address from

memory, and one that jumps to that address.

Symbolic Execution on the IL. In concrete execution, the

program is given a concrete value as input, it executes

statements to produce new values, and terminates with final

values. In symbolic execution we do not restrict execution to a

single value, but instead provide a symbolic input variable that

represents the set of all possible input values. The symbolic

execution engine evaluates expressions for each statement

in terms of the original symbolic inputs. When symbolic

execution hits a branch, it considers two possible worlds:

one where the true branch target is followed and one where

the false branch target is followed. It does so by forking off

an interpreter for each branch and asserting in the generated

formula that the branch guard must be satisfied. The final

formula encapsulates all branch conditions that must be met

to execute the given path, thus is called the path formula or

path predicate.

In MAYHEM, each IL statement type has a corresponding

symbolic execution rule. Assertions in the IL are immediately

appended to the formula. Conditional jump statements create

two formulas: one where the branch guard is asserted true

and the true branch is followed, and one which asserts the

negation of the guard and the false branch is followed. For

example, if we already have formula f and execute cjmp
e1, e2, e3 where e1 is the branch guard and e2 and e3
are jump targets, then we create the two formulas:

f ∧ e1 ∧ FSE(pathe2)

f ∧ ¬e1 ∧ FSE(pathe3)

where FSE stands for forward symbolic execution of the

jump target. Due to space, we give the exact semantics in a

companion paper [15], [24].

IV. HYBRID SYMBOLIC EXECUTION

MAYHEM is a hybrid symbolic execution system. Instead

of running in pure online or offline execution mode, MAY-

HEM can alternate between modes. In this section we present

the motivation and mechanics of hybrid execution.

A. Previous Symbolic Execution Systems

Offline symbolic execution—as found in systems such as

SAGE [13] —requires two inputs: the target program and an

initial seed input. In the first step, offline systems concretely

execute the program on the seed input and record a trace. In
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online execution and the memory use of offline execution to

efficiently explore the input space.
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the second step, they symbolically execute the instructions in

the recorded trace. This approach is called concolic execution,

a juxtaposition of concrete and symbolic execution. Offline

execution is attractive because of its simplicity and low

resource requirements; we only need to handle a single

execution path at a time.

The top-left diagram of Figure 3 highlights an immediate

drawback of this approach. For every explored execution path,

we need to first re-execute a (potentially) very large number

of instructions until we reach the symbolic condition where

execution forked, and then begin to explore new instructions.

Online symbolic execution avoids this re-execution cost

by forking two interpreters at branch points, each one having

a copy of the current execution state. Thus, to explore a

different path, online execution simply needs to perform a

context switch to the execution state of a suspended interpreter.

S2E [28], KLEE [9] and AEG [2] follow this approach by

performing online symbolic execution on LLVM bytecode.

However, forking off a new executor at each branch can

quickly strain the memory, causing the entire system to grind

to a halt. State-of-the-art online executors try to address this

problem with aggressive copy-on-write optimizations. For

example, KLEE has an immutable state representation and

S2E shares common state between snapshots of physical

memory and disks. Nonetheless, since all execution states

are kept in memory simultaneously, eventually all online

executors will reach the memory cap. The problem can be

mitigated by using DFS (Depth-First-Search)—however, this

is not a very useful strategy in practice. To demonstrate the

problem, we downloaded S2E [28] and ran it on a coreutils

application (echo) with 2 symbolic arguments, each one

10 bytes long. Figure 4 shows how the symbolic execution

throughput (number of test cases generated per second) is

slowed down as the memory use increases.

B. Hybrid Symbolic Execution

MAYHEM introduces hybrid symbolic execution to actively

manage memory without constantly re-executing the same

instructions. Hybrid symbolic execution alternates between

online and offline modes to maximize the effectiveness of

each mode. MAYHEM starts analysis in online mode. When

the system reaches a memory cap, it switches to offline mode

and does not fork any more executors. Instead, it produces

checkpoints to start new online executions later on. The crux

of the system is to distribute the online execution tasks into

subtasks without losing potentially interesting paths. The

hybrid execution algorithm employed by MAYHEM is split

into four main phases:

1. Initialization: The first time MAYHEM is invoked for a

program, it initializes the checkpoint manager, the checkpoint

database, and test case directories. It then starts online

execution of the program and moves to the next phase.

2. Online Exploration: During the online phase, MAYHEM

symbolically executes the program in an online fashion,

context-switching between current active execution states,

and generating test cases.

3. Checkpointing: The checkpoint manager monitors online

execution. Whenever the memory utilization reaches a cap,

or the number of running executors exceeds a threshold, it

will select and generate a checkpoint for an active executor.

A checkpoint contains the symbolic execution state of the

suspended executor (path predicate, statistics, etc.) and replay

information1. The concrete execution state is discarded. When

the online execution eventually finishes all active execution

paths, MAYHEM moves to the next phase.

4. Checkpoint Restoration: The checkpoint manager selects

a checkpoint based on a ranking heuristic IV-D and restores

it in memory. Since the symbolic execution state was saved

in the checkpoint, MAYHEM only needs to re-construct the

concrete execution state. To do so, MAYHEM concretely

executes the program using one satisfiable assignment of

the path predicate as input, until the program reaches the

instruction when the execution state was suspended. At that

point, the concrete state is restored and the online exploration

(phase 2) restarts. Note that phase 4 avoids symbolically re-

executing instructions during the checkpoint restoration phase

1Note that the term “checkpoint” differs from an offline execution “seed”,
which is just a concrete input.
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(unlike standard concolic execution), and the re-execution

happens concretely. Figure 3 shows the intuition behind

hybrid execution. We provide a detailed comparison between

online, offline, and hybrid execution in §VIII-C.

