SplitScreen: Enabling Efficient, Distributed Malware Detection

Sang Kil Cha', Tulian Moraru*, Jiyong Jang®, John Truelove*, David Brumley*, David G. Andersen*

Carnegie Mellon University, Pittsburgh, PA
T {sangkilc, jiyongj} @cmu.edu, * {imoraru, dbrumley, dga}@cs.cmu.edu
*jtruelove @Il.mit.edu

Abstract

We present the design and implementation of a novel
anti-malware system called SplitScreen. SplitScreen per-
forms an additional screening step prior to the signa-
ture matching phase found in existing approaches. The
screening step filters out most non-infected files (90%)
and also identifies malware signatures that are not of in-
terest (99%). The screening step significantly improves
end-to-end performance because safe files are quickly
identified and are not processed further, and malware
files can subsequently be scanned using only the signa-
tures that are necessary. Our approach naturally leads to
a network-based anti-malware solution in which clients
only receive signatures they needed, not every malware
signature ever created as with current approaches. We
have implemented SplitScreen as an extension to Cla-
mAV [13], the most popular open source anti-malware
software. For the current number of signatures, our im-
plementation is 2x faster and requires 2x less memory
than the original ClamAYV. These gaps widen as the num-
ber of signatures grows.

1 Introduction

The amount of malicious software (malware)—viruses,
worms, Trojan horses, and the like—is exploding. As
the amount of malware grows, so does the number of
signatures used by anti-malware products (also called
anti-viruses) to detect known malware. In 2008, Syman-
tec created over 1.6 million new signatures, versus a
still-boggling six hundred thousand new signatures in
2007 [2]. The ClamAV open-source anti-malware sys-
tem similarly shows exponential growth in signatures, as
shown in Figure 1. Unfortunately, this growth, fueled
by easy-to-use malware toolkits that automatically cre-
ate hundreds of unique variants [1, 20], is creating dif-
ficult system and network scaling problems for current
signature-based malware defenses.

There are three scaling challenges. First, the sheer
number of malware signatures that must be distributed
to end-hosts is huge. For example, the ClamAV open-
source product currently serves more than 120 TB of
signatures per day [14]. Second, current anti-malware
systems keep all signatures pinned in main memory. Re-

ducing the size of the pinned-in-memory component is
important to ensure operation on older systems and re-
source constrained devices such as netbooks, PDAs or
smartphones, and also to reduce the impact that malware
scanning has on other applications running concurrently
on the same system. Third, the matching algorithms typ-
ically employed have poor cache utilization, resulting in
a substantial slowdown when the signature database out-
grows the L2 and L3 caches.

We propose SplitScreen, an anti-malware architecture
designed to address the above challenges. Our design is
inspired by two studies we performed. First, we found
that the distribution of malware in the wild is extremely
biased. For example, only 0.34% of all signatures in
ClamAV were needed to detect all malware that passed
through our University’s e-mail gateways over a 4 month
period (§5.2). Of course, for safety, we cannot simply
remove the unmatched signatures since a client must be
able to match anything in the signature database. Second,
the performance of current approaches is bottlenecked by
matching regular expression signatures in general, and
by cache-misses due to that scanning in particular. Since,
in existing schemes, the number of cache-misses grows
rapidly with the total number of signatures, the efficiency
of existing approaches will significantly degrade as the
number of signatures continues to grow. Others have
made similar observations [10].

At a high level, SplitScreen divides scanning into two
steps. First, all files are scanned using a small, cache-
optimized data structure we call a feed-forward Bloom
filter (FFBF) [18]. The FFBF implements an approxi-
mate pattern-matching algorithm that has one-sided er-
ror: it will properly identify all malicious files, but may
also identify some safe files as malicious. The FFBF out-
puts: (1) a set of suspect matched files, and (2) a subset
of signatures from the signature database needed to con-
firm that suspect files are indeed malicious. SplitScreen
then rescans the suspect matched files using the subset of
signatures using an exact pattern matching algorithm.

The SplitScreen architecture naturally leads to
a demand-driven, network-based architecture where
clients download the larger exact signatures only when
needed in step 2 (SplitScreen still accelerates traditional
single-host scanning when running the client and the

server on the same host). For example, SplitScreen re-
quires 55.4 MB of memory to hold the current ~ 533,000
ClamAV signatures. ClamAYV, for the same signatures,
requires 116 MB of main memory. At 3 million sig-
natures, SplitScreen can use the same amount of mem-
ory (55.4 MB), but ClamAV requires 534 MB. Given the
0.34% hit rate in our study, SplitScreen would down-
load only 10,200 signatures for step 2 (vs. 3 million).
Our end-to-end analysis shows that, overall, SplitScreen
requires less than 10% of the storage space of existing
schemes, with only 10% of the network volume (§5). We
believe these improvements to be important for two rea-
sons: (1) SplitScreen can be used to implement malware
detection on devices with limited storage (e.g., residen-
tial gateways, mobile and embedded devices), and (2)
it allows for fast signature updates, which is important
when counteracting new, fast spreading malware. In ad-
dition, our architecture preserves clients’ privacy better
than prior network-based approaches [19].

SplitScreen addresses the memory scaling challenge
because its data structures grow much more slowly than
in existing approaches (with approximately 11 bytes
per signature for SplitScreen compared to more than
170 bytes per signature for ClamAV). Combined with
a cache-efficient algorithm, this leads to better through-
put as the number of signatures grows, and represents
the major advantage of our approach when compared
to previous work that employed simple Bloom filters
to speed-up malware detection (§5.9 presents a detailed
comparison with HashAV [10]). SplitScreen addresses
the signature distribution challenges because users only
download the (small) subset of signatures needed for step
2. SplitScreen addresses constrained computational de-
vices because the entire signature database need not fit
in memory as with existing approaches, as well as hav-
ing better throughput on lower-end processors.

Our evaluation shows that SplitScreen is an effective
anti-malware architecture. In particular, we show:

e Malware scanning at twice the speed with half
the memory: By adding a cache-efficient pre-
screening phase, SplitScreen improves throughput
by more than 2x while simultaneously requiring
less than half the total memory. These numbers will
improve as the number of signatures increases.

e Scalability: SplitScreen can handle a very large in-
crease in the number of malware signatures with
only small decreases in performance (35% decrease
in speed for 6 x more signatures §5.4).

¢ Distributed anti-malware: We developed a novel
distributed anti-malware system that allows clients
to perform fast and memory-inexpensive scans,
while keeping the network traffic very low during
both normal operation and signature updates. Fur-
thermore, clients maintain their privacy by sending

600000 [-
RegExp B Cache Miss ﬂ
MDS5 11 1.2e+07
500000
2] |4 1e+07
‘s;:g 400000 | §
) 1 8e+06 =2
z g
o« 300000
e | 1 6e+06 2
o <
F] @]
£ 200000 N 1 desos
Z.
100000 + 1 2e+06
0 s P S s 0
%/ @ %0 Oo& O/Q) b, - /IZ?J’/
2 0, o, 0, s o, o,
> B B B P G B b

Figure 1: Number of signatures and cache misses in
ClamAY from April 2005 to March 2009.

only information about malware possibly present on
their systems.

e Resource-constrained devices: SplitScreen can
be applied to mobile devices (e.g., smartphones'),
older computers, netbooks, and similar devices.
We evaluated SplitScreen on a low-power device
similar to an iPhone 3GS. In our experiments,
SplitScreen worked properly even with 3 million
signatures, while ClamAV crashed due to lack of
resources at 2 million signatures.

e Real-World Implementation: We have imple-
mented our approach in ClamAYV, an open-source
anti-malware defense system. Our implementation
is available at http://security.ece.cmu.
edu. We will make the malware data sets used
in this paper available to other researchers upon re-
quest.