C. Design and Implementation of the CEC

The CEC takes in the binary program, a list of input

sources to be considered symbolic, and an optional check-

point input that contains execution state information from

a previous run. The CEC concretely executes the program,

hooks input sources and performs taint analysis on input

variables. Every basic block that contains tainted instructions

is sent to the SES for symbolic execution. As a response,

the CEC receives the address of the next basic block to

be executed and whether to save the current state as a

restoration point. Whenever an execution path is complete,

the CEC context-switches to an unexplored path selected

by the SES and continues execution. The CEC terminates

only if all possible execution paths have been explored or a

threshold is reached. If we provide a checkpoint, the CEC

first executes the program concretely until the checkpoint

and then continues execution as before.

Virtualization Layer. During an online execution run, the

CEC handles multiple concrete execution states of the

analyzed program simultaneously. Each concrete execution

state includes the current register context, memory and

OS state (the OS state contains a snapshot of the virtual

filesystem, network and kernel state). Under the guidance

of the SES and the path selector, the CEC context switches

between different concrete execution states depending on the

symbolic executor that is currently active. The virtualization

layer mediates all system calls to the host OS and emulates

them. Keeping separate copies of the OS state ensures there

are no side-effects across different executions. For instance,

if one executor writes a value to a file, this modification

will only be visible to the current execution state—all other

executors will have a separate instance of the same file.

Efficient State Snapshot. Taking a full snapshot of the

concrete execution state at every fork is very expensive. To

mitigate the problem, CEC shares state across execution

states–similar to other systems [9], [28]. Whenever execution

forks, the new execution state reuses the state of the parent

execution. Subsequent modifications to the state are recorded

in the current execution.

D. Design and Implementation of the SES

The SES manages the symbolic execution environment

and decides which paths are executed by the CEC. The

environment consists of a symbolic executor for each path,

a path selector which determines which feasible path to run

next, and a checkpoint manager.

The SES caps the number of symbolic executors to keep in

memory. When the cap is reached, MAYHEM stops generating

new interpreters and produces checkpoints; execution states

that will explore program paths that MAYHEM was unable

to explore in the first run due to the memory cap. Each

checkpoint is prioritized and used by MAYHEM to continue

exploration of these paths at a subsequent run. Thus, when all

pending execution paths terminate, MAYHEM selects a new

checkpoint and continues execution—until all checkpoints

are consumed and MAYHEM exits.

Each symbolic executor maintains two contexts (as state):

a variable context containing all symbolic register values

and temporaries, and a memory context keeping track of all

symbolic data in memory. Whenever execution forks, the

SES clones the current symbolic state (to keep memory low,

we keep the execution state immutable to take advantage of

copy-on-write optimizations—similar to previous work [9],

[28]) and adds a new symbolic executor to a priority queue.

This priority queue is regularly updated by our path selector

to include the latest changes (e.g., which paths were explored,

instructions covered, and so on).

Preconditioned Symbolic Execution: MAYHEM imple-

ments preconditioned symbolic execution as in AEG [2].

In preconditioned symbolic execution, a user can optionally

give a partial specification of the input, such as a prefix

or length of the input, to reduce the range of search space.

If a user does not provide a precondition, then SES tries

to explore all feasible paths. This corresponds to the user

providing the minimum amount of information to the system.

Path Selection: MAYHEM applies path prioritization

heuristics—as found in systems such as SAGE [13] and

KLEE [9]—to decide which path should be explored next.

Currently, MAYHEM uses three heuristic ranking rules: a)

executors exploring new code (e.g., instead of executing

known code more times) have high priority, b) executors

that identify symbolic memory accesses have higher priority,

and c) execution paths where symbolic instruction pointers

are detected have the highest priority. The heuristics are

designed to prioritize paths that are most likely to contain a

bug. For instance, the first heuristic relies on the assumption

that previously explored code is less likely to contain a bug

than new code.

E. Performance Tuning

MAYHEM employs several optimizations to speed-up

symbolic execution. We present three optimizations that

were most effective: 1) independent formula, 2) algebraic

simplifications, and 3) taint analysis.

Similar to KLEE [9], MAYHEM splits the path predicate

to independent formulas to optimize solver queries. A

small implementation difference compared to KLEE is that

MAYHEM keeps a map from input variables to formulas at all

times. It is not constructed only for querying the solver (this

representation allows more optimizations §V). MAYHEM also

applies other standard optimizations as proposed by previous

systems such as the constraint subsumption optimization [13],

a counter-example cache [9] and others. MAYHEM also
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simplifies symbolic expressions and formulas by applying

algebraic simplifications, e.g. x ⊕ x = 0, x & 0 = 0,

and so on.
Recall from §IV-C, MAYHEM uses taint analysis [11],

[23] to selectively execute instruction blocks that deal with

symbolic data. This optimization gives a 8× speedup on

average over executing all instruction blocks (see §VIII-G).

V. INDEX-BASED MEMORY MODELING

MAYHEM introduces an index-based memory model as a

practical approach to handling symbolic memory loads. The

index-based model allows MAYHEM to adapt its treatment

of symbolic memory based on the value of the index. In this

section we present the entire memory model of MAYHEM.
MAYHEM models memory as a map μ : I → E from 32-

bit indices (i) to expressions (e). In a load(μ,i) expression,

we say that index i indexes memory μ, and the loaded value

e represents the contents of the ith memory cell. A load with

a concrete index i is directly translated by MAYHEM into

an appropriate lookup in μ (i.e., μ[i]). A store(μ, i, e)
instruction results in a new memory μ[i ← e] where i is

mapped to e.