2 Background

2.1 Signature-based Virus Scanning

Signature-based anti-malware defenses are currently the
most widely used solutions. While not the only approach
(e.g., recent proposals for behavior-based detection such
as [15]), there are two important reasons to continue
improving signature-based methods. First, they remain
technically viable today, and form the bedrock of the two
billion dollar anti-malware industry. More fundamen-
tally, signature-based techniques are likely to remain an
important component of anti-malware defenses, even as
those defenses incorporate additional mechanisms.

In the remainder of this section we describe signature-
based malware scanning, using ClamAV [13] as a spe-

'Smartphones have many connectivity options, and are able to run
an increasingly wide range of applications (sometimes on open plat-
forms). We therefore expect that they will be subjected to the same
threats as traditional computers, and they will require the same security
mechanisms.

http://security.ece.cmu.edu
http://security.ece.cmu.edu

cific example. ClamAV is the most popular open-source
anti-malware solution, and already incorporates signif-
icant optimizations to speed up matching and decrease
memory consumption. We believe ClamAV to be rep-
resentative of current malware scanning algorithms, and
use it as a baseline from which to measure improvements
due to our techniques.

During initialization, ClamAV reads a signed signa-
ture database from disk. The database contains two types
of signatures: whole file or segment MD5 signatures and
byte-pattern signatures written in a custom language with
regular expression-like syntax (although they need not
have wildcards) which we refer to as regular expression
signatures (regexs). Figure 1 shows the distribution of
MDS5 and regular expression signatures in ClamAV over
time. Currently 84% of all signatures are MDS5 signa-
tures, and 16% are regular expressions. In our experi-
ments, however, 95% of the total scanning time is spent
matching the regex signatures.

When scanning, ClamAV first performs several pre-
processing steps (e.g., attempting to unpack and uncom-
press files), and then checks each input file sequentially
against the signature database. It compares the MD5 of
the file with MD35s in the signature database, and checks
whether the file contents match any of the regular expres-
sions in the signature database. If either check matches a
known signature, the file is deemed to be malware.

ClamAV’s regular expression matching engine has
been significantly optimized over its lifetime. Cla-
mAV now uses two matching algorithms [16]: Aho-
Corasick [3] (AC) and Wu-Manber [23] (WM).2 The
slower AC is used for regular expression signatures that
contain wildcard characters, while the faster WM han-
dles fixed string signatures.

The AC algorithm builds a trie-like structure from the
set of regular expression signatures. Matching a file with
the regular expression signatures corresponds to walking
nodes in the trie, where transitions between nodes are
determined by details of the AC algorithm not relevant
here. Successfully walking the trie from the root to a leaf
node corresponds to successfully matching a signature,
while an unsuccessful walk corresponds to not matching
any signature. A central problem is that a trie constructed
from a large number of signatures (as in our problem set-
ting) will not fit in cache. Walks of such tries will typi-
cally visit nodes in a semi-random fashion, causing many
cache misses.

The Wu-Manber [23] algorithm for multiple fixed pat-
terns is a generalization of the single-pattern Boyer-
Moore [6] algorithm. Matching using Wu-Manber en-
tails hash table lookups, where a failed lookup means
the input does not match a signature. In our setting, Cla-

2ClamAV developers refer to this algorithm as extended Boyer-
Moore.

mAV uses a sliding window over the input file, where the
bytes in window are matched against signatures by using
a hash table lookup. Again, if the hash table does not
fit in cache, each lookup can cause a cache miss. Thus,
there is a higher probability of cache misses as the size
of the signature database grows.

2.2 Bloom Filters

The techniques we present in this paper make extensive
use of Bloom filters [5]. Consider a set S. A Bloom fil-
ter is a data structure used to implement set membership
tests of S quickly. Bloom filters membership tests may
have one-sided errors. A false positive occurs when the
outcome of the test is x € S when x is not really a mem-
ber of S. Bloom filters will never incorrectly report x ¢ S
when x really is in S.

Initialization. Bloom filter initialization takes the set S
as input. A Bloom filter uses a bit array with m bits, and k
hash functions to be applied to the items in S. The hashes
produce integers with values between 1 and m, that are
used as indices in the bit array: the k hash functions are
applied to each element in S, and the bits indexed by the
resulting values are set to 1 (thus, for each element in S,
there will be a maximum of k bits set in the bit array—
fewer if there are collisions between the hashes).

Membership test. When doing a set membership test,
the tested element is hashed using the k functions. If the
filter bits indexed by the resulting values are all set, the
element is considered a member of the set. If at least one
bit is 0, the element is definitely not part of the set.

Important parameters. The number of hash func-
tions used and the size of the bit array determine the
false positive rate of the Bloom filter. If S has |S| ele-
ments, the asymptotic false positive probability of a test
is (1— e’k‘SV’”)k [7]. For a fixed m, k = [n2 x |S|/m min-
imizes this probability. In practice however, k is often
chosen smaller than optimum for speed considerations:
a smaller kK means computing a smaller number of hash
functions and doing fewer accesses to the bit array. In
addition, the hashing functions used affect performance,
and when non-uniform, can also increase the false posi-
tive rate.

Scanning text. Text can be efficiently scanned for mul-
tiple patterns using Bloom filters in the Rabin-Karp [11]
algorithm. The patterns, all of which must be of the same
length w, represent the set used to initialize the Bloom
filter. The text is scanned by sliding a window of length
w and checking rolling hashes of its content, at every po-
sition, against the Bloom filter. Exact matching requires
every Bloom filter hit to be confirmed by running a verifi-
cation step to weed out Bloom filter false positives (e.g.,
using a subsequent exact pattern matching algorithm).

3 Design

SplitScreen is inspired by several observations. First,
the number of malware programs is likely to continue
to grow, and thus the scalability of an anti-malware sys-
tem is a primary concern. Second, malware is not con-
fined to high-end systems; we need solutions that protect
slower systems such as smartphones, old computers, net-
books, and similar systems. Third, signature-based ap-
proaches are by far the most widely-used in practice, so
improvements to signature-based algorithms are likely to
be widely applicable. Finally, in current signature-based
systems all users receive all signatures whether they (ul-
timately) need them or not, which is inefficient?.

3.1 Design Overview

At a high level, an anti-malware defense has a set of
signatures X and a set of files F. For concreteness, in
this section we focus on regular expression signatures
commonly found in anti-malware systems—so we use
¥ to denote a set of regular expressions. We extend
our approach to MD5 signatures in §3.5.1. The goal of
the system is to determine the (possibly empty) subset
Faiware € F of files that match at least one signature
ocX.

SplitScreen is an anti-malware system, but its ap-
proach differs from existing systems because it does not
perform exact pattern matching on every file in F. In-
stead SplitScreen employs a cache-efficient data struc-
ture called a feed-forward Bloom filter (FFBF) [18] that
we created for doing approximate pattern matching. We
use it in conjunction with the Rabin-Karp text search al-
gorithm (see §2.2). The crux of the system is that the
cache-efficient first pass has extremely high throughput.
The cache-efficient algorithm is approximate in the sense
that the FFBF scan returns a set of suspect files Fygpecr
that is a superset of malware identified by exact pattern
matching, i.e., Fmalware - Emspect CF.In the second step
we perform exact pattern matching on Fspec; and return
exactly the set Fj,qiware- Figure 2 illustrates this strategy.
The files in Fyuspecr \ Fnaiware represent the false positives
that we refer to in various sections of this paper, and they
are caused by 1) Bloom filter false positives (recall that
Bloom filters have one-sided error) and 2) the fact that
we can only look for fixed-size fragments of signatures
and not entire signatures in the first step (the FFBF scan),
as a consequence of how Rabin-Karp operates.