A. Previous Work & Symbolic Index Modeling
A symbolic index occurs when the index used in a memory

lookup is not a number, but an expression—a pattern that

appears very frequently in binary code. For example, a C

switch(c) statement is compiled down to a jump-table

lookup where the input character c is used as the index.

Standard string conversion functions (such as ASCII to

Unicode and vice versa, to_lower, to_upper, etc.) are

all in this category.
Handling arbitrary symbolic indices is notoriously hard,

since a symbolic index may (in the worst case) reference any
cell in memory. Previous research and state-of-the-art tools

indicate that there are two main approaches for handling a

symbolic index: a) concretizing the index and b) allowing

memory to be fully symbolic.
First, concretizing means instead of reasoning about

all possible values that could be indexed in memory, we

concretize the index to a single specific address. This

concretization can reduce the complexity of the produced

formulas and improve solving/exploration times. However,

constraining the index to a single value may cause us to

miss paths—for instance, if they depend on the value of

the index. Concretization is the natural choice for offline

executors, such as SAGE [13] or BitBlaze [5], since only a

single memory address is accessed during concrete execution.
Reasoning about all possible indices is also possible by

treating memory as fully symbolic. For example, tools such

as McVeto [27], BAP [15] and BitBlaze [5] offer capabilities

to handle symbolic memory. The main tradeoff—when

compared with the concretization approach—is performance.

Formulas involving symbolic memory are more expressive,

thus solving/exploration times are usually higher.

B. Memory Modeling in MAYHEM

The first implementation of MAYHEM followed the simple

concretization approach and concretized all memory indices.

This decision proved to be severely limiting in that selecting

a single address for the index usually did not allow us to

satisfy the exploit payload constraints. Our experiments show

that 40% of the examples require us to handle symbolic

memory—simple concretization was insufficient (see §VIII).

The alternative approach was symbolic memory. To avoid

the scalability problems associated with fully symbolic

memory, MAYHEM models memory partially, where writes

are always concretized, but symbolic reads are allowed to be

modeled symbolically. In the rest of this section we describe

the index-based memory model of MAYHEM in detail, as

well as some of the key optimizations.

Memory Objects. To model symbolic reads, MAYHEM

introduces memory objects. Similar to the global memory μ,

a memory object M is also a map from 32-bit indices to

expressions. Unlike the global memory however, a memory

object is immutable. Whenever a symbolic index is used to

read memory, MAYHEM generates a fresh memory object

M that contains all values that could be accessed by the

index—M is a partial snapshot of the global memory.

Using the memory object, MAYHEM can reduce the

evaluation of a load(μ, i) expression toM[i]. Note, that

this is semantically equivalent to returning μ[i]. The key

difference is in the size of the symbolic array we introduce

in the formula. In most cases, the memory object M will

be orders of magnitude smaller than the entire memory μ.

Memory Object Bounds Resolution. Instantiating the mem-

ory object requires MAYHEM to find all possible values of

a symbolic index i. In the worst case, this may require up

to 232 queries to the solver (for 32-bit memory addresses).

To tackle this problem MAYHEM exchanges some accuracy

for scalability by resolving the bounds [L,U ] of the memory

region—where L is the lower and U is the upper bound of the

index. The bounds need to be conservative, i.e., all possible

values of the index should be within the [L,U ] interval. Note

that the memory region does not need to be continuous, for

example i might have only two realizable values (L and U ).

To obtain these bounds MAYHEM uses the solver to

perform binary search on the value of the index in the context

of the current path predicate. For example, initially for the

lowest bound of a 32-bit i: L ∈ [0, 232 − 1]. If i < 232−1
2

is satisfiable then L ∈ [0, 232−1
2 − 1] while unsatisfiability

indicates that L ∈ [ 2
32−1
2 , 232 − 1]. We repeat the process

until we recover both bounds. Using the bounds we can now

instantiate the memory object (using a fresh symbolic array

M) as follows: ∀i ∈ [L,U ] :M[i] = μ[i].
The bounds resolution algorithm described above is

sufficient to generate a conservative representation of memory

objects and allow MAYHEM to reason about symbolic

memory reads. In the rest of the section we detail the main
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Figure 5: Figure (a) shows the to_lower conversion table, (b) shows the generated IST, and (c) the IST after linearization.

optimization techniques MAYHEM includes to tackle some

of the caveats of the original algorithm:

• Querying the solver on every symbolic memory derefer-

ence is expensive. Even with binary search, identifying

both bounds of a 32-bit index required ∼ 54 queries on

average (§VIII) (§V-B1,§V-B2,§V-B3).

• The memory region may not be continuous. Even though

many values between the bounds may be infeasible, they

are still included in the memory object, and consequently,

in the formula (§V-B2).

• The values within the memory object might have structure.

By modeling the object as a single byte array we are

missing opportunities to optimize our formulas based on

the structure. (§V-B4,§V-B5).

• In the worst case, a symbolic index may access any

possible location in memory (§V-C).

1) Value Set Analysis (VSA): MAYHEM employs an online

version of VSA [4] to reduce the solver load when resolving

the bounds of a symbolic index (i). VSA returns a strided

interval for the given symbolic index. A strided interval

represents a set of values in the form S[L,U ], where S is

the stride and L, U are the bounds. For example, the interval

2[1, 5] represents the set {1, 3, 5}. The strided interval output

by VSA will be an over-approximation of all possible values

the index might have. For instance, i = (1 + byte) << 1 —

where byte is a symbolic byte with an interval 1[0, 255] —

results in an interval: V SA(i) = 2[2, 512].
The strided interval produced by VSA is then refined by the

solver (using the same binary-search strategy) to get the tight

lower and upper bounds of the memory object. For instance,

if the path predicate asserts that byte < 32, then the interval

for the index (1 + byte) << 1 can be refined to 2[2, 64].
Using VSA as a preprocessing step has a cascading effect on

our memory modeling: a) we perform 70% less queries to

resolve the exact bounds of the memory object (§VIII), b) the

strided interval can be used to eliminate impossible values

in the [L,U ] region, thus making formulas simpler, and c)

the elimination can trigger other optimizations (see §V-B5).

2) Refinement Cache: Every VSA interval is refined using

solver queries. The refinement process can still be expensive

(for instance, the over-approximation returned by VSA might

be too coarse). To avoid repeating the process for the same

intervals, MAYHEM keeps a cache mapping intervals to

potential refinements. Whenever we get a cache hit, we query

the solver to check whether the cached refinement is accurate

for the current symbolic index, before resorting to binary-

search for refinement. The refinement cache can reduce the

number of bounds-resolution queries by 82% (§VIII).

3) Lemma Cache: Checking an entry of the refinement

cache still requires solver queries. MAYHEM uses another

level of caching to avoid repeatedly querying α-equivalent

formulas, i.e., formulas that are structurally equivalent up

to variable renaming. To do so, MAYHEM converts queried

formulas to a canonical representation (F) and caches the

query results (Q) in the form of a lemma: F → Q. The

answer for any formula mapping to the same canonical

representation is retrieved immediately from the cache. The

lemma cache can reduce the number of bounds-resolution

queries by up to 96% (§VIII). The effectiveness of this cache

depends on the independent formulas optimization §IV-E. The

path predicate has to be represented as a set of independent

formulas, otherwise any new formula addition to the current

path predicate would invalidate all previous entries of the

lemma cache.

4) Index Search Trees (ISTs): Any value loaded from

a memory object M is symbolic. To resolve constraints

involving a loaded value (M[i]), the solver needs to both

find an entry in the object that satisfies the constraints and
ensure that the index to the object entry is realizable. To

lighten the burden on the solver, MAYHEM replaces memory

object lookup expressions with index search trees (ISTs). An

IST is a binary search tree where the symbolic index is the

key and the leaf nodes contain the entries of the object. The

entire tree is encoded in the formula representation of the

load expression.

More concretely, given a (sorted by address) list of
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entries E within a memory object M, a balanced IST

for a symbolic index i is defined as: IST (E) = ite(i <
addr(Eright), Eleft, Eright)), where ite represents an if-

then-else expression, Eleft (Eright) represents the left (right)

half of the initial entries E, and addr(·) returns the lowest

address of the given entries. For a single entry the IST returns

the entry without constructing any ite expressions.

Note that the above definition constructs a balanced

IST. We could instead construct the IST with nested ite
expressions—making the formula depth O(n) in the num-

ber of object entries instead of O(log n). However, our

experimental results show that a balanced IST is 4× faster

than a nested IST (§VIII). Figure 5 shows how MAYHEM

constructs the IST when given the entries of a memory object

(the to_lower conversion table) with a single symbolic

character as the index.

5) Bucketization with Linear Functions: The IST gener-

ation algorithm creates a leaf node for each entry in the

memory object. To reduce the number of entries, MAYHEM

performs an extra preprocessing step before passing the object

to the IST. The idea is that we can use the memory object

structure to combine multiple entries into a single bucket. A

bucket is an index-parameterized expression that returns the

value of the memory object for every index within a range.

MAYHEM uses linear functions to generate buckets. Specif-

ically, MAYHEM sweeps all entries within a memory object

and joins consecutive points (〈index, value〉 tuples) into

lines, a process we call linearization. Any two points can form

a line y = αx+β. Follow-up points 〈ii, vi〉 will be included

in the same line if ui = αii + β. At the end of linearization,

the memory object is split into a list of buckets, where each

bucket is either a line or an isolated point. The list of buckets

can now be passed to the IST algorithm. Figure 5 shows the

to_lower IST after applying linearization. Linearization

effectively reduces the number of leaf nodes from 256 to 3.

The idea of using linear functions to simplify memory

lookups comes from a simple observation: linear-like patterns

appear frequently for several operations at the binary level.

For example, jump tables generated by switch statements,

conversion and translation tables (e.g., ASCII to Unicode

and vice versa) all contain values that are scaling linearly

with the index.

C. Prioritized Concretization.

Modeling a symbolic load using a memory object is

beneficial when the size of the memory object is significantly

smaller than the entire memory (|M| � |μ|). Thus, the

above optimizations are only activated when the size of

the memory object, approximated by the range, is below a

threshold (|M| < 1024 in our experiments).

Whenever the memory object size exceeds the threshold,

MAYHEM will concretize the index used to access it.

However, instead of picking a satisfying value at random,

MAYHEM attempts to prioritize the possible concretization

1 t y p e d e f s t r u c t {
2 i n t v a l u e ;
3 char ∗ b a r ;
4 } foo ;
5 i n t v u l n e r a b l e ( char ∗ i n p u t )
6 {
7 foo ∗ p t r = i n i t ;
8 b u f f e r [ 1 0 0 ] ;
9 s t r c p y ( b u f f e r , i n p u t ) ;

10 b u f f e r [ 0 ] = p t r−>b a r [ 0 ] ;
11 re turn 0 ;
12 }

bar *

ptr *

value

symbolic
region 1

buffer

symbolic
region 2

symbolic
region 3

Figure 6: MAYHEM reconstructing symbolic data structures.

values. Specifically, for every symbolic pointer, MAYHEM

performs three checks:

1) Check if it is possible to redirect the pointer to unmapped

memory under the context of the current path predicate.