3To put things in perspective, suppose there is a new Windows virus,
and that the 1 billion computers with Microsoft Windows [4] are all
running anti-malware software. A typical signature is at least 16 bytes
(e.g., the size of an MDS5). If each computer receives a copy of the
signature, then that one virus has cost 15,258 MB of disk space world-
wide to store the signature.

Files

Fouspect

Feed-forward /

Bloom filter

(FFBF-SCAN)
—
Signatures

Exact pattern
matching
(FFBF-VERIFY)

FDLIlnd

Suspect

¢ S'?,S‘ Malware
@ ’ Frnatware II

Figure 2: The SplitScreen scanning architecture.

3.2 High-Level Algorithm

The scanning algorithm used by SplitScreen consists of
four processing steps called FFBF-INIT, FFBF-SCAN,
FFBF-HIT, and FFBF-VERIFY, which behave as fol-
lows:

FFBF-INIT(X) — ¢ takes as input the set of signa-
tures X and outputs a bit-vector ¢ which we call the
all-patterns bit vector. FFBF-SCAN will use this
bit-vector to construct an FFBF to scan files.

FFBF-SCAN(¢,F) — (¢', Fuspect) constructs an
FFBF from ¢ and then scans each file f € F
using the FFBF. The algorithm outputs the tuple
(9, Fyuspect) Where Fygpeer C F is the list of files
that were matched by ¢, and ¢’ is a bit vector
that identifies the signatures actually matched by
Fyuspec:- We call ¢’ the matched-patterns bit vector.

FFBF-HIT(¢',X) — ¥ takes in the matched-patterns
bit vector ¢’ and outputs the set of regexp signatures
Y/ C ¥ that were matched during FFBF-SCAN.

FFBF-VERIFY (Y, Fyuspect) = Fnatware takes in a
set of regular expression signatures Y/, a set
of files Fyspeer» and outputs the set of files
Fuatware € Fvuspect matching ¥

The crux of the SplitScreen algorithm can be ex-
pressed as:

SCAN(L,F) =
let (¢', Fuspect) = FFBF-SCAN(FFBF-INIT(X), F) in
FFBF-VERIFY (FFBF-HIT(¢',X), Fuspect)

Let R denote the existing regular expression pattern
matching algorithm, e.g., R is ClamAV. SplitScreen
achieves the following properties:

Correctness. SCAN will return the same set of files as
identified by R, i.e., SCAN(X,F) = R(X,F).

Higher Throughput. SCAN runs faster than R. In par-
ticular, we want the time for FFBF-SCAN plus
FFBF-VERIFY plus FFBF-HIT to be less than the
time to execute R. (Since FFBF-INIT is an initial-
ization step performed only once per set of signa-
tures, we do not consider it for throughput. We sim-
ilarly discount in R the time to initialize any data
structures in its algorithm.)

Less Memory. The amount of memory needed by
SCAN is less than R. In particular, we want
max(|¢| + [¢'],|Z|) < |E| (the bit vectors are not
required to be in memory during FFBF-VERIFY).
We expect that the common case is that most sig-
natures are never matched, e.g., the average user
does not have hundreds of thousands or millions of
unique malware programs on their computer. Thus
|¥| < |Z], so the total memory overhead will be
significantly smaller. In the worst case, where ev-
ery signature is matched, ¥’ = ¥ and SplitScreen’s
memory overhead is the same as existing systems’s.

Scales to More Signatures. Since the all-patterns bit
vector ¢ takes a fraction of the space needed by
typical exact pattern matching data structures, the
system scales to a larger number of signatures.

Network-based System. Our approach naturally leads
to a distributed implementation where we keep the
full set of signatures X on a server, and distribute
¢ to clients. Clients use ¢ to construct an FFBF
and scan their files locally. After FFBF-SCAN re-
turns, the client sends ¢’ to a server to perform
FFBF-HIT, gets back the set of signatures X’ ac-
tually needed to confirm malware is present. The
client runs FFBF-VERIFY locally.

Privacy. In previous network-based approaches such as
CloudAV [19], a client sends every file to a server
(the cloud) for scanning. Thus, the server can see all
of the client’s files. In our setting, the client never
sends a file across the network. Instead, the client
sends ¢’, which can be thought of as a list of pos-
sible viruses on their system. We believe this is a
better privacy tradeoff. Furthermore, clients can at-
tain deniability as explained in §3.4. Note our ar-
chitecture can be used to realize the existing anti-
malware paradigm where the client simply asks for
all signatures. Such a client would still retain the
improved throughput during scanning by using our
FFBF-based algorithms.

3.3 Bloom-Based Building Blocks

Bloom filters can have false positives, so a hit must be
confirmed by an exact pattern matching algorithm (hence
the need for FFBF-VERIFY). Our first Bloom filter en-
hancement reduces the number of signatures needed for
verification, while the second accelerates the Bloom fil-
ter scan itself.

3.3.1 Feed-Forward Bloom Filters

An FFBF consists of two bit vectors. The all-patterns
bit vector is a standard Bloom filter initialized as de-
scribed in §3.5.1. In our setting, the set of items is X.
The matched-patterns bit vector is initialized to 0.

As with an ordinary Bloom filter, a candidate item is

Target file {m}
(Bloom filter hit)

Target file {n}
(Bloom filter miss)

All-patterns

¥ ¥ A
[0 [o[o[*[o[1]o[*[o[o[o] 1]o]e] ALpatems,

Matched-patterns

[oft]ofofofofo[1]o]o]oJofof1]ofo] ™ i ccor ¢

Suspect signature {0’}
corresponding to file {m}

Figure 3: Building the matched-patterns bit vector as
part of the feed-forward Bloom filter algorithm.

hashed and the corresponding bits are tested against the
all-patterns bit vector. If all the hashed bits are set in
the all-patterns bit vector, the item is output as a FFBF
match. When a match occurs, the FFBF will additionally
set each bit used to check the all-patterns bit vector to 1 in
the matched-patterns bit vector. In essence, the matched-
patterns bit vector records which entries were found in
the Bloom filter. This process is shown in Figure 3.

After all input items have been scanned through the
FFBEF, the matched-patterns bit vector is a Bloom fil-
ter representing the patterns that were matched. The
user of an FFBF can generate a list of potentially match-
ing patterns by running the input pattern set against the
matched-patterns Bloom filter to identify which items
were actually tested. Like any other Bloom filter output,
the output pattern subset may contain false positives.

In SplitScreen, ¢ is the all-patterns bit vector, and ¢’ is
the matched-patterns bit vector created by FFBF-SCAN.
Thus, ¢’ identifies (a superset of) signatures that would
have matched using exact pattern matching. FFBF-HIT
uses ¢’ to determine the set of signatures needed for
FFBF-VERIFY.

3.3.2 Cache-Partitioned Bloom Filters

While a Bloom filter alone is more compact than other
data structures traditionally used in pattern matching al-
gorithms like Aho-Corasick or Wu-Manber, it is not oth-
erwise more cache-friendly: it performs random access
within a large vector. If this vector does not fit entirely
in cache, the accesses will cause cache misses which will
degrade performance substantially.

SplitScreen uses our cache-friendly partitioned bloom
filter design [18], which splits the input bit vector into
two parts. The first is sized to be entirely cache-resident,
and the first s hash functions map only into this section of
the vector. The second is created using virtual memory
super-pages (when available) and is sized to be as large
as possible without causing TLB misses. The FFBF pre-

vents cache pollution by using non-cached reads into the
second bloom filter. The mechanisms for automatically
determining the size of these partitions and the number of
hash functions are described in our technical report [18].

The key to this design is that it is optimized for bloom-
filter misses. Recall that a Bloom filter hit requires
matching each hash function against a “1” in the bit
vector. As a result, most misses will be detected after
the first or second test, with an exponentially decreasing
chance of requiring more and more tests.

The combination of a bloom-filter representation and
a cache-friendly implementation provide a substantial
speedup on modern architectures, as we show in §5.

3.4 SplitScreen Distributed Anti-Malware

In the SplitScreen distributed model, the input files are
located on the clients, while the signatures are located on
a server. The system works as follows:

1. The server generates the all-patterns bit vector for
the most recent malware signatures and transmits it
to the client. It will be periodically updated to con-
tain the latest malware bit patterns, just as existing
approaches must be updated.

2. The client performs the pre-screening phase us-
ing the feed-forward Bloom filter, generates the
matched-patterns bit vector, compresses it and
transmits it to the server.

3. The server uses the matched-patterns bit vector to
filter the signatures database and sends the full def-
initions (1% of the signatures) to the client.

4. The client performs exact matching with the suspect
files from the first phase and the suspect signatures
received from the server.

In this system, SplitScreen clients maintain only the
all-patterns bit vectors ¢ (there will be two bit vectors
corresponding to two FFBFs, one for each type of signa-
ture). Instead of replicating the large signature database
at each host, the database is stored only at the server and
clients only get the signatures they are likely to need.
This makes updates inexpensive: the server updates its
local signature database and then sends differential all-
patterns bit vector updates* to the clients.

Since the clients don’t have to use the entire set of sig-
natures for scanning, they also need less in-core memory
(important for multi-task systems), and have smaller load
times.

SplitScreen does not expose as much private data as
earlier distributed anti-malware systems [19], because
the contents of clients’ files are never sent over the net-
work, instead clients only send compact representations

4An all-patterns bit vector update is a sparse—so highly
compressible—bit vector that is overlaid on top of the old bit vector.

MD5 Rolling
Computation hashes

MD5 RegExp
FFBF-SCAN FFBF-SCAN

Susptect matched
Files bit vector Files bit vector — FFBF-HIT

' i
Fy @ Fuspect @

T T T
T T

MD5 MD5 RegExp [H RegExp
Suspect matched

uspect

(

FFBF-VERIFY

(bit vectors) of short hashes (under 32 bits) of small (usu-
ally under 20 bytes long) parts of undisclosed files and
hashes of MD5 signatures of files. Clients concerned
about deniability could set additional (randomly chosen)
bits in their matched-patterns bit vectors in exchange for
increased network traffic.

3.5 Design Details

3.5.1 Files and Signatures Screening

As explained in §2.1, ClamAV uses two types of signa-
tures: regexp signatures and MD35 signatures. We handle
each with its own FFBF.

Pattern signatures. The SplitScreen server extracts a
fragment of length w from every signature (the way w
is chosen is discussed in §5.8, while handling signatures
smaller than w bytes and signatures containing wildcards
is presented in §3.5.3 and §3.5.2). These fragments will
be hashed and inserted into the FFBF. When performing
FFBF scanning, a window of the same size (w) is slid
through the examined files, and its content at every po-
sition is tested against the filter. The hash functions we
use in our FFBF implementation are based on hashing
by cyclic polynomials [8] which we found to be effective
and relatively inexpensive. To reduce computation fur-
ther, we use the idea of Kirsch and Mitzenmacher [12]
and compute only two independent hash functions, de-
riving all the others as linear combinations of the first
two.

MDS signatures. ClamAV computes the MD5 hash of
each scanned file (or its sections) and searches for it in a
hash table of malware MDS5 signatures. SplitScreen re-
places the hash table with an FFBF to save memory. The
elements inserted into the filter are the MDS5 signatures

themselves, while the candidate elements tested against
the filter are the MDS5 hashes computed for the scanned
files. Since the MDS5 signatures are uniform hash val-
ues, the hash functions used for the FFBF are straight-
forward: given a 16-byte MDS5 signature bb,...bg, we
compute the 4-byte hash values as linear combinations of
hi =by...b4®bs...bg and hy = bg...b1» B b13...b16.

3.5.2 Signatures with Wildcards

A small fraction (1.5% in ClamAV) of regular expression
signatures contain wildcards, but SplitScreen’s Rabin-
Karp-based FFBF algorithm operates with fixed strings.
Simply expanding the regular expressions does not work.
For example, the expression

3¢666f726d3e{1 —200}3c696¢707574

(where “{1-200}” matches any sequence no longer than
200 bytes) generates 256°% different byte sequences. It
is impractical to put all of them into the Bloom filter.

Instead, SplitScreen extracts the invariant fragments
(fixed byte subsequences) of a wildcard-containing sig-
nature and selects one of these fragments to put in the
FFBF (see §3.5.4 for more details about fragment selec-
tion).

3.5.3 Short Signatures

If a regular expression signature does not contain a fixed
fragment at least as long as the window size, the signa-
ture cannot be added to the feed-forward Bloom filter.
Decreasing the window size to the length of the short-
est signature in the database would raise the Bloom fil-
ter scan false positive rate to an unacceptable level, be-
cause the probability of a random sequence of bytes be-
ing found in any given file increases exponentially as the
sequence shortens.

SplitScreen therefore performs a separate, exact pat-
tern matching step for short signatures concurrently with
the FFBF scanning. Short signatures are infrequent
(they represent less than 0.4% of ClamAV’s signature set
for our default choice for the window size—12 bytes),
so this extra step does not significantly reduce perfor-
mance. The SplitScreen server builds the short signa-
ture set when constructing the Bloom filters. Whenever
a SplitScreen client requires Bloom filter updates, the
SplitScreen server sends it this short signature set too.

3.5.4 Selecting Fragments using Document Fre-
quency

While malware signatures are highly specific, the fixed-
length substrings that SplitScreen uses may not be. For
example, suppose that the window size is 16 bytes. Al-
most every binary file contains 16 consecutive “0x00”
bytes. Since we want to keep as few files as possible for
the exact-matching phase, we should be careful not to
include such a pattern into the Bloom filter.

¥; = set of signatures

o = input signature (o € X)

w = fixed window size

Y = length w fixed byte sequence (w-gram) in &
DF(y) = the document frequency of w-gram y
outputs
¢; = FFBF signatures

Yshort = set of short signatures

for all o € X,,45, put o into @45
for all o in Efixed UZid

if|o| >w
for all fixed byte w-grams y in ¢
if DF(y)=0

put ¥ into @regerp; GOTO next
//either shorter than w or no zero DF
put ¢ into Xy,

Figure 5: Final FFBF-INIT algorithm.

We use the document frequency (DF) of signature
fragments in clean binary files to determine if a signa-
ture fragment is likely to match safe files. The DF of a
signature fragment represents the number of documents
containing this fragment. A high DF indicates that the
corresponding signature fragment is common and may
generate many false positives.

We compute the DF value for each window-sized sig-
nature fragment in clean binary samples. For each signa-
ture, we insert into the filter the first fragment with a DF
value of zero (i.e., the fragment did not occur in any of
the clean binary files). The signatures that have no zero
DF fragments are added to the short signature set.

We summarize our signature processing algorithm in
Figure 5. The SplitScreen server runs this algorithm
for every signature, and creates two Bloom filters—one
for MD5 signatures, and one for the regular expression
signatures—as well as the set of short signatures.

3.5.5 Important Parameters

We summarize in this section the important parameters
that affect the performance of our system, focusing on
the tradeoffs involved in choosing those parameters.

Bit vector size. The size of the bit vectors trades scan
speed for memory use. Larger bit vectors (specifically,
larger non-cache-resident parts) result in fewer Bloom
filter false positives, improving performance up to the
point where TLB misses become a problem (see §3.3.2).

Sliding window size. The wider the sliding window
used to scan files during FFBF-SCAN, the less chance
there is of a false positive (see §5.8). This makes FFBF-
VERIFY run faster (because there will be fewer files to
check). However, the wider the sliding window, the more
signatures that must be added to the short signature set.
Since we look for short signatures in every input file,

a large number of short signatures will reduce perfor-
mance.