If true, MAYHEM will generate a crash test case for the

satisfying value.

2) Check if it is possible to redirect the symbolic pointer

to symbolic data. If it is, MAYHEM will redirect (and

concretize) the pointer to the least constrained region of

the symbolic data. By redirecting the pointer towards the

least constrained region, MAYHEM tries to avoid loading

overconstrained values, thus eliminating potentially inter-

esting paths that depend on these values. To identify the

least constrained region, MAYHEM splits memory into

symbolic regions, and sorts them based on the complexity

of constraints associated with each region.

3) If all of the above checks fail, MAYHEM concretizes the

index to a valid memory address and continues execution.

The above steps infer whether a symbolic expression is a

pointer, and if so, whether it is valid or not (e.g., NULL).

For example, Figure 6 contains a buffer overflow at line

9. However, an attacker is not guaranteed to hijack control

even if strcpy overwrites the return address. The program

needs to reach the return instruction to actually transfer

control. However, at line 10 the program performs two

dereferences both of which need to succeed (i.e., avoid

crashing the program) to reach line 11 (note that pointer ptr
is already overwritten with user data). MAYHEM augmented

with prioritized concretization will generate 3 distinct test

cases: 1) a crash test case for an invalid dereference of pointer

ptr, 2) a crash test case where dereferencing pointer bar
fails after successfully redirecting ptr to symbolic data, and

3) an exploit test case, where both dereferences succeed and

user input hijacks control of the program. Figure 6 shows

the memory layout for the third test case.

VI. EXPLOIT GENERATION

MAYHEM checks for two exploitable properties: a sym-

bolic (tainted) instruction pointer, and a symbolic format

string. Each property corresponds to a buffer overflow and

format string attack respectively. Whenever any of the two
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exploitable policies are violated, MAYHEM generates an

exploitability formula and tries to find a satisfying answer,

i.e., an exploit.

MAYHEM can generate both local and remote attacks.

Our generic design allows us to handle both types of

attacks similarly. For Windows, MAYHEM detects overwritten

Structured Exception Handler (SEH) on the stack when an

exception occurs, and tries to create an SEH-based exploit.

Buffer Overflows: MAYHEM generates exploits for any

possible instruction-pointer overwrite, commonly triggered

by a buffer overflow. When MAYHEM finds a symbolic

instruction pointer, it first tries to generate jump-to-register

exploits, similar to previous work [14]. For this type of

exploit, the instruction pointer should point to a trampoline,

e.g. jmp %eax, and the register, e.g. %eax, should point

to a place in memory where we can place our shellcode.

By encoding those constraints into the formula, MAYHEM

is able to query the solver for a satisfying answer. If an

answer exists, we proved that the bug is exploitable. If we

can’t generate a jump-to-register exploit, we try to generate

a simpler exploit by making the instruction pointer point

directly to a place in memory where we can place shellcode.

Format String Attacks: To identify and generate format

string attacks, MAYHEM checks whether the format argument

of format string functions, e.g., printf, contains any

symbolic bytes. If any symbolic bytes are detected, it tries

to place a format string payload within the argument that

will overwrite the return address of the formatting function.

VII. IMPLEMENTATION

MAYHEM consists of about 27,000 lines of C/C++ and

OCaml code. Our binary instrumentation framework was built

on Pin [18] and all the hooks for modeled system and API

calls were written in C/C++. The symbolic execution engine

is written solely in OCaml and consists of about 10,000 lines

of code. We rely on BAP [15] to convert assembly instructions

to the IL. We use Z3 [12] as our decision procedure, for which

we built direct OCaml bindings. To allow for remote com-

munication between the two components we implemented

our own cross-platform, light-weight RPC protocol (both in

C++ and OCaml). Additionally, to compare between different

symbolic execution modes, we implemented all three: online,

offline and hybrid.

VIII. EVALUATION

A. Experimental Setup

We evaluated our system on 2 virtual machines running

on a desktop with a 3.40GHz Intel(R) Core i7-2600 CPU

and 16GB of RAM. Each VM had 4GB RAM and was

running Debian Linux (Squeeze) VM and Windows XP SP3

respectively.
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Figure 7: Memory use in online, offline, and hybrid mode.

B. Exploitable Bug Detection

We downloaded 29 different vulnerable programs to check

the effectiveness of MAYHEM. Table I summarizes our

results. Experiments were performed on stripped unmodified

binaries on both Linux and Windows. One of the Windows

applications MAYHEM exploited (Dizzy) was a packed

binary.

Column 3 shows the type of exploits that MAYHEM

detected as we described in §VI. Column 4 shows the

symbolic sources that we considered for each program.

There are examples from all the symbolic input sources

that MAYHEM supports, including command-line arguments

(Arg.), environment variables (Env. Vars), network packets

(Network) and symbolic files (Files). Column 5 is the size

of each symbolic input. Column 6 describes the precondition

types that we provided to MAYHEM, for each of the 29

programs. They are split into three categories: length, prefix

and crashing input as described in §IV-D. Column 7 shows

the advisory reports for all the demonstrated exploits. In

fact, MAYHEM found 2 zero-day exploits for two Linux

applications, both of which we reported to the developers.