Number of Bloom filter hash functions. The number of
hash functions used in the FFBF algorithm (the k param-
eter in §2.2) is a parameter for which an optimum value
can be computed when taking into account the character-
istics of the targeted hardware (e.g. the size of the caches,
the latencies in accessing different levels of the memory
hierarchy) as described in [18]. Empirically, we found
that two hash functions each for the cache-resident part
and the non-cache-resident part of the FFBF works well
for a wide range of hardware systems.

4 Implementation

We have implemented SplitScreen as an extension of
the ClamAV open source anti-malware platform, version
0.94.2. Our code is available at http://security.
ece.cmu.edu. The changes comprised approximately
8K lines of C code. The server application used in
our distributed anti-malware system required 5K lines of
code. SplitScreen servers and SplitScreen clients com-
municate with each other via TCP network sockets.

The SplitScreen client works like a typical anti-
malware scanner; it takes in a set of files, a signature
database (¢ in SplitScreen), and outputs which files are
malware along with any additional metadata such as the
malware name. We modified the existing 1ibclamav
library to have a two-phase scanning process using FF-
BFs.

The SplitScreen server generates ¢ from the default
ClamAV signatures using the algorithm shown in Fig-
ure 5. Note that SplitScreen can implement traditional
single-host anti-malware by simply running the client
and server on the same host. We use run-length encoding
to compress the bit vectors and signatures sent between
client and server.

5 Evaluation

In this section we first detail our experimental setup,
and then briefly summarize the malware measurements
that confirm our hypothesis that most of the volume
of malware can be detected using a few signatures.
We then present an overall performance comparison of
SplitScreen and ClamAY, followed by detailed measure-
ments to understand why SplitScreen performs well, how
it scales with increasing numbers of regexp and MD5
signatures, and how its memory use compares with Cla-
mAV. We then evaluate SplitScreen’s performance on
resource constrained devices and its performance in a
network-based use model.

5.1 Evaluation Setup

Unless otherwise specified, our experiments were con-
ducted on an Intel 2.4 GHz Core 2 Quad with 4 GB of
RAM and a 8 MB split L2 cache using a 12-byte window
size (see §3). When comparing SplitScreen against Cla-
mAYV, we exclude data structure initialization time in Cla-
mAYV, but count the time for FFBF_INIT in SplitScreen.
Thus, our measurements are conservative because they
reflect the best possible setting for ClamAV, and the
worst possible setting for SplitScreen. Unless otherwise
specified, we report the average over 10 runs.

Scanned files. Unless otherwise specified, all mea-
surements reflect scanning 344 MB of 100% clean files.
We use clean files because they are the common case,
and exercise most code branches. (§5.7 shows perfor-
mance for varying amounts of malware.) The clean files
come from a fresh install of Microsoft Windows XP plus
typical utilities such as MS Office 2007 and MS Visual
Studio 2007.

Signature sets. We use two sets of signatures for
the evaluation. If unspecified, we focus on the current
ClamAV signature set (main v.50 and daily v.9154 from
March 2009), which contained 530K signatures. We use
four additional historical snapshots from the ClamAV
source code repository. To measure how SplitScreen
will improve as the number of signatures continues to
grow, we generated additional regex and MD5 signatures
(“projected” in our graphs) in the same relative propor-
tion as the March signature set. The synthetic regexs
were generated by randomly permuting fixed strings in
the March snapshot, while the synthetic MD35s are ran-
dom 16-byte strings.

5.2 Malware Measurements

Given a set of signatures X, we are interested in know-
ing how many individual signatures ¥’ are matched in
typical scenarios, i.e., |X'| vs. |X|. We hypothesized
that most signatures are rarely matched (|Z'| < |Z]), e.g.,
most signatures correspond to malware variants that are
never widely distribution.

One typical use of anti-malware products is to filter
out malware from email. We scanned Carnegie Mellon
University’s email service from May 1st to August 29th
of 2009 with ClamAV. 1,392,786 malware instances were
detected out of 19,443,381 total emails, thus about 7% of
all email contained malware by volume. The total num-
ber of unique signatures matched was 1,825, which is
about 0.34% of the total signatures—see figure 6.

Another typical use of anti-malware products is to
scan files on disk. We acquired 393 GB of malware from
various sites, removed duplicate files based upon MDS5,
and removed files not recognized by ClamAV using the
v.9661 daily and v.51 main signature database. The total
number of signatures in ClamAV was 607,988, and the

http://security.ece.cmu.edu
http://security.ece.cmu.edu

100

80

60

40

1 10 100 1000
Number of signatures (in log-scale)

Figure 6: The overall amount of malware detected
(y axis) vs. the total number of malware signatures
needed (x axis). For example, about 1000 signatures
are needed to detect virtually all malware.

total number of unique malware files was 960,766 (about
221 GB). ClamAV reported out of the 960,766 unique
files that there were 128,992 unique malware variants.
Thus, about 21.2% of signatures were matched.

We conclude that indeed most signatures correspond
to rare malware, while only a few signatures are typi-
cally needed to match malware found in day-to-day op-
erations.

20 ClamAV C—
SplitScreen E—
215
=
B
<= 10
on
=1
=]
=
=5
0
°) Q%\«% Qq\
5. b2 b D
oS ":gw? ‘\%M@;&@rg& N
SN @ NSNS

Number of signatures
Figure 7: Performance of SplitScreen and ClamAV
using historical and projected ClamAV signature sets.

5.3 SplitScreen Throughput

We ran SplitScreen using both historical and projected
signature sets from ClamAV, and compared its perfor-
mance to ClamAV on the same signature set. Figure 7
shows our results. SplitScreen consistently improves
throughput by at least 2 X on previous and existing signa-
tures, and the throughput improvement factor increases
with the number of signatures.

Understanding throughput: Cache misses. We hy-
pothesized that a primary bottleneck in ClamAV was
L2 cache misses in regular expression matching. Fig-
ure 8 shows ClamAV’s throughput and memory use as
the number of regular expression signatures grows from
zero to roughly 125,000, with no MD5 signatures. In
contrast, increasing the number of MDS5 signatures lin-
early increases the total memory required by ClamAV,
but has almost no effect on its throughput. With no reg-
exp signatures, ClamAV scanned nearly 50 MB/sec, re-
gardless of the number of MDS5 signatures.

45 40
%ﬁ Throughput —8—
40 L\ Memory Use —<—
1 35
s By =
g 30 =
s 130 3
= 25 2
£ 9 & =
= 125 ¢
2 15 &
=
£ L N — |
5 B
15
0 25000 50000 75000 100000 125000

Number of RegExp signatures

Figure 8: ClamAYV scanning throughput and memory
consumption as the number of regular expression sig-
natures increases.

Figure 9 compares the absolute number of L2 cache
misses for ClamAV and SplitScreen as the (total) num-
ber of signatures increases. The dramatic increase in L2
cache misses for ClamAV suggest that this is, indeed,
a major source of its performance degradation. In con-
trast, the number of cache misses for SplitScreen is much
lower, helping to explain its improved scanning perfor-
mance. These results indicate that increasing the number
of regex signatures increases the number of cache misses,
decreases throughput, and thus is the primary throughput
bottleneck in ClamAV.

5.4 SplitScreen Scalability and Perfor-
mance Breakdown

How well does SplitScreen scale? We measured three
scaling dimensions: 1) how throughput is affected as the
number of regular expression signatures grows, 2) how
FFBF size affects performance and memory use, and 3)
where SplitScreen spends time as the number of signa-
tures increases.

Throughput. Figure 10 shows SplitScreen’s through-
put as the number of signatures grows from 500K (ap-
proximately what is in ClamAV now) to 3 million.
At 500K signatures, SplitScreen performs about 2.25
times better than ClamAV. At 3 million signatures,
SplitScreen performs 4.5 times better. The 4.5x

1.6x10’

ClamAV —&— /B
SplitScreen -
1.2x107
8.0x10° = e
4.0x10° @df
R I e R — S et X
0.0x10

0 100000 200000 300000 400000 500000 600000
Number of signatures
Figure 9: Cache misses.

throughput increase is given with a 32 MB FFBF. These
measurements are all an average over 10 runs. The worst
of these runs is the first when the file system cache is
cold, when SplitScreen was only 3x faster than ClamAV
(graph omitted due to space).

FFBF Size. We also experimented with smaller
FFBF’s of size 8, 12, 20, and 36 MB, as shown in Fig-
ure 10. The larger the FFBF, the smaller the false positive
ratio, thus the greater the performance. We saw no addi-
tional performance gain by increasing the FFBF beyond
36 MB.

FFBF-ScaN FFBF-HIT

sigs +Short Sigs. + Traffic FEBE-VERIFY
500K 27.2(94.7%) 0.7 (2.6%) 0.8 (2.7%)

IM 274(924%) 0.9 (3.0%) 1.4 (4.6%)

2M 26.5(76.0%) 1.3 (3.7%) 7.1 (20.3%)
3IM 242 (583%) 1.7 (4.1%) 15.6 (37.6%)

Table 1: Time spent per step by SplitScreen to scan
1.55 GB of files (in seconds and by percentage).

Per-Step Breakdown. Table 1 shows the breakdown of
time spent per phase. We do not show FFBF-INIT which
was always < 0.01% of total time. As noted earlier, we
omit ClamAV initialization time in order to provide con-
servative comparisons.

We make draw several conclusions from our experi-
ments. First, SplitScreen’s performance advantage con-
tinues to grow as the number of regexp signatures in-
creases. Second, the time required by the first phase
of scanning in SplitScreen holds steady, but the exact
matching phase begins to take more and more time. This
occurs because we held the size of the FFBF constant.
When we pack more signatures into the same size FFBF,
the bit vector becomes more densely populated, thus in-
creasing the probability of a false positive due to hash
collisions. Such false positives result in more signatures
to check during FFBF-VERIFY. Thus, while the overall
scan time is relatively small, increasing the SplitScreen
FFBF size will help in the future, i.e., we can take ad-

10

12

210

m

e 8

5

=6

1)

= .

£ 1

= 8MB —&— 36MB —&— —__|
2 12MB —%— ClamAV —&— ? 15
0 20MB —®— Ratio & .
500K M 2M 3M

Number of signatures
Figure 10: Performance for different size feed-

forward Bloom filters, keeping the cache-resident
portion constant.

vantage of the larger caches the future may bring. Note
that the size increases to the FFBF need be nowhere
near as large as with ClamAV, e.g., a few megabytes for
SplitScreen vs. a few hundred megabytes for ClamAV.

5.5 SplitScreen on Constrained Devices

Figure 11 compares the memory required by SplitScreen
and ClamAV for FFBF-SCAN. 533,183 signatures
in ClamAV consumed about 116 MB of memory.
SplitScreen requires only 55.4 MB, of which 40 MB are
dedicated to FFBFs. Our FFBF was designed to min-
imize false positives due to hash collisions but not ad-
versely affect performance due to TLB misses (§3.3.2).
At 3 million signatures, ClamAV consumed over 500 MB
of memory, while SplitScreen still performed well with a
40 MB FFBF.

We then tested SplitScreen’s performance with four
increasingly more limited systems. We compare
SplitScreen and ClamAV using the current signature set
on: a 2009 desktop computer (Intel 2.4 GHz Core 2
Quad, 4 GB RAM, 8 MB L2 cache); a 2008 Apple lap-
top (Intel 2.4 GHz Core 2 Duo, 2 GB RAM, 3 MB L2
cache); a 2005 desktop (Intel Pentium D 2.8 GHz, 4 GB
RAM, 2 MB L2 Cache); and a Alix3c2 (AMD Geode
500 Mhz, 256 MB RAM, 128 KB L2 Cache) that we use
as a proxy for mobile/handheld devices.’

Figure 12 shows these results. On the desktop sys-
tems and laptop, SplitScreen performs roughly 2x better
than ClamAV. On the embedded system, SplitScreen per-
forms 30% better than the baseline ClamAV. The modest
performance gain was a result of the very small L2 cache
on the embedded system.

However, our experiments indicate a more fundamen-
tal limitation with ClamAV on the memory-constrained
AMD Geode. When we ran using the 2 million signature
dataset, ClamAV exhausted the available system memory
and crashed. In contrast, SplitScreen successfully oper-

5The AMD Geode has hardware capabilities similar to the iPhone
3GS, which has a 600 MHz ARM processor with 128 MB of RAM.

500 | ClamAV —&-
SplitScreen —%—
o 400 r
2
2 300
=]
o
g 200 f
Q
=
100
0

1.0x10° 1.0x10°
Number of signatures (in log scale)

Figure 11: Memory use of SplitScreen and ClamAV.

ated using even the 3 million signature dataset. These
results suggest that SplitScreen is a more effective archi-
tecture for memory-constrained devices.

5.6 SplitScreen Network Performance

In the network-based setting there are three data trans-
fers between server and client: 1) the initial bit vector
¢ (the all-patterns bit vector) generated by FFBF-INIT
sent from the server to the client; 2) the bit vector ¢’ (the
matched-patterns bit vector) for signatures matched by
FFBF-SCAN sent by the client to the server; and 3) the
set of signatures ¥’ needed for FFBF-VERIFY sent by
the server to the client.

Recall that SplitScreen compresses the (likely-sparse)
bit vectors before transmission. The compressed size of
¢’ depends upon the signatures matched and the FFBF
false positive rate. Table 2 shows the network traffic and
false-positive rates in different cases. The size of both
¢’ and Y/ remains small for these files, requiring signifi-
cantly less network traffic than transferring the entire sig-
nature set.

Table 3 shows the size of the all-patterns bit vector @,
which must be transmitted periodically to clients, for in-
creasing (gzipped) ClamAV database sizes. SplitScreen
requires about 10% the network bandwidth to distribute
the initial signatures to clients.

Overall, the volume of network traffic for SplitScreen
(|¢| + |9'| + |X']) is between 10%-13% of that used
by ClamAV on a fresh scan. On subsequent scans
SplitScreen will go out and fetch new ¢’ and X' if new
signatures are matched (e.g., the ¢’ of a new scan has
different bits set than previous scans). However, since
|¥'| < |Z], the total lifetime traffic is still expected to be
very small.

5.7 Malware Scanning

How does the amount of malware affect scan through-
put? We created a 100 MB corpus using different ratios

11

ClamAV [
SplitScreen E—

A,

Core 2 Quad Core 2 Duo Pentium D AMD 500Mhz
8MB L2 3MB L2 2MB L2 128KB L2

Throughput (MB/s)

Figure 12: Performance for four different systems
(differing CPU, cache, and memory size).

ClamAV C—
SplitScreen —

10

Throughput (MB/s)

o 1 2 4 8

10 20 40 60 80 100

Percentage of malware in scanned files (%)

Figure 13: Throughput as % of malware increases
(using total scan time including verification).

of malware and clean PE files. Figure 13 shows that
SplitScreen’s performance advantage slowly decreases
as the percentage of malware increases, because it must
re-scan a larger amount of the input files using the exact
signatures.

5.8 Additional SplitScreen Parameters

In addition to the FFBF size (§5.4), we measured the ef-
fect of different hash window sizes and the effectiveness
of using document frequency to select good tokens for
regular expression signatures.