The last column contains the exploit generation time for

the programs that MAYHEM analyzed. We measured the

exploit generation time as the time taken from the start

of analysis until the creation of the first working exploit.

The time required varies greatly with the complexity of

the application and the size of symbolic inputs. The fastest

program to exploit was the Linux wireless configuration

utility iwconfig in 1.90 seconds and the longest was the

Windows program Dizzy, which took about 4 hours.

C. Scalability of Hybrid Symbolic Execution

We measured the effectiveness of hybrid symbolic execu-

tion across two scaling dimensions: memory use and speed.

Less Memory-Hungry than Online Execution. Figure 7

shows the average memory use of MAYHEM over time

while analyzing a utility in coreutils (echo) with online,

offline and hybrid execution. After a few minutes, online
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Program Exploit Type
Input
Source

Symbolic
Input Size

Symb.
Mem.

Precondition Advisory ID.
Exploit Gen.
Time (s)

L
in

u
x

A2ps Stack Overflow Env. Vars 550 crashing EDB-ID-816 189

Aeon Stack Overflow Env. Vars 1000 length CVE-2005-1019 10

Aspell Stack Overflow Stdin 750 crashing CVE-2004-0548 82

Atphttpd Stack Overflow Network 800 � crashing CVE-2000-1816 209

FreeRadius Stack Overflow Env. 9000 length Zero-Day 133

GhostScript Stack Overflow Arg. 2000 prefix CVE-2010-2055 18

Glftpd Stack Overflow Arg. 300 length OSVDB-ID-16373 4

Gnugol Stack Overflow Env. 3200 length Zero-Day 22

Htget Stack Overflow Env. vars 350 � length N/A 7

Htpasswd Stack Overflow Arg. 400 � prefix OSVDB-ID-10068 4

Iwconfig Stack Overflow Arg. 400 length CVE-2003-0947 2

Mbse-bbs Stack Overflow Env. vars 4200 � length CVE-2007-0368 362

nCompress Stack Overflow Arg. 1400 length CVE-2001-1413 11

OrzHttpd Format String Network 400 length OSVDB-ID-60944 6

PSUtils Stack Overflow Arg. 300 length EDB-ID-890 46

Rsync Stack Overflow Env. Vars 100 � length CVE-2004-2093 8

SharUtils Format String Arg. 300 prefix OSVDB-ID-10255 17

Socat Format String Arg. 600 prefix CVE-2004-1484 47

Squirrel Mail Stack Overflow Arg. 150 length CVE-2004-0524 2

Tipxd Format String Arg. 250 length OSVDB-ID-12346 10

xGalaga Stack Overflow Env. Vars 300 length CVE-2003-0454 3

Xtokkaetama Stack Overflow Arg. 100 crashing OSVDB-ID-2343 10

W
in

d
o
w

s

Coolplayer Stack Overflow Files 210 � crashing CVE-2008-3408 164

Destiny Stack Overflow Files 2100 � crashing OSVDB-ID-53249 963

Dizzy Stack Overflow (SEH) Arg. 519 � crashing EDB-ID-15566 13,260

GAlan Stack Overflow Files 1500 � prefix OSVDB-ID-60897 831

GSPlayer Stack Overflow Files 400 � crashing OSVDB-ID-69006 120

Muse Stack Overflow Files 250 � crashing OSVDB-ID-67277 481

Soritong Stack Overflow (SEH) Files 1000 � crashing CVE-2009-1643 845

Table I: List of programs that MAYHEM demonstrated as exploitable.

execution reaches the maximum number of live interpreters

and starts terminating execution paths. At this point, the

memory keeps increasing linearly as the paths we explore

become deeper. Note that at the beginning, hybrid execution

consumes as much memory as online execution without

exceeding the memory threshold, and utilizes memory

resources more aggressively than offline execution throughout

the execution. Offline execution requires much less memory

(less than 500KB on average), but at a performance cost, as

demonstrated below.

Faster than Offline Execution. Figure 8 shows the explo-

ration time for /bin/echo using different limits on the

maximum number of running executors. For this experiment,

we use 6 bytes of symbolic arguments to explore the entire

input space in a reasonable amount of time. When the

maximum number of running executors is 1, it means
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Figure 8: Exploration times for different limits on the

maximum number of running executors.

MAYHEM will produce a disk checkpoint—the average

checkpoint size was 30KB—for every symbolic branch,
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L Hits R Hits Misses # Queries Time (sec)

No opt. N/A N/A N/A 217,179 1,841

+ VSA N/A N/A N/A 49,424 437

+ R cache N/A 3996 7 10,331 187

+ L cache 3940 56 7 242 77

Table II: Effectiveness of bounds resolution optimizations.

The L and R caches are respectively the Lemma and

Refinement caches as defined in §V.

thus is equivalent to offline execution. When the maximum

number of running executors was 128 or above, MAYHEM

did not have to checkpoint to disk, thus is equivalent to an

online executor. As a result, online execution took around 25

seconds to explore the input space while offline execution

needed 1,400 seconds. Online was 56× faster than offline

in this experiment. We identified two major reasons for this

performance boost.

First, the re-execution cost is higher than context-switching

between two execution states (§IV-B). MAYHEM spent more

than 25% of the time re-executing previous paths in the

offline scheme. For the online case, 2% of the time was spent

context-switching. Second, online is more cache-efficient

than offline execution in our implementation. Specifically,

online execution makes more efficient use of the Pin code

cache [18] by switching between paths in-memory during a

single execution. As a result, the code cache made online

execution 40× faster than offline execution.

Additionally, we ran a Windows GUI program

(MiniShare) to compare the throughput between offline

and hybrid execution. We chose this program because it

does not require user interaction (e.g., mouse click), to start

symbolic execution. We ran the program for 1 hour for each

execution mode. Hybrid execution was 10× faster than offline

execution.

D. Handling Symbolic Memory in Real-World Applications

Recall from §V, index-based memory modeling enables

MAYHEM to reason about symbolic indices. Our experiments

from Table I show that more than 40% of the programs

required symbolic memory modeling (column 6) to exploit. In

other words, MAYHEM—after several hours of analysis—was

unable to generate exploits for these programs without index-

based memory modeling. To understand why, we evaluated

our index-based memory modeling optimizations on the

atphttpd server.

Bounds Resolution Table II shows the time taken by

MAYHEM to find a vulnerability in atphttpd using different

levels of optimizations for the bounds resolution algorithm.

The times include exploit detection but not exploit generation

time (since it is not affected by the bounds resolution

algorithm). Row 3 shows that VSA reduces the average

number of queries to the SMT solver from ∼54 to ∼14

Formula Representation Time (sec.)

Unbalanced binary tree 1,754

Balanced binary tree 425

Balanced binary tree + Linearization 192

Table III: Performance comparison for different IST repre-

sentations.
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Figure 9: Code coverage achieved by MAYHEM as time

progresses for 25 coreutils applications.

queries per symbolic memory access, and reduces the total

time by 75%.

Row 4 shows shows the number of queries when the

refinement cache (R cache) is enabled on top of VSA. The

R cache reduces the number of necessary binary searches to

from 4003 to 7, resulting in a 57% speedup. The last row

shows the effect of the lemma cache (L cache) on top of the

other optimizations. The L cache takes most of the burden

off the R cache, thus resulting in an additional 59% speedup.

We do not expect the L cache to always be that efficient,

since it relies heavily on the independence of formulas in

the path predicate. The cumulative speedup was 96%.

Index Search Tree Representation. Recall from §V-B

MAYHEM models symbolic memory loads as ISTs. To show

the effectiveness of this optimization we ran atphttpd with

three different formula representations (shown in Table III).

The balanced IST was more than 4× faster than the

unbalanced binary tree representation, and with linearization

of the formula we obtained a cumulative 9× speedup. Note,

that with symbolic arrays (no ISTs) we were unable to detect

an exploit within the time limit.

E. MAYHEM Coverage Comparison

To evaluate MAYHEM’s ability to cover new paths, we

downloaded an open-source symbolic executor (KLEE) to

compare the performance against MAYHEM. Note KLEE

runs on source, while MAYHEM on binary.

We measured the code coverage of 25 coreutils applications

as a function of time. MAYHEM ran for one hour, at most,

on each of those applications. We used the generated test

cases to measure the code coverage using the GNU gcov
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AEG MAYHEM

Program Time LLVM Time ASM Tainted ASM Tained IL

iwconfig 0.506s 10,876 1.90s 394,876 2,200 12,893

aspell 8.698s 87,056 24.62s 696,275 26,647 133,620

aeon 2.188s 18,539 9.67s 623,684 7,087 43,804

htget 0.864s 12,776 6.76s 576,005 2,670 16,391

tipxd 2.343s 82,030 9.91s 647,498 2,043 19,198

ncompress 5.511s 60,860 11.30s 583,330 8,778 71,195

Table IV: AEG comparison: binary-only execution requires

more instructions.
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Figure 10: Exploit generation time versus precondition size.

utility. The results are shown in Figure 9.

We used the 21 tools with the smallest code size, and 4

bigger tools that we selected. MAYHEM achieved a 97.56%

average coverage per application and got 100% coverage on

13 tools. For comparison, KLEE achieved 100% coverage

on 12 coreutils without simulated system call failures (to

have the same configuration as MAYHEM). Thus, MAYHEM

seems to be competitive with KLEE for this data set. Note

that MAYHEM is not designed specifically for maximizing

code coverage. However, our experiments provide a rough

comparison point against other symbolic executors.

F. Comparison against AEG

We picked 8 different programs from the AEG working

examples [2] and ran both tools to compare exploit generation

times on each of those programs using the same configuration

(Table IV). MAYHEM was on average 3.4× slower than AEG.

AEG uses source code, thus has the advantage of operating at

a higher-level of abstraction. At the binary level, there are no

types and high-level structures such as functions, variables,

buffers and objects. The number of instructions executed

(Table IV) is another factor that highlights the difference

between source and binary-only analysis. Considering this,

we believe this is a positive and competitive result for

MAYHEM.

Precondition Size. As an additional experiment, we mea-

sured how the presence of a precondition affects exploit

generation times. Specifically, we picked 6 programs that

require a crashing input to find an exploitable bug and

started to iteratively decrease the size of the precondition and
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measured exploit generation times. Figure 10 summarizes

our results in terms of normalized precondition sizes—for

example, a normalized precondition of 70% for a 100-byte

crashing input means that we provide 70 bytes of the crashing

input as a precondition to MAYHEM. While the behavior

appeared to be program-dependent, in most of the programs

we observed a sudden phase-transition, where the removal

of a single character could cause MAYHEM to not detect the

exploitable bug within the time limit. We believe this to be

an interesting topic for future work in the area.

G. Performance Tuning

Formula Optimizations. Recall from §IV-E MAYHEM uses

various optimization techniques to make solver queries faster.

To compare against our optimized version of MAYHEM, we

turned off some or all of these optimizations.