Fixed string selection and document frequency. The
better the fixed string selection, the lower the false posi-
tive rate will be, and thus the better SplitScreen performs.
We use the document frequency (DF) of known good
programs to eliminate fixed strings that would cause false
positives. Our experiments were conducted using the
known clean binaries as described in §5.1. We found the
performance increase in Figure 13 was in part due to DF
removing substrings that match clean files. We did a sub-
sequent test with 344 MB of PE files from our data set.
Without document frequency, we had a 22% false pos-

Target File Types tSz;ngeet ﬁl:sf E;l;?grle:f |¢’| (Bytes) |E'| (Bytes) ?];);i:st)r affic Ili:tlese positive
Randomly generated 200 MB 1,000 80 405 485 0.50%
Randomly generated 2 GB 10,000 224 223 447 0.14%

Clean PE files 340 MB 1,957 1,829 15,082 16,911 4.19%

Clean ELF files 157 MB 1,319 180 11,766 13,338 9.26%

100% Malware 170 MB 534 17,100 160,828 177,928 N/A

100% Malware 1.1 GB 5277 61,748 648,962 710,710 N/A

Table 2: Network traffic for SplitScreen using 530K signatures.

Window Size Avg. F-P Max. F-P # Short Sigs

. ClamAV FFBF + Short 8 bytes 17.3 18.9 1169
signatures . 10 bytes 11.6 14.3 1350
CVD (MB) Sigs (MB)
12 bytes 8.56 9.36 1624
30K 9.9 0.77
14 bytes 6.70 7.77 2004
2K 135 1.2 16 bytes 5.23 6.31 3203
530K 208 2.0

Table 4: False positive rates for different window sizes.
The average and maximum FP rates are from the 10-
fold cross validation of DF on 1.55 GB of clean binaries.

Table 3: Signature size initially sent to clients.

itive rate and a throughput of 10 MB/s. With document
frequency, we had a 0.9% false positive rate and 12 MB/s
throughput. We also performed 10-fold cross validation
to confirm that document frequency is beneficial, with
the average and max false positive rate per window size
shown in Table 4.

Window size. A shorter hash window results in fewer
short regexp signatures, but increases the false positive
rate. The window represents the number of bytes from
each signature used for FFBF scanning. For example, a
window of 1 byte would mean a file would only have to
match 1 byte of a signature during FFBF-SCAN. (The
system ensures correctness via FFBF-VERIFY.)

Using an eight-byte window, hash collisions caused a
3.98% of files to be mis-identified as malware in FFBF-
SCAN that later had to be weeded out during FFBF-
VERIFY. With a sixteen-byte window, the false posi-
tive rate was only 0.46%. The throughput for an 8 and
16 byte window was 9.44 MB/s and 8.67 MB/s, respec-
tively. Our results indicate a window size of 12 seems
optimal as a balance between the short signature set size,
the false positive rate, and the scan rate.

5.9 Comparison with HashAV

The work most closely related to ours is HashAV [10].
HashAV uses Bloom filters as a first pass to reduce the
number of files scanned by the regular expression algo-
rithms. Although there are many significant differences
between SplitScreen and HashAV (see §7), HashAV
serves as a good reference for the difference between a
typical Bloom scan and our FFBF-based techniques.

To enable a direct comparison, we made several mod-

12

ifications to each system. We modified SplitScreen to
ignore file types and perform only the raw scanning sup-
ported by HashAV. We disabled MDS5 signature compu-
tation and scanning in SplitScreen to match HashAV’s
behavior. We updated HashAV to scan multiple files in-
stead of only one. Finally, we changed the evaluation
to include only the file types that HashAV supported.
It is important to note that the numbers in this section
are not directly comparable to those in previous sections.
HashAV did not support the complex regexp patterns that
most frequently show up in SplitScreen’s small signa-
tures set, so the performance improvement of SplitScreen
over ClamAYV appears larger in this evaluation that it does
in previous sections.

Figure 14 shows that with 100K signatures,
SplitScreen performs about 9x better than HashAV,
which in turn outperforms ClamAV by a factor of two.
SplitScreen’s performance does not degrade with an
increasing number of signatures, while HashAV’s per-
formance does. One reason is SplitScreen is more cache
friendly; with large signature sets HashAV’s default
Bloom filter does not fit in cache, and the resulting cache
misses significantly degrade performance. If HashAV
decreased the size of their filter, then there would be
many false positives due to hash collisions. Further,
HashAV does not perform verification using the small
signature set as done by SplitScreen. As a result, the
data structure for exact pattern matching during HashAV
verification will be much larger than during verification
with SplitScreen.

ClamAV 3
HashAV =3

SplitScreen =

45
40
35 r
30
25
20
15
10 |

Throughput (MB/s)

(

30K

50K 70K 88K

Number of signatures

100K

Figure 14: HashAV and SplitScreen scan throughput.

6 Discussion

We see the SplitScreen distributed model providing ben-
efits in several scenarios, beyond the basic speedup pro-
vided by our approach. As shown in §5.6, a SplitScreen
client requires 10X less data than a ClamAV client be-
fore it can start detecting malware. Furthermore, sending
a new signature takes 8 bytes for SplitScreen (remem-
ber from §3.5.1 that all the FFBF bits corresponding to a
signature are generated from just two independent 32-bit
hashes) and 20 to 350 bytes on ClamAV. These factors
make SplitScreen more effective in responding to new
malware because there is less pressure on update servers,
and clients get updates faster. The other advantage to
dynamically downloading signatures is that SplitScreen
can be installed on devices with limited storage space,
like residential gateways or mobile devices.

In the SplitScreen distributed anti-malware model, the
server plays an active role in the scanning process: it ex-
tracts relevant signatures from the signature database for
every scan that generates suspect files on a client. Run-
ning on an Intel 2.4 GHz Core 2 Quad machine, the un-
optimized server can sustain up to 14 requests per second
(note that every request corresponded to a scan of 1.5 GB
of binary files, so the numbers of suspect files and signa-
tures were relatively high). As such, a single server can
handle the virus scanning load of a set of clients scan-
ning 21 GB/sec of data. While this suffices for a proof-
of-concept, we believe there is substantial room to opti-
mize the server’s performance in future work: (1) Clients
can cache signatures from the server by adding them to
their short signatures set; (2) the server can use an in-
dexing mechanism to more rapidly retrieve the neces-
sary signatures based upon the bits set in the matched-
patterns bit vector; (3) conventional or, perhaps, peer-to-
peer replication techniques can be easily used to replicate
the server, whose current implementation is CPU inten-
sive but does not require particularly large amounts of
disk or memory. These improvements are complemen-

13

tary to our core problem of efficient malware scanning,
and we leave them as future work.

7 Related Work

CloudAV [19] applies cloud computing to anti-virus
scanning. It exploits ‘N-version protection’ to detect
malware in the cloud network with higher accuracy. Its
scope is limited, however, to controlled environments
such as enterprises and schools to avoid dealing with
privacy. Each client in CloudAV sends files to a cen-
tral server for analysis, while in SplitScreen, clients send
only their matched-patterns bit vector.

Pattern matching, including using Bloom filters, has
been extensively studied in and outside of the malware
detection context. Several efforts have targeted net-
work intrusion detection systems such as Snort, which
must operate at extremely high speed, but that have a
smaller and simpler signature set [21]. Bloom filters are
a commonly-proposed technique for hardware acceler-
ated deep packet inspection [9].

HashAV proposed using Bloom filters to speed up
the Wu-Manber implementation used in ClamAV [10].
They show the importance of taking into account the
CPU caches when designing exact pattern matching al-
gorithms. However, their system does not address all as-
pects of an anti-malware solution, including MDS5 sig-
natures, signatures shorter than the window size, cache-
friendly Bloom filters when the data size exceeds cache
size, and reducing the number of signatures in the sub-
sequent verification step. Furthermore, the SplitScreen
FFBF-based approach scales much better for increases
in the number of signatures.