We chose 15 Linux programs to evaluate the speedup

obtained with different levels of optimizations turned on.

Figure 11 shows the head-to-head comparison (in exploit

finding and generation times) between 4 different formula

optimization options. Algebraic simplifications usually speed

up our analysis and offer an average speedup of 10% for

the 15 test programs. Significant speedups occur when the

independent formula optimization is turned on along with

simplifications, offering speedups of 10-100×.

Z3 supports incremental solving, so as an additional

experiment, we measured the exploit generation time with

Z3 in incremental mode. In most cases solving times for

incremental formulas are comparable to the times we obtain

with the independent formulas optimization. In fact, in half of

our examples (7 out of 15) incremental formulas outperform

independent formulas. In contrast to previous results, this

implies that using the solver in incremental mode can alleviate

the need for many formula simplifications and optimizations.

A downside of using the solver in incremental mode was

that it made our symbolic execution state mutable—and thus

was less memory efficient during our long-running tests.

Tainted Instructions. Only tainted instruction blocks are

evaluated symbolically by MAYHEM—all other blocks are

executed natively. Figure 12 shows the percentage of tainted

instructions for 24 programs (taken from Table I). More than

95% of instructions were not tainted in our sample programs,

and this optimization gave about 8× speedup on average.
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IX. DISCUSSION

Most of the work presented in this paper focuses on

exploitable bug finding. However, we believe that the main

techniques can be adapted to other application domains under

the context of symbolic execution. We also believe that

our hybrid symbolic execution and index-based memory

modeling represent new points in the design space of

symbolic execution.

We stress that the intention of MAYHEM is informing a

user that an exploitable bug exists. The exploit produced

is intended to demonstrate the severity of the problem, and

to help debug and address the underlying issue. MAYHEM

makes no effort to bypass OS defenses such as ASLR and

DEP, which will likely protect systems against exploits we

generate. However, our previous work on Q [25] shows that

a broken exploit (that no longer works because of ASLR

and DEP), can be automatically transformed—with high

probability—into an exploit that bypasses both defenses on

modern OSes. While we could feed the exploits generated by

MAYHEM directly into Q, we do not explore this possibility

in this paper.

Limitations: MAYHEM does not have models for all

system/library calls. The current implementation models

about 30 system calls in Linux, and 12 library calls in

Windows. To analyze larger and more complicated programs,

more system calls need to be modeled. This is an artifact of

performing per-process symbolic execution. Whole-system

symbolic executors such as S2E [28] or BitBlaze [5] can

execute both user and kernel code, and thus do not have

this limitation. The down-side is that whole-system analysis

can be much more expensive, because of the higher state

restoration cost and the time spent analyzing kernel code.

Another limitation is that MAYHEM can currently analyze

only a single execution thread on every run. MAYHEM cannot

handle multi-threaded programs when threads interact with

each other (through message-passing or shared memory).

Last, MAYHEM executes only tainted instructions, thus it

is subject to all the pitfalls of taint analysis, including

undertainting, overtainting and implicit flows [24].

Future Work: Our experiments show that MAYHEM can

generate exploits for standard vulnerabilities such as stack-

based buffer overflows and format strings. An interesting

future direction is to extend MAYHEM to handle more

advanced exploitation techniques such as exploiting heap-

based buffer overflows, use-after-free vulnerabilities, and

information disclosure attacks. At a high level, it should be

possible to detect such attacks using safety properties similar

to the ones MAYHEM currently employs. However, it is still

an open question how the same techniques can scale and

detect such exploits in bigger programs.

X. RELATED WORK

Brumley et al. [7] introduced the automatic patch-based
exploit generation (APEG) challenge. APEG used the patch

to point out the location of the bug and then used slicing

to construct a formula for code paths from input source to

vulnerable line. MAYHEM finds vulnerabilities and vulnerable

code paths itself. In addition, APEG’s notion of an exploit is

more abstract: any input that violates checks introduced by

the path are considered exploits. Here we consider specifically

control flow hijack exploits, which were not automatically

generated by APEG.

Heelan [14] was the first to describe a technique that takes

in a crashing input for a program, along with a jump register,

and automatically generates an exploit. Our research explores

the state space to find such crashing inputs.

AEG [2] was the first system to tackle the problem of both

identifying exploitable bugs and automatically generating

exploits. AEG worked solely on source code and introduced

preconditioned symbolic execution as a way to focus sym-

bolic execution towards a particular part of the search space.

MAYHEM is a logical extension of AEG to binary code. In

practice, working on binary code opens up automatic exploit

generation to a wider class of programs and scenarios.

There are several binary-only symbolic execution frame-

works such as Bouncer [10], BitFuzz [8], BitTurner [6]

FuzzBall [20], McVeto [27], SAGE [13], and S2E [28],

which have been used in a variety of application domains.

The main question we tackle in MAYHEM is scaling to

find and demonstrate exploitable bugs. The hybrid symbolic

execution technique we present in this paper is completely

different from hybrid concolic testing [19], which interleaves

random testing with concolic execution to achieve better code

coverage.
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XI. CONCLUSION

We presented MAYHEM, a tool for automatically finding

exploitable bugs in binary (i.e., executable) programs in an

efficient and scalable way. To this end, MAYHEM introduces

a novel hybrid symbolic execution scheme that combines

the benefits of existing symbolic execution techniques (both

online and offline) into a single system. We also present index-

based memory modeling, a technique that allows MAYHEM

to discover more exploitable bugs at the binary-level. We

used MAYHEM to analyze 29 applications and automatically

identified and demonstrated 29 exploitable vulnerabilities.
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