A solution for signature-based malware detection in
resource constrained mobile devices had previously been
presented in [22]. Similarly to SplitScreen, it used sig-
nature fragment selection to accelerate the scanning, but
could only handle fixed byte signatures, and was less
memory efficient than SplitScreen.

The “Oyster” ClamAV extensions [17] replaced Cla-
mAV’s Aho-Corasick trie with a multi-level trie to im-
prove its scalability, improving throughput, but did not
change its fundamental cache performance or reduce the
number of signatures that files must be scanned against.

8 Conclusion

SplitScreen’s two-phase scanning enables fast and
memory-efficient malware detection that can be decom-
posed into a client/server process that reduces the amount
of storage on, and communication to, clients by an or-
der of magnitude. The key aspects that make this de-
sign work are the observation that most malware signa-
tures are never matched—but must still be detectable—
combined with the feed-forward Bloom filter that re-

duces the problem of malware detection to scanning a
much smaller set of files against a much smaller set of
signatures. Our evaluation of SplitScreen, implemented
as an extension of ClamAYV, shows that it improves scan-
ning throughput using today’s signature sets by over 2,
using half the memory. The speedup and memory sav-
ings of SplitScreen improve further as the number of sig-
natures increases. Finally, the efficient distributed execu-
tion made possible using SplitScreen holds the potential
to enable scalable malware detection on a wide range of
low-end consumer and handheld devices.

Acknowledgements

We would like to thank Pei Cao and Ozgun Erdogan for
helpful discussions and feedback, as well as for making
the source code to HashAV available. We would also
like to thank Carngie Mellon University’s email team for
their help in this work, and Siddarth Adukia, the anony-
mous reviews and our shepherd for their helpful com-
ments. This work was supported in part by gifts from
Network Appliance, Google, and Intel Corporation, by
grants CNS-0619525 and CNS-0716287 from the Na-
tional Science Foundation, and by CyLab at Carnegie
Mellon under grant DAAD19-02-1-0389 from the Army
Research Office. The views expressed herein are those
of the authors and do not necessarily represent the views
of our sponsors.

References

[1] F-secure: Silent growth of malware accelerates.
http://www.f-secure.com/en_EMEA/
security/security-lab/latest-threats/
security-threat-summaries/2008-2.html.
Symantec global internet security threat report.
http://www.symantec.com/about/news/
release/article. jsp?prid=20090413_01.
A. V. Aho and M. J. Corasick. Efficient string matching:
an aid to bibliographic search. Comm. of the ACM, 18:
333-340, 1975.

S. Ballmer. http://www.microsoft.com/msft/
speech/FY07/BallmerFAM2007 .mspx, 2007.

B. H. Bloom. Space/Time Trade-offs in Hash Coding
with Allowable Errors. Comm. of the ACM, 13:422-426,
1970.

R. S. Boyer and J. S. Moore. A fast string searching algo-
rithm. Comm. of the ACM, 20:762-772, 1977.

A. Broder and M. Mitzenmacher. Network Applications
of Bloom Filters: A Survey. In Internet Mathematics,
pages 636—646, 2002.

J. D. Cohen. Recursive hashing functions for n-grams.
ACM Transactions on Information Systems, 15(3):291—
320, 1997.

[9] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and

(2]

(3]

(4]

(5]

(6]

(7]

(8]

14

(10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

(22]

(23]

J. Lockwood. Deep Packet Inspection Using Parallel
Bloom Filters. IEEE Micro, 24:52-61, January 2004.

O. Erdogan and P. Cao. Hash-AV: fast virus signature
scanning by cache-resident filters. International Journal
of Security and Networks, 2:50, 2007.

R. M. Karp and M. O. Rabin. Efficient Randomized
Pattern-Matching Algorithms. IBM Journal of Research
and Development, 31(2):249-260, 1987.

A. Kirsch and M. Mitzenmacher. Less hashing, same per-
formance: Building a better Bloom filter. Random Struc-
tures & Algorithms, 33(2):187-218, 2008.

T. Kojm. Clamav. URL http://www.clamav.net.

T. Kojm. Introduction to ClamAV. http:
//www.clamav.net/doc/webinars/
Webinar—-TK-2008-06-11.pdf, 2008.

C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda,
X. Zhou, and X. Wang. Effective and efficient malware
detection at the end host. In Proc. of the 18th USENIX
Security Symposium, 2009.

P-c. Lin, Z.-x. Li, Y.-d. Lin, Y.-c. Lai, and F. Lin. Profil-
ing and accelerating string matching algorithms in three
network content security applications. /[EEE Comm. Sur-
veys & Tutorials, 8:24-37, April 2006.

Y. Miretskiy, A. Das, C. P. Wright, and E. Zadok. Avfs:
An on-access anti-virus file system. In Proc. of the 13th
USENIX Security Symposium, 2004.

I. Moraru and D. G. Andersen. Fast Cache for Your
Text: Accelerating Exact Pattern Matching with Feed-
Forward Bloom Filters. Technical Report CMU-CS-09-
159, Carnegie Mellon University, 2009.

J. Oberheide, E. Cooke, and F. Jahanian. CloudAV: N-
Version Antivirus in the Network Cloud. In Proc. of the
17th USENIX Security Symposium, 2008.

G. Ollmann. The evolution of commercial malware de-
velopment kits and colour-by-numbers custom malware.
Computer Fraud & Security, 2008(9):4 — 7, 2008.

H. Song, T. Sproull, M. Attig, and J. Lockwood. Snort
offloader: a reconfigurable hardware NIDS filter. Inter-
national Conference on Field Programmable Logic and
Applications, 2005., pages 493-498, 2005.

D. Venugopal and G. Hu. Efficient signature based mal-
ware detection on mobile devices. Mobile Information
Systems, 4(1):33-49, 2008.

S. Wu and U. Manber. A fast algorithm for multi-pattern
searching. Technical Report TR-94-17, University of Ari-
zona, 1994.

http://www.f-secure.com/en_EMEA/security/security-lab/latest-threats/security-threat-summaries/2008-2.html
http://www.f-secure.com/en_EMEA/security/security-lab/latest-threats/security-threat-summaries/2008-2.html
http://www.f-secure.com/en_EMEA/security/security-lab/latest-threats/security-threat-summaries/2008-2.html
http://www.symantec.com/about/news/release/article.jsp?prid=20090413_01
http://www.symantec.com/about/news/release/article.jsp?prid=20090413_01
http://www.microsoft.com/msft/speech/FY07/BallmerFAM2007.mspx
http://www.microsoft.com/msft/speech/FY07/BallmerFAM2007.mspx
http://www.clamav.net
http://www.clamav.net/doc/webinars/Webinar-TK-2008-06-11.pdf
http://www.clamav.net/doc/webinars/Webinar-TK-2008-06-11.pdf
http://www.clamav.net/doc/webinars/Webinar-TK-2008-06-11.pdf

	Introduction
	Background
	Signature-based Virus Scanning
	Bloom Filters

	Design
	Design Overview
	High-Level Algorithm
	Bloom-Based Building Blocks
	Feed-Forward Bloom Filters
	Cache-Partitioned Bloom Filters

	SplitScreen Distributed Anti-Malware
	Design Details
	Files and Signatures Screening
	Signatures with Wildcards
	Short Signatures
	Selecting Fragments using Document Frequency
	Important Parameters

	Implementation
	Evaluation
	Evaluation Setup
	Malware Measurements
	SplitScreen Throughput
	SplitScreen Scalability and Performance Breakdown
	SplitScreen on Constrained Devices
	SplitScreen Network Performance
	Malware Scanning
	Additional SplitScreen Parameters
	Comparison with HashAV

	Discussion
	Related Work
	Conclusion